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In rat hepatocytes, myristic acid occurs through lipogenesis,
palmitic acid shortening and lauric acid elongation
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The origin of myristic acid in mammalian cells and the regulation of its endogenous cellular low concentration are not known.
Another intriguing question is the potential metabolic properties of endogenous myristic acid as compared with exogenous
myristic acid. In the present paper, we hypothesised and demonstrated that, in liver cells, in addition to the usual fatty acid
synthase (FAS) pathway that produces predominantly palmitic acid and minor amounts of myristic acid, part of endogenous
cellular myristic acid also comes from a shortening of palmitic acid, likely by peroxisomal b-oxidation and from lauric acid by
elongation. From a nutritional point of view, C16:0 is universally found in natural fats and its shortening to myristic acid could
contribute to a non-negligible source of this fatty acid (FA) in the organism. Then, we measured the distribution of
endogenously synthesised myristic acid in lipid species and compared it with that of exogenous myristic acid. Our results do
not support the hypothesis of different metabolic fates of endogenous and exogenous myristic acid and suggest that whatever
the origin of myristic acid, its cellular concentration and lipid distribution are highly regulated.
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Introduction

Because of its negative effects on cholesterol metabolism,
at high levels (Hayes and Koshla, 1992; Kris-Etherton and
Dietschy, 1997), myristic acid (C14:0) has been studied
when provided in the diets of animals (Koshla et al., 1997;
Salter et al., 1998; Loison et al., 2002) and humans (Hughes
et al., 1996; MacDougall et al., 1996; Temme et al., 1997;
Dabadie et al., 2006), or when added to the medium of
cultured cells (Wang et al., 1992; Rioux et al., 2000 and
2002; Kummrow et al., 2002). Additionally, data have been
obtained by studying its positive effect on (n-3) poly-
unsaturated fatty acid (PUFA) bioavailability (Jan et al.,
2004; Dabadie et al., 2005; Rioux et al., 2005) and its
specific involvement in protein N-myristoylation (Duronio
et al., 1991 and 1992; DeMar and Anderson, 1997; Rioux
et al., 2006) or in trypanosome metabolism (Doering et al.,
1993). However, none of these studies has determined if
endogenous and exogenous myristic acids have equivalent
metabolic fates.

In mammalian cells, myristic acid usually accounts for less
than 1% of fatty acids (FAs) (Guillou et al., 2002; Rioux et al.,
2005). Comparatively, it is particularly abundant (7% to 14%

of total FAs) in milk fat (Jensen et al., 1990). In rat mammary
glands, this high level has been related to the presence of
a cytosolic thioesterase II (Libertini and Smith, 1978) that
releases FAs shorter than the highly predominant palmitic
acid usually produced by the fatty acid synthase (FAS)
complex, which is more specifically associated with thioes-
terase I. In other organisms, high level of myristic acid and
significant activity of cytosolic thioesterase II have also been
shown in a pea aphid (Ryan et al., 1982) and in the uropygial
gland of some waterfowls (De Renobales et al., 1980).

In tissues other than the lactating mammary gland,
however, the origin of myristic acid and the regulation of its
endogenous cellular low concentration are not known.
Myristic acid can come either directly from the diet, or from
de novo biosynthesis, or from another tissue in which it has
been synthesised and/or stored previously.

In the present paper, we demonstrate that, in liver cells,
in addition to the usual FAS pathway that produces pre-
dominantly palmitic acid and minor amounts of myristic
acid (Christie et al., 1981), part of endogenous cellular
myristic acid can also come from a shortening of palmitic
acid by peroxisomal b-oxidation and from lauric acid by
elongation. The distribution of endogenously synthesised
myristic acid in lipid species is analysed and compared with
that of exogenous myristic acid.- E-mail: Vincent.Rioux@agrocampus-rennes.fr
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Material and methods

Chemicals
Bovine serum albumin (BSA), 4-(2-hydroxyethyl)-1-piper-
azine ethanesulphonic acid (HEPES), Williams’ medium E,
insulin (bovine), dexamethasone, collagenase and FAs were
purchased from Sigma (St. Louis, MO, USA). Penicillin–
streptomycin antibiotic mixture was provided by Eurobio
(Les Ulis, France). Foetal bovine serum (FBS) was obtained
from J. Boy (Reims, France). [1-14C]-lauric acid was pur-
chased from Amersham Biosciences (Les Ulis, France).
[1-14C]-myristic acid, [9,10-3H]-palmitic acid, [1-14C]-
palmitic acid and [3H]-acetate were from Perkin Elmer Life
Sciences (Le Blanc Mesnil, France). [16-14C]-palmitic acid
was from CEA (Saclay, France). Solvents and other chemi-
cals were obtained from VWR International (Fontenay-sous-
Bois, France). High-purity reagents for HPLC application
came from Fisher Labosi (Elancourt, France). Falcon Primaria
Petri culture dishes were used (AES, Combourg, France).

Cultured rat hepatocytes
The experimental protocol was in compliance with European
Union guidelines for animal care and use. Sprague–Dawley
male rats (250 g body weight) were obtained from the
breeding centre R. Janvier (Le Genest, St. Isle, France) and
were food-deprived 12 h prior to hepatocyte preparation.
Hepatocytes were obtained after perfusion of liver in situ
with collagenase, as previously described (Rioux et al.,
2000). The culture medium (Williams’ E) was supplemented
with 26 mmol/l NaHCO3; 12.5 mmol/l HEPES; 15 mmol/l BSA;
50 000 IU/l penicillin, 50 mg/l streptomycin; 1 mmol/l insulin
and 1 mmol/l dexamethasone. For plating only, the culture
medium was supplemented with 7% (v/v) FBS. After plating,
the cells were maintained in a humidified incubator at 378C
under 5% CO2 in air. After 4 h, the plating medium was
changed to a serum-free culture medium.

Incubation with radiolabelled acetate and FAs
Hepatocytes were incubated with [1-14C]-lauric acid, [1-14C]-
myristic acid and [1-14C]-palmitic acid. [1-14C]-FA/albumin
complexes were prepared as previously described (Rioux et al.,
2000). The final FA concentration in serum-free Williams’
medium was 100 mmol/l with a specific activity of 183 MBq/
mmol. After 24 h of culture, the medium was replaced by 2 ml
of [1-14C]-FA-containing medium per dish. Incubation with
[9,10-3H]-palmitic acid was initiated at the same time of cul-
ture (Rioux et al., 2002) by replacing the culture medium by
serum-free fresh medium containing the tritiated FA (4 mmol/l,
925 MBq/mmol). In parallel, hepatocytes were incubated with
[3H]-acetate (500 mmol/l, 732 MBq/mmol).

Lipid extraction and lipid species separation
At the end of the incubation, the medium was taken off, the
cells were washed and harvested in phosphate-buffered
saline solution (150 mmol/l NaCl; 5 mmol/l Na phosphate;
pH 7.4). After centrifugation, lipids were extracted from the

cell pellet with hexane/isopropanol (3:2 v/v) as previously
described (Rioux et al., 2000). Total lipids were saponified
for 30 min at 708C by 1 ml of 2 mol/l KOH in ethanol. FAs
were liberated by acidification and extracted with diethyl-
ether. Alternatively, lipid species from the cells and medium
were separated by thin-layer chromatography (TLC) using a
mixture of hexane:diethylether:acetic acid (80:20:0.5 v/v/v).
Phospholipids (PL), triglycerides (TG) from the hepatocytes
and TG secreted in the medium were collected and sapo-
nified as described above.

In vitro elongation and shortening assays on subcellular
organelles
Peroxisomes were purified from rat liver by using the per-
oxisome isolation kit (Sigma), according to the procedure
supplied by the producer. Microsomes were obtained from
rat liver by a first centrifugation at 10 000 3 g (10 min, 48C)
followed by a second centrifugation at 100 000 3 g (1 h,
48C). The resulting peroxisomal and microsomal fractions
were used for palmitic acid shortening assay and lauric acid
elongation assay, respectively. A 1-ml assay mixture con-
taining 200 ml of peroxisomes (1 mg protein), 150 mmol/l
phosphate buffer (pH 7.16), 6 mmol/l MgCl2, 7.2 mmol/l
ATP, 0.54 mmol/l CoA and 0.8 mmol/l NADPH was incu-
bated at 378C for 30 min with 60 nmol of [16-14C]-palmitic
acid (740 MBq/mmol). For elongation assay, the incubation
was made with [1-14C]-lauric acid in a similar mixture
containing microsomes (5 mg protein) and malonic acid
(200 mmol/l). The reactions were stopped by adding 1 ml of
2 mol/l KOH in ethanol. After 30 min at 708C, the FAs were
liberated by acidification and extracted with diethylether.
Control assays were run by stopping the reactions before
addition of the labelled substrates.

FA analysis
FAs from each lipid extract were converted to FA naphthacyl
esters as previously described (Rioux et al., 1999) and
separated on HPLC (Alliance, Waters, France) with a linear
gradient of methanol:acetonitrile:water, starting at 80:10:10
(v/v/v) and increasing to 90:10:0 in 40 min. Elution of
naphthacyl derivatives was monitored by UV absorbance at
246 nm. Peaks corresponding to radiolabelled FAs were
collected (Fraction collector, Waters), diluted with scintilla-
tion liquid (InstaFluor Plus, Perkin Elmer Life Sciences) and
counted (Packard Tri-Carb 1600TR, Meriden, CT, USA).

Results expression and statistical analysis
The values reported are mean 6 s.d. (n 5 3). Results are
expressed as the per cent of the radioactivity initially added to
the culture and recovered in each fraction. The cellular protein
content of cell cultures, determined by a modified Lowry pro-
cedure (Bensadoun and Weinstein, 1976), was found to be
homogenous for all the treatments, and is indicated in each
figure legend. P-values were calculated using the Student t-test
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for two-group comparison. The differences were considered
significant at a P-value of less than 0.05.

Results

Potential precursors for myristic acid biosynthesis
Several potential precursors for myristic acid production
were assayed with cultured rat hepatocytes (Figure 1). We
first quantified the level of myristic acid produced from
acetyl-CoA through the activity of FAS, by using [3H]-acetate
as a precursor (Figure 1a). A linear incorporation of the
radioactivity was shown in the cell FA fraction, as a function
of the incubation time (0 to 4 h) and as a function of the
initial concentration of acetate (50 to 500 mmol/l, data not
shown). Five radiolabelled FAs were identified (C14:0,
C16:0, C18:0, C16:1 n-7 and a mixture of C18:1 n-9 and
n-7) but only the saturated FA are presented in Figure 1a.
For all the incubation times, linear regression analyses
showed that myristic acid and palmitic acid represented
10.4 6 3.4% and 72.5 6 3.2% of the radiolabelled FAs,
respectively.

When the potential biosynthesis of myristic acid was
measured from [1-14C]-lauric acid elongation (Figure 1b), the
radioactivity was rapidly and strongly recovered onto longer
saturated FAs, i.e. myristic, palmitic and stearic acids.
Depending on the incubation time, endogenous myristic acid
represented 30.8 6 1.6% of the newly synthesised FAs after
30 min of incubation, and only 8.8 6 3.5% after 12 h, then
being elongated to endogenous palmitic acid (Figure 1b).

Finally, we measured the potential biosynthesis of myr-
istic acid from palmitic acid shortening. Figure 1c shows
that [9,10-3H]-palmitic acid incubation with cultured rat
hepatocytes led to the biosynthesis of radiolabelled myristic
acid, with other FAs obtained by elongation and desatura-
tion of the precursor. For all the incubation times (between
3 and 12 h), myristic acid arose for 9.4 6 1.5% of the newly
synthesised FAs.

In vitro evidence for lauric acid elongation and palmitic acid
shortening to myristic acid
In order to confirm the shortening of C16:0 to C14:0 and
elongation of C12:0 to C14:0 in specific subcellular fractions
from a crude rat liver, [1-14C]-lauric acid was incubated with
the microsomal fraction (Figure 2a) and [16-14C]-palmitic
acid with the peroxisomal fraction (Figure 2b). Figure 2
shows the radiolabelled FA separation profiles obtained by
HPLC after these incubations. Evidence is presented that
lauric acid elongation to myristic acid occurred in the
microsomes and that palmitic acid shortening to myristic
acid occurred in the peroxisomes.

Comparison of endogenous and exogenous myristic acid
distribution between lipid species
The second purpose of this work was to compare the dis-
tribution of endogenously synthesised myristic acid in lipid

species, with that of exogenous myristic acid. Figure 3a
shows the incorporation of myristic acid, endogenously
synthesised from acetyl-CoA, in the cellular lipids and
secreted TG as a function of the incubation time (0 to 4 h).
Most of endogenous C14:0 stayed in the cells during the
incubation, i.e. 88.6 6 2.0% of total C14:0 over 4 h of
incubation. A detectable incorporation was however shown
in secreted TG (11.4 6 2.0%). In the cellular lipids, endo-
genous myristic acid was predominantly incorporated into
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Figure 1 Endogenous biosynthesis of myristic acid from (a) acetyl-CoA,
(b) lauric acid and (c) palmitic acid in cultured rat hepatocytes. Results
are expressed as the per cent of the initial radioactivity added to the
culture medium and recovered in cellular fatty acids. Each value is
the mean 6 s.d. from three different cell cultures. The protein content was
1.46 6 0.25 mg per dish for experiments with acetate, 1.46 6 0.36 mg/
dish for experiments with C12:0 and 1.25 6 0.15 mg per dish for
experiments with C16:0.
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the TG fraction (59.4 6 8.5%) and less into the PL fraction
(19.2 6 2.1%).

Figure 3b presents a similar analysis using exogenous
[1-14C]-myristic acid directly incubated with cultured rat
hepatocytes. The distribution in lipid species, analysed over
the 4-h incubation, showed that cellular myristic acid
represented 90.8 6 4.7% of total myristic acid. A detectable
incorporation was also shown in secreted TG (9.2 6 4.7%).
In hepatocytes, exogenous myristic acid was predominantly
incorporated into the TG fraction (56.5 6 3.3%) and less
into the PL fraction (19.3 6 3.6%). All these values of
incorporation, measured over the 4 h of incubation, are
remarkably close and statistically similar to those obtained
with endogenous myristic acid (Figure 3a).

When the lipid distribution of endogenous C16:0 origi-
nating from acetyl-CoA was studied (Figure 3c), palmitic
acid represented 95.6 6 2.6% in cellular lipids and
4.4 6 2.6% in secreted TG, after 4 h of incubation. In cel-
lular lipids, 42.0 6 8.0% of endogenous palmitic acid was
incorporated in TG and 33.0 6 1.2% in PL. Figure 3d pre-
sents a similar pattern using exogenous [1-14C]-palmitic
acid directly incubated with cultured rat hepatocytes. When
analysed over the 4 h of incubation, palmitic acid in cells

represented 93.5 6 3.6% and palmitic acid in secreted TG
6.5 6 3.6% of total C16:0. In cellular lipids, 47.2 6 2.7% of
exogenous palmitic acid was incorporated into the TG
fraction and 25.4 6 1.7% into the PL one. Comparison
between the lipid distribution of endogenous and exogen-
ous palmitic acid showed a significant difference (P , 0.05)
in the PL incorporation (Figure 3c and d).

When comparing their lipid distribution, no significant dif-
ference was shown between exogenous myristic and palmitic
acids, whereas significant differences for every value were
noticed between endogenous myristic and palmitic acids.

Discussion

This work was designed to study several possible pathways
for the biosynthesis of myristic acid in liver cells and to
compare the metabolism of endogenous and exogenous
myristic acid. The first part of the present work was focused
on the molecules that are potential precursors for myristic
acid biosynthesis. We hypothesised that, in liver cells, part
of endogenous cellular myristic acid could come from the
shortening of palmitic acid by peroxisomal b-oxidation, and
from the elongation of lauric acid by FA elongases. Figure 1
shows that incubation of cells with the three precursors led
to the biosynthesis of cellular myristic acid. In this model,
myristic acid coming from acetate represented 10% of the
endogenous pool of newly synthesised FAs (Figure 1a) and
palmitic acid represented more than 70%. It has already
been shown that palmitoyl-CoA is the main product of
mammalian FAS (Chirala and Wakil, 2004). Our results are
in agreement with those obtained by Lin and Smith (1978)
showing that the activity of thioesterase I in liver was
associated with FAS and was 10-fold less with myristoyl-
CoA than with palmitoyl-CoA. In other tissues than liver,
using [1-14C]-acetate, Christie et al. (1981) have also shown
that small amounts of myristic acid are synthesised by the
FAS system in adipocytes (about 8% of the endogenous
FAs) and higher amounts in the mammary gland (about
20% of the endogenous FAs), because of the presence
of the so-called additional cytosolic type II thioesterase
(Libertini and Smith, 1978).

Figure 1b shows that endogenous myristic acid was also
produced by elongation of lauric acid. Figure 2a demon-
strates further that microsomes from rat liver were able to
catalyse in vitro the elongation of lauric acid to myristic
acid. In a previous study (Rioux et al., 2003), lauric acid
elongation was suggested to produce endogenous myristic
acid used for protein N-myristoylation and S-acylation.
However, myristic acid coming from lauric acid did not stay
in this form in cells since it was rapidly elongated to
palmitic and stearic acid (Figure 1b). In addition, from
a nutritional point of view, lauric acid is available only in
a small number of dietary fats, like copra and palm oils
(39% to 54% and 44% to 51% of FAs).

Palmitic acid was finally investigated as a potential pre-
cursor for myristic acid in cultured rat hepatocytes (Figure 1c).
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Myristic acid was shown to represent constantly about 10%
of the newly synthesised FAs coming from palmitic acid. In
addition, Figure 2b demonstrates that peroxisomes from rat
liver were able to catalyse in vitro this shortening activity. We
had previously shown (Rioux et al., 2000) in the same model
that only 2% of C16:0 was b-oxidised after 4 h incubation.
Our experimental conditions (11 mmol/l glucose and 1 mmol/l
insulin in the medium) presumably favor lipid esterification
rather than oxidation, and it is therefore unlikely that radio-
labelled C14:0 (Figure 1c) comes from total b-oxidation of
[9,10-3H]-palmitic acid followed by de novo biosynthesis from
radiolabelled acetyl-CoA. In other cell lines (CHO, BC3H1, 3T3
and PC12), incubation of [9,10-3H]-palmitic acid did not
lead to the identification of radiolabelled myristic acid (Wang
et al., 1991 and 1992; Olson et al., 1985), except in the IM-9

cultured human lymphocytes, in which Hedo et al. (1987)
have shown radiolabelled C14:0 linked to the insulin receptor,
after incubation with tritiated C16:0. Our results suggest that
palmitic acid, because of its importance in natural fats, is
shortened to myristic acid in the liver, which would contribute
to a non-negligible portion of the synthesis of the latter in the
organism, depending on the physiological status.

From a nutritional point of view however, whatever the
precursors and pathways used for endogenous myristic acid
biosynthesis, the amount of C14:0 produced (some hundred mg
at the most, when considering a whole liver) is of far less extent
relative to dietary myristic acid. Indeed, the level of myristic
acid from dairy fat has been estimated up to
4 g/day (4.6 g/100 g total fat) in a Swedish population (Wolk et
al., 2001). In the same study, it has been shown that adipose
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tissue C14:0 level (3.6% of FAs) is a valid biomarker for dairy fat
intake in men. In the rat, tissue myristic acid was also shown to
be highly correlated with dietary myristic acid, especially in
adipose tissue but also in the plasma and liver (Rioux et al.,
2005). Under the experimental conditions used, our results
suggest that de novo-synthesised myristic acid can be con-
sidered as negligible when compared to exogenous myristate.

One can therefore wonder whether endogenous and
exogenous myristic acids are regulated the same way.
Indeed, different metabolic pathways of exogenous and
endogenous FAs, and different physiological influences as a
function of their origins, have been demonstrated for oleate
(Legrand et al., 1997), leading to the major conclusion that
endogenous oleic acid coming from in situ D9-desaturation
of stearate and exogenous dietary oleate are not equivalent
in terms of TG secretion (Sampath and Ntambi, 2005). The
second purpose of this work was therefore to compare the
distribution of endogenously synthesised myristic acid
between lipid species, with that of exogenous myristic acid.
In this investigation, we studied endogenous myristic acid
coming from acetyl-CoA and assumed that C14:0 coming
from C16:0 shortening or C12:0 elongation would behave in
the same way. The results showed that similar percentages of
both types of myristic acid were preferentially incorporated
into cellular TG, and less into cellular PL and secreted TG
(Figure 3a and b). In the pea aphid in which myristic acid
seemed to be almost exclusively synthesised from acetate,
C14:0 was also preferentially incorporated into the TG frac-
tion (Ryan et al., 1982). Our results do not support the
hypothesis of different metabolic utilisations of endogenous
and exogenous myristic acid. On the contrary, a massive
uptake of exogenous myristic acid and a small de novo
synthesis were metabolised in exactly the same way (Figure
3a and b). By contrast, results obtained with palmitic acid
(Figure 3c and d) indicated that this latter was more incor-
porated into the PL fraction when coming from the endo-
genous pathway. In addition, the lipid distribution of
exogenous myristic and palmitic acids was similar (Figure 3b
and d), whereas significant differences in the lipid incor-
poration were found between endogenous myristic and
palmitic acids (Figure 3a and c). Therefore, compared with
palmitic acid, our results suggest that the metabolism and
concentration of myristic acid are highly regulated in the liver.

In conclusion, we show that in addition to the usual
lipogenesis pathway, cellular myristic acid also comes from
a shortening of palmitic acid by peroxisomal b-oxidation
and from lauric acid by elongation. Our results suggest that
whatever the origin of myristic acid, its cellular concentra-
tion and lipid distribution are highly regulated.
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