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A Symmetric Imprimitivity Theorem for
Commuting Proper Actions

Astrid an Huef, Iain Raeburn, and Dana P. Williams

Abstract. We prove a symmetric imprimitivity theorem for commuting proper actions of locally com-

pact groups H and K on a C∗-algebra.

1 Introduction

Until recently, the various symmetric imprimitivity theorems in the literature have

all been associated with commuting free and proper actions of two locally compact

groups H and K on the left and right of a locally compact space P. The original

theorem, due to Green and Rieffel [23], says that the crossed products C0(P/H) ⋊

K and C0(K\P) ⋊ H are Morita equivalent; the most powerful generalizations give

Morita equivalences between crossed products of induced C∗-algebras [14, 20] or

crossed products of C0(P)-algebras [12].

There are two ways to prove a symmetric imprimitivity theorem. The first, used in

[23, 20], is to build module actions and inner products on spaces of compactly sup-

ported functions and then complete to get a bimodule over the (complete) crossed

products; for the Green–Rieffel theorem, the bimodule Z = ZH
K is a completion of

Cc(P). The second, used in [2, 14], starts from the one-sided equivalence involving

just one group, and bootstraps up by taking crossed products and tensor products;

for the Green–Rieffel theorem, we start with X := ZH
{e} and Y := Z

{e}
K , and the tensor

product

(X ⋊ K) ⊗C0(P)⋊(K×H) (Y ⋊ H)

implements the equivalence. In applications, the first bimodule Z is more convenient

for direct calculations, and the tensor-product bimodule is useful when we want to

bootstrap results from the one-sided case. It is known that the two bimodules are in

fact isomorphic as imprimitivity bimodules [12], and this isomorphism is useful, for

example, in settling questions of amenability [11, 12].

Both constructions, though, ultimately use imprimitivity bimodules constructed

from algebras of functions, and the algebraic structure in these bimodules was found

by pretty much ad hoc methods. In [24], Rieffel proposed an alternative, more sys-

tematic approach for building imprimitivity bimodules, based on abstracting the

concepts of proper and free actions to the noncommutative setting. He described a

class of proper saturated actions of a locally compact group G on a non-commutative
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C∗-algebra C for which there is a Morita equivalence between the (reduced) crossed

product C ⋊r G and a generalized fixed-point algebra CG of C ; this one-sided equiv-

alence is implemented by a bimodule which is constructed by completing a dense

subalgebra of C in a very particular way.

Pask and Raeburn have recently proved a symmetric imprimitivity theorem for

commuting actions on the Cuntz–Krieger algebras of directed graphs [19, Theo-

rem 2.1], which appears to be quite independent of the machinery developed in

[12, 20, 23]. However, the actions considered in [19] are proper in Rieffel’s sense,

and [19, Theorem 2.1] can be formulated as a Morita equivalence of crossed prod-

ucts of generalized fixed-point algebras. It is therefore tempting to look for a sym-

metric imprimitivity theorem for commuting proper actions on a C∗-algebra, and

the purpose of the present paper is to formulate and prove such a theorem. Thus we

consider commuting actions τ : H → Aut C and σ : K → Aut C of two groups on the

same C∗-algebra C , and aim to prove that if both actions are proper and saturated

in Rieffel’s sense, then we have a Morita equivalence between the crossed products

Cτ
⋊σ,r K and Cσ

⋊τ ,r H. We want a complete theory: we want a tensor-product bi-

module which is good for bootstrapping arguments, a bimodule which is obtained by

completing a dense subalgebra of C , and an isomorphism between these bimodules.

If this new symmetric imprimitivity theorem requires extra hypotheses, we want to

know that the hypotheses are satisfied in the key examples.

The first step is relatively straightforward. Under some mild continuity hypotheses

which ensure that the various crossed products make sense, we can start with two

applications of Rieffel’s theorem from [24] and use the usual bootstrap arguments to

obtain a tensor-product bimodule (Proposition 2.2). The second and third steps are

achieved in §3 using the results of our earlier paper [13]. We show that the natural

action of K on the bimodule implementing the equivalence between Cτ and C ⋊τ ,r H

is proper and saturated in the sense of [13], and identify the generalized fixed-point

algebra (C ⋊τ ,r H)K with Cσ
⋊τ ,r H, so that the main theorems of [13] give the

desired Morita equivalence between Cτ
⋊σ,r K and Cσ

⋊τ ,r H and the isomorphism

with the tensor-product bimodule (Theorem 3.7 and Corollary 3.8). The proof of

Theorem 3.7 raises substantial technical problems involving vector-valued integrals

whose treatment we defer to two appendices.

Theorem 3.7 requires substantial hypotheses of the sort needed by Rieffel in [24].

In the final section, we show that the hypotheses in §3 are often automatically satis-

fied. More specifically, we show that if there is an underlying free and proper space

K PH such that C0(P) maps bi-equivariantly into M(C), then Theorem 3.7 applies.

Although it is a little against the spirit of Rieffel’s theory to assume the existence of an

underlying proper action on a space, it is a fact that in all main examples of proper

actions of G there is such an underlying space GP. We discuss this in our concluding

Remark 4.5, and also speculate on possible implications for nonabelian duality.

2 The Tensor-Product Imprimitivity Bimodule

Let τ : H → Aut C and σ : K → Aut C be commuting actions of locally compact

groups on a C∗-algebra C . We assume that both τ and σ are proper and saturated

with respect to the same dense invariant ∗-subalgebra C0 of C in the sense of [24].
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Applying [24, Corollary 1.7] to τ gives a C ⋊τ ,r H – Cτ imprimitivity bimodule

C0, where Cτ denotes the generalized fixed-point algebra. Recall that, by definition,

Cτ is the closure of

D0 := span{ 〈b , c〉
Cτ : b, c ∈ C0 } ⊂ M(C)τ ,

where each 〈b , c〉
Cτ is a uniquely determined element of M(C)τ such that for every

a ∈ C0 ∫

H

aτs(b∗c) ds = a〈b , c〉
Cτ .

Since τ is saturated,

E0 := span{ s 7→ ∆H(s)−1/2bτs(c∗) : b, c ∈ C0 }

is dense in C ⋊τ ,r H.

Throughout we will denote by X a module isomorphic to the dual of C⋊τ,rH(C0)Cτ ,

so that X is a Cτ – (C ⋊τ ,r H)-imprimitivity bimodule. Formally, X is obtained by

completing X0 := C0, where X0 is the left D0-module with d · x := dx and
Cτ〈x , y〉 =

〈x∗ , y∗〉
Cτ ; one can easily check that the map ϕ : ♭(c) 7→ c∗ is an isomorphism of the

dual of Cτ (C0) onto Cτ X0 . We use the same isomorphism ϕ to work out what the

formula for the C ⋊τ ,r H-valued inner product on X0 should be:

〈x , y〉
C⋊τ,rH

(s) =
〈

(x∗)∗ , (y∗)∗
〉

C⋊τ,r H
(s)

=
〈
ϕ(♭(x∗)) , ϕ(♭(y∗))

〉
C⋊τ,rH

(s)

=
〈
♭(x∗) , ♭(y∗)

〉
C⋊τ,rH

(s)

=
C⋊τ,rH

〈
x∗ , y∗

〉
(s) = ∆H(s)−1/2x∗τs(y).

Now X0 = C0 completes to give a Morita equivalence between Cτ and C ⋊τ ,r H, and

for x, y, z ∈ X0, d ∈ D0 and e ∈ E0 ⊂ L1(H,C) the actions and inner products are

given by

d · x = dx is multiplication in M(C);(2.1)

x · e =

∫

H

τ−1
s (xe(s))∆H (s)−1/2 ds;(2.2)

Cτ〈x , v〉 is characterized by
Cτ〈x , v〉 · z =

∫

H

τs(xv∗)z ds;(2.3)

〈x , v〉
C⋊τ,r H

(s) = ∆H(s)−1/2x∗τs(v).(2.4)

The first step to obtaining the tensor-product version of the symmetric imprimi-

tivity theorem is to show that the natural extension σ̄ of σ to M(C) leaves Cτ invari-
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ant: if x, v,w ∈ X0 then, using (2.3), we have

Cτ

〈
σt (x) , σt (v)

〉
· w =

∫

H

τs(σt (x)σt (v)∗)w ds =

∫

H

σt (τs(xv∗))w ds

= σt

( ∫

H

τs(xv∗)σ−1
t (w) ds

)
= σt

(
Cτ〈x , v〉 · σ

−1
t (w)

)

= σ̄t

(
Cτ〈x , v〉

)
· w.

Similarly, we use (2.4) to show that

〈
σt (x) , σt (v)

〉
C⋊τ,rH

(s) = ∆H(s)−1/2σt (x)∗τs(σt (v)) = ∆H(s)−1/2σt (x∗τs(v))

= σt (〈x , v〉
C⋊τ,rH

(s)) = (σ ⋊ id)t (〈x , v〉
C⋊τ,r H

)(s).

These two calculations show that, algebraically at least, (σ̄, σ, σ ⋊ id) is a potential

candidate for an action of K on the Cτ – C ⋊τ ,r H-imprimitivity bimodule X.

To form the crossed-product bimodule, we need conditions implying that the ac-

tion σ : K → Aut C induces appropriately continuous actions σ̄, σ and σ ⋊ id on

Cτ ,X and C⋊r,τH respectively. We start by observing that σ⋊id : K → Aut(C⋊τ ,r H)

is always continuous. To see this, fix ǫ > 0 and f ∈ Cc(H,C). Note that L := { f (s) :

s ∈ supp f } is a compact subset of C . Since σ : K → Aut C is continuous, there exists

a neighborhood U of eK such that t ∈ U implies that ‖σt (c) − c‖ < ǫ/µH(supp f )

for all c ∈ L. Thus t ∈ U implies

‖(σ ⋊ id)t ( f ) − f ‖ ≤

∫

H

‖σt

(
f (s)

)
− f (s)‖ ds < ǫ.

Lemma 2.1 Suppose that the map t 7→
〈
σt (x) , x

〉
C⋊τ,rH

is continuous for each fixed

x ∈ X0 = C0. Then (σ̄, σ, σ ⋊ id) gives a continuous action of K on Cτ XC⋊τ,rH .

Proof If x ∈ X0 then

‖σt (x) − x‖2
= ‖

〈
σt (x) − x , σt (x) − x

〉
C⋊τ,rH

‖

=
∥∥ (σ ⋊ id)t (

〈
x , x

〉
C⋊τ,rH

) −
〈
σt (x) , x

〉
C⋊τ,rH

−
〈

x , σt (x)
〉

C⋊τ,rH
+

〈
x , x

〉
C⋊τ,rH

∥∥

≤ ‖(σ ⋊ id)t

(
〈x , x〉

C⋊τ,r H

)
− 〈x , x〉

C⋊τ,r H
‖

+ ‖〈x , x〉
C⋊τ,rH

−
〈
σt (x) , x

〉
C⋊τ,r H

‖

+ ‖〈x , x〉
C⋊τ,rH

−
〈

x , σt (x)
〉

C⋊τ,r H
‖,
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so that ‖σt (x)−x‖ → 0 as t → eK , using the assumption and the continuity of σ⋊id.

Thus σ : K → Aut X is continuous. Since

‖σ̄t

(
Cτ〈x , v〉

)
−

Cτ〈x , v〉‖ ≤ ‖x‖‖σt (v) − v‖ + ‖v‖‖σt (x) − x‖

the continuity of σ̄ : K → Aut Cτ follows from the continuity of σ.

Of course, by symmetry, the action (τ ⋊ id, τ , τ̄) of H on C⋊σ,rKYCσ is continuous

provided s 7→
C⋊σ,rK

〈
τs(y) , y

〉
is continuous for each fixed y ∈ Y0 = C0.

Proposition 2.2 Suppose that the action (σ̄, σ, σ ⋊ id) of K on Cτ XC⋊τ,rH is con-

tinuous and that the action (τ ⋊ id, τ , τ̄) of H on C⋊σ,rKYCσ is continuous. Let B :=

C ⋊σ⋊τ ,r (H × K). Then
(

X ⋊σ,r K
)
⊗B

(
Y ⋊τ ,r H

)
is a Cτ

⋊σ̄,r K – Cσ
⋊τ̄ ,r H-

imprimitivity bimodule.

Proof Note that whenever the actions (σ̄, σ, σ ⋊ id) of K on Cτ XC⋊τ,rH and

(τ ⋊ id, τ , τ̄) of H on C⋊σ,rKYCσ are continuous it makes sense to form the Combes

Cτ
⋊σ̄,r K – (C ⋊τ ,r H) ⋊σ⋊id,r K and (C ⋊σ,r K) ⋊τ⋊id,r H – Cσ

⋊τ̄ ,r H-imprimitivity

bimodules X⋊σ,r K and Y ⋊τ ,r H [1, Remark, p. 300]. We identify (C ⋊τ ,r H)⋊σ⋊id,r K

and (C ⋊σ,r K) ⋊τ⋊id,r H with B := C ⋊σ⋊τ ,r (H ×K) since they are all naturally iso-

morphic. Now the internal tensor product over B, (see, for example, [22, Proposition

3.16]), is a Cτ
⋊σ̄,r K – Cσ

⋊τ̄ ,r H-imprimitivity bimodule.

3 The Concrete Imprimitivity Bimodule

To get a concrete version of the imprimitivity bimodule obtained in Proposition 2.2

we will use the tools developed in [13], where we looked at a notion of proper action

on an imprimitivity bimodule which generalizes Rieffel’s in [24]. (Although there are

other notions of proper action, for example [7, 17, 18, 25], we are closest to [24] in

spirit.)

Definition 3.1 ([13, Definitions 2.1 and 2.15]) If (X,G, γ) is a Morita equivalence

between two dynamical systems (A,G, α) and (B,G, β), then the action γ of G on AXB

is proper if there are an invariant subspace X0 of X and invariant ∗-subalgebras A0 of

A and B0 of B, such that A0
(X0)B0

is a pre-imprimitivity bimodule with completion

AXB, and such that

(1) for every x, y ∈ X0, both s 7→ ∆(s)−1/2

A

〈
x , γs(y)

〉
and s 7→

A

〈
x , γs(y)

〉
are in

L1(G,A),

(2) for every b ∈ B0 and x ∈ X0, both s 7→ γs(x) · b and s 7→ ∆(s)−1/2γs(x) · b are in

L1(G,X),

(3) for every x, y ∈ X0, there is a multiplier 〈x , y〉
Bβ

in M(B0)β such that z·〈x , y〉
Bβ

∈

X0 for all z ∈ X0, and

(3.1)

∫

G

bβs

(
〈x , y〉

B

)
ds = b〈x , y〉

Bβ
for all b ∈ B0.
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If, in addition, the span in L1(G,A) of the functions s 7→ ∆(s)−1/2

A
〈x , γs(y)〉 with

x, y ∈ X0 is dense in A ⋊α,r G, then γ is called saturated.

If γ is proper and saturated, then (X0)Bβ completes to give an imprimitivity bimodule

implementing a Morita equivalence between A ⋊α,r G and a generalized fixed-point

algebra Bβ of B [13, Theorem 2.16]. Furthermore, in [13, Theorem 3.1] we showed

that the action β on B is proper with respect to B1 := 〈X0 ,X0〉
B
, so B1 completes to a

B ⋊β,r G – Bβ-imprimitivity bimodule. Finally, a linking algebra argument from [13]

implies that there is a natural imprimitivity bimodule-isomorphism of

(X ⋊α,r G) ⊗B⋊β,rG B1 onto X0.

Note that if A0
(X0)B0

= B0
(B0)B0

then Definition 3.1 reduces to that of Rieffel and [13,

Theorem 2.16] reduces to [24, Corollary 1.7].

In our situation, we want the action σ of K on Cτ XC⋊τ,rH to be proper with respect

to (D0,σ̄)(X0, σ)(E0,σ⋊id). We will then obtain the concrete version of the symmetric

imprimitivity theorem, as well as the desired isomorphism onto the tensor-product

version, along the following lines: if the action on X is proper and saturated, then

first, [13, Theorem 2.16] implies that X0 is a Cτ
⋊σ̄,r K – (C ⋊τ ,r H)σ⋊id-imprimitiv-

ity bimodule. On the other hand, [13, Theorem 3.1] implies σ ⋊ id is saturated and

proper with respect to E0 ⊂ C ⋊τ ,r H so that E0 is a (C ⋊τ ,r H) ⋊σ⋊id,r K – (C ⋊τ ,r

H)σ⋊id-imprimitivity bimodule. Let Y be the C ⋊σ,r K – Cσ-imprimitivity bimodule

based on Y0 := C0 coming from the proper and saturated action σ of K on C . Then

the Combes bimodule Y ⋊τ ,r H is a (C ⋊σ,r K) ⋊σ×id H – Cσ
⋊τ̄ ,r H-imprimitivity

bimodule. We can identify (C ⋊σ,r K) ⋊σ×id H with C ⋊τ×σ (K ×H), and, with a bit

more work, we will show that (C ⋊τ ,r H)σ⋊id and Cσ
⋊τ̄ ,r H are isomorphic. With

these identifications, we will show that E0 is isomorphic to Y ⋊τ ,r H, and then [13,

Theorem 3.1] gives an isomorphism

(X ⋊σ,r K) ⊗C⋊σ×τ,r (K×H) (Y ⋊τ ,r H) ∼= X0

as Cτ
⋊σ̄,r K – Cσ

⋊τ̄ H-imprimitivity bimodules. This gives us both the desired

concrete Morita equivalence and the isomorphism onto the tensor-product version.

Thus our first step is to find conditions which ensure that the three items of Defi-

nition 3.1 hold in our situation so that the action σ of K on Cτ XC⋊τ,rH is proper with

respect to (D0,σ̄)(X0, σ)(E0,σ⋊id).

For Definition 3.1(1) we need to assume that for every x, v ∈ X0 the functions

(3.2) t 7→
Cτ

〈
x , σt (v)

〉
and t 7→ ∆K (t)−1/2

Cτ

〈
x , σt (v)

〉

are in L1(K,Cτ ). Note that if w ∈ X0 then σt (x)·〈v ,w〉
C⋊τ,rH

=
Cτ〈σt (x) , v〉·w, so that

the integrability of the functions in (3.2) implies the integrability of t 7→ σt (x) · e and

its product with ∆K(t)−1/2 for all x ∈ X0 and e ∈ E0. So, Definition 3.1(1) and (2)

hold, provided the functions in (3.2) are integrable. For Definition 3.1(3), we need

to assume that the function s 7→ ∆H(s)−1/2〈x , τs(v)〉
Cσ is in L1(H,Cσ) whenever

x, v ∈ X0 and, using the Cσ-valued inner product for Y , define

(3.3)
〈

x , v
〉

(C⋊τ,rH)σ⋊id
(s) := ∆H(s)−1/2

〈
x , τs(v)

〉
Cσ ;
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now we still need to find conditions which ensure that

(1) 〈x , v〉
(C⋊τ,rH)σ⋊id

is a multiplier of C ⋊τ ,r H;

(2) 〈x , v〉
(C⋊τ,rH)σ⋊id

multiplies E0 and is invariant under σ ⋊ id;

(3) equation (3.1) is satisfied; and

(4) w · 〈x , v〉
(C⋊τ,rH)σ⋊id

is back in X0.

Item (1) is an immediate consequence of Proposition 3.2 below, which allows us

to view elements of L1(H,Cσ) as multipliers of C ⋊σ H via convolution. Although

essentially straightforward and presumably known, its proof requires some intrica-

cies of vector-valued integration which are certainly far from the subject at hand. We

provide a detailed proof in Appendix A.

Proposition 3.2 Let (A,G, α) be a dynamical system. Suppose that B is a C∗-subalge-

bra of M(A) such that (B,G, ᾱ) is a dynamical system. If g ∈ L1(G,B), then there is a

unique multiplier Tg in M(A ⋊α G) such that for all f ∈ L1(G,A) both Tg f and f Tg

are in L1(G,A) (viewed as a subalgebra of A ⋊α G), and for almost all s,

Tg f (s) =

∫

G

g(r)αr

(
f (r−1s)

)
dr(3.4)

and

f Tg(s) =

∫

G

f (r)ᾱr

(
g(r−1s)

)
dr.(3.5)

Note that if B = A, then Proposition 3.2 reduces to two things. First, the familiar

formula for convolutions of functions in Cc(G,A) extends to functions in L1(G,A),

and second, that convolution has the usual ∗-algebraic properties.

For (2), we seek conditions which ensure that 〈x , v〉
(C⋊τ,rH)σ⋊id

multiplies E0. Using

(3.5) we compute:

〈u ,w〉
C⋊τ,rH

〈x , v〉
(C⋊τ,rH)σ⋊id

(s) =

∫

H

〈u ,w〉
C⋊τ,rH

(r)τ̄r

(
〈x , v〉

(C⋊τ,rH)σ⋊id
(r−1s)

)
dr

= ∆H(s)−1/2u∗

∫

H

τr(w)τ̄r

(
〈x , τr−1s(v)〉

Cσ

)
dr

= ∆H(s)−1/2u∗τs

(∫

H

τs−1r(w)〈τs−1r(x) , v〉
Cσ dr

)

= ∆H(s)−1/2u∗τs

(∫

H

τr(w)〈τr(x) , v〉
Cσ dr

)
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by the change of variable s−1r 7→ r. Since
∫

H

τr(w)
〈
τr(x) , v

〉
Cσ dr =

∫

H
C⋊σ,rK

〈
τr(w) , τr(x)

〉
· v dr

=

∫

H

∫

K
C⋊σ,rK

〈
τr(w) , τr(x)

〉
(t)σt (v)∆K (t)1/2 dtdr

=

∫

H

∫

K

τr(w)σt (τr(x∗)v) dtdr.

Thus 〈u ,w〉
C⋊τ,rH

〈x , v〉
(C⋊τ,rH)σ⋊id

is back in E0 provided

(3.6)

∫

H

∫

K

τr(w)σt (τr(x∗)v) dtdr ∈ X0

whenever u, v,w, x ∈ X0.

For (3), we need to show that
∫

K

e(σ ⋊ id)t

(
〈x , v〉

C⋊τ,rH

)
dt = e〈x , v〉

(C⋊τ,rH)σ⋊id
.

To do this we need the following lemma. For the sake of clarity, we have decorated our

integrals with the space in which the integral takes values; thus we write
∫ C

H
f (s) ds

for the C-valued integral of f ∈ L1(H,C). Again, the proof of the lemma requires

some gymnastics with vector-valued integration, so we relegate it to Appendix B.

Lemma 3.3 Assume that for all u, v,w, x ∈ X0, the function

(r, s, t) 7→ uτr(v∗)σt

(
τr(w∗)τs(x)

)
∆H(s)−

1

2

is integrable as a function from H × H × K to C. Then for all ei ∈ E0 the function

t 7→ e1(σ⋊ id)t (e2) is integrable as a function from K to C ⋊τ ,r H. Further, the integral

(3.7)

∫ C⋊τ,rH

K

e1(σ ⋊ id)t (e2) dt

takes values in L1(H,C) viewed as a subalgebra of C ⋊r,τ H, and a representative for

(3.7) is given by

(3.8) s 7→

∫ C

K

e1(σ ⋊ id)t (e2)(s) dt.

Using Lemma 3.3 we obtain
∫

K

e(σ ⋊ id)t

(
〈x , v〉

C⋊τ,rH

)
dt(s) =

∫

K

e(σ ⋊ id)t

(
〈x , v〉

C⋊τ,rH

)
(s) dt

=

∫

K

∫

H

e(r)τr

(
(σ ⋊ id)t (〈x , v〉

C⋊τ,r H
(r−1s)

)
drdt

=

∫

K

∫

H

e(r)τrσt (x∗τr−1s(v))∆H(r−1s)−1/2 drdt.
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Since our assumptions guarantee that the previous integrand is an integrable func-

tion of (r, t) provided e ∈ E0 (see Remark A.2), is, by Fubini’s Theorem, equal to

∫

H

∫

K

e(r)σt

(
τr(x)∗τs(v)

)
∆H(r−1s)−1/2 dtdr

=

∫

H

e(r)
〈
τr(x) , τs(v)

〉
Cσ∆H(r−1s)−1/2 dr

=

∫

H

e(r)τ̄r

(
〈x , τr−1s(v)〉

Cσ

)
∆H(r−1s)−1/2 dr

=

∫

H

e(r)τ̄r

(
〈x , v〉

(C⋊τ,r H)σ⋊id
(r−1s)

)
dr

= e〈x , v〉
(C⋊τ,rH)σ⋊id

(s)

as required.

To establish (4), we claim that

(3.9) w · 〈x , v〉
(C⋊τ,r H)σ⋊id

=

∫

K

w · (σ ⋊ id)t (〈x , v〉
C⋊τ,r H

) dt.

To see this, first note that

‖w · (σ ⋊ id)t

(
〈x , v〉

C⋊τ,rH

)
‖ = ‖w ·

〈
σt (x) , σt (v)

〉
C⋊τ,r H

‖

≤ ‖
Cτ

〈
w , σt (x)

〉
‖‖σt (v)‖

≤ ‖
Cτ

〈
w , σt (x)

〉
‖‖v‖,

and the latter is integrable by Definition 3.1(1). It is not hard to see that

〈
z ,

∫

K

w · (σ ⋊ id)t

(
〈x , v〉

C⋊τ,rH

)
dt

〉
C⋊τ,rH

=
〈

z ,w · 〈x , v〉
(C⋊τ,r H)σ⋊id

〉
C⋊τ,rH

,

and (3.9) follows. We use (2.2) to write the left-hand side of (3.9) as
∫

K

∫

H

τ−1
s

(
w

(
(σ ⋊ id)t

(
〈x , v〉

C⋊τ,r H

)
(s)

))
∆H(s)−1/2 dsdt

=

∫

K

∫

H

τ−1
s

(
wσt

(
x∗τs(v)

))
∆H(s)−1 dsdt

=

∫

K

∫

H

τ−1
s (w)σt

(
τs−1 (x∗)v

)
∆H(s)−1 dsdt

=

∫

K

∫

H

τs(w)σt (τs(x∗)v) dsdt,

and we already assumed in Equation (3.6) above that this double integral is back

in X0.

We can restate our conclusions above as
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Proposition 3.4 Suppose that the action (σ̄, σ, σ⋊ id) of K on Cτ XC⋊τ,rH is continu-

ous. If for all u, v,w, x ∈ X0

(1) the function t 7→
Cτ〈x , σt (v)〉 and its product with ∆K (t)−1/2 are in L1(K,Cτ ),

(2) the function s 7→ ∆H(s)−1/2〈x , τs(v)〉
Cσ is in L1(H,Cσ),

(3) the integral
∫

H

∫
K
τr(w)σt (τr(x∗)v) dtdr is in X0, and

(4) the function (r, s, t) 7→ uτr(v∗)σt (τr(w∗)τs(x))∆H (s)−1/2 is integrable,

then σ is a proper action of K on Cτ XC⋊τ,rH with respect to (D0,σ̄)(X0, σ)(E0,σ⋊id).

In the situation of Proposition 3.4 above, we want the action of K to be sat-

urated with respect to X0, so that X0 completes to a Cτ
⋊σ̄,r K – (C ⋊τ ,r H)σ⋊id-

imprimitivity bimodule by [13, Theorem 2.16]. Since σ is a proper action of K on

Cτ XC⋊τ,rH with respect to (D0,σ̄)(X0, σ)(E0,σ⋊id), [13, Theorem 3.1] says that σ ⋊ id is

a proper action on C ⋊τ ,r H with respect to 〈X0 ,X0〉
C⋊τ,rH

. We have set things up so

that 〈X0 ,X0〉
C⋊τ,rH

= E0, and thus E0 completes to an I– J-imprimitivity bimodule,

where I is an ideal in (C ⋊τ ,r H) ⋊σ⋊id K and J is a generalized fixed point algebra of

C ⋊τ ,r H, by [24, Theorem 1.5]. But [13, Theorem 3.1] implies that J is an ideal in

(C ⋊τ ,r H)σ⋊id, and if σ ⋊ id is saturated with respect to E0 then σ is saturated with

respect to X0, and J = (C ⋊τ ,r H)σ⋊id. In applications we expect that it will be easy

to check that σ ⋊ id is saturated with respect to E0, and then we have

Proposition 3.5 Suppose that the action (σ̄, σ, σ⋊id) of K on Cτ XC⋊τ,rH is continuous

and proper with respect to (D0,σ̄)(X0, σ)(E0,σ⋊id), and that the proper action σ ⋊ id of K

on C ⋊τ ,r H is saturated with respect to E0. Then E0 completes to a (C ⋊τ ,r H) ⋊σ⋊id,r

K – (C ⋊τ ,r H)σ⋊id-imprimitivity bimodule.

In the next proposition we identify the module E0 and the fixed point algebra

(C ⋊τ ,r H)σ⋊id; again we add substantial hypotheses. The set E0 is always a subset

of L1(H,C0). Even though the completion Y of C0 is a C ⋊σ,r K – Cσ-imprimitivity

bimodule, this does not in general imply that E0 is contained in L1(H,Y ) (the norm

of Y is not related to the norm of C).

Proposition 3.6 Suppose that the action (τ⋊id, τ , τ̄) of H on C⋊σ,rKYCσ is continuous

so that Y ⋊τ ,r H is a (C ⋊σ,r K) ⋊τ⋊id,r H – Cσ
⋊τ̄ ,r H-imprimitivity bimodule. Also

suppose that the action σ⋊id of K on C ⋊τ ,r H is proper and saturated with respect to E0.

If E0 ⊂ L1(H,Y ) and if for all u, v,w, x ∈ X0 the function given in Proposition 3.4(4) is

integrable, then (C ⋊τ ,r H)σ⋊id ∼= Cσ
⋊τ̄ ,r H and

(C⋊τ,rH)⋊σ⋊idKE0(C⋊τ,r H)σ⋊id
∼= (C⋊σ,rK)⋊τ⋊id,rH(Y ⋊τ ,r H)Cσ

⋊τ̄ ,rH

as imprimitivity bimodules.

Proof As observed in [5, p. 428], if h ∈ Cc(H,Y ) then the Cauchy–Schwartz in-

equality gives ‖h‖ ≤
∫

H
‖h(s)‖ ds = ‖h‖1. It follows that L1(H,Y ) is dense in Y ⋊τ ,rH

and the actions and inner products on Cc(H,Y ) ⊂ Y ⋊τ ,r H given, for example, in
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[13, (3.5)–(3.8)], extend to integrable functions. That the formulas themselves ex-

tend to integrable functions can be seen by including Y ⋊τ ,r H in the linking algebra

L(Y ⋊τ ,r H) and doing the computations in the relevant bit of the C∗-algebra.

By assumption E0 is contained in L1(H,Y ); we let ι : E0 → Y ⋊τ ,r H be the in-

clusion map. Let ϕ : (C ⋊τ ,r H) ⋊σ⋊id,r K → (C ⋊σ,r K) ⋊τ⋊id,r H be the isomor-

phism such that ϕ( f )(s)(t) = f (t)(s) for f ∈ L1(K, L1(H,C)). We will show that

〈e , f 〉
(C⋊τ,rH)σ⋊id

7→ 〈e , f 〉
Cσ

⋊τ̄ ,rH
extends to an isomorphism ψ of (C ⋊r,τ H)σ⋊id

onto Cσ
⋊τ̄ H and that (ϕ, ι, ψ) extends to an imprimitivity bimodule isomorphism

of E0 onto Y ⋊τ ,r H.

If e, f ∈ E0, then

(C⋊τ,rH)⋊σ⋊id,rK
〈e , f 〉(t)(s) = ∆K (t)−1/2

C⋊τ,rH

〈
e , (σ ⋊ id)t ( f )

〉
(s)

= ∆K (t)−1/2e ∗ (σ ⋊ id)t ( f )∗(s)

= ∆K (t)−1/2

∫

H

e(r)τr((σ ⋊ id)t ( f ∗)(r−1s)) dr

= ∆K (t)−1/2

∫

H

e(r)τsσt ( f (s−1r)∗)∆H(s−1r) dr

=

∫

H

∆K (t)−1/2e(r)σt (τs( f (s−1r))∗)∆H(s−1r) dr

=

∫

H
C⋊σ,rK

〈
e(r) , τs( f (s−1r))

〉
(t)∆H(s−1r) dr

=
(C⋊σ,rK)⋊τ⋊id,rH

〈e , f 〉(s)(t)

so that ϕ
(

(C⋊τ,rH)⋊σ⋊id,rK
〈e , f 〉

)
=

(C⋊σ,rK)⋊τ⋊id,rH

〈
ι(e) , ι( f )

〉
. Next, we show that

ι
(

(C⋊τ,rH)⋊σ⋊id,rK
〈e , f 〉 · g

)
= ϕ

(
(C⋊τ,r H)⋊σ⋊id,rK

〈e , f 〉
)
· ι(g)

whenever e, f , g ∈ E0. First,

(C⋊τ,r H)⋊σ⋊id,rK
〈e , f 〉 · g(s) = e · 〈 f , g〉

(C⋊τ,r H)σ⋊id
(s)

=

∫

K

e ∗ ((σ ⋊ id)t ( f ∗ ∗ g)) dt(s)

which, by Lemma 3.3, is

=

∫

K

e ∗ ((σ ⋊ id)t ( f ∗ ∗ g))(s) dt

=

∫

K

∫

H

e(r)τr

(
(σ ⋊ id)t ( f ∗ ∗ g)(r−1s)

)
drdt

=

∫

K

∫

H

∫

H

e(r)σtτru−1

(
f (u)∗g(ur−1s)

)
dudrdt.(3.10)
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On the other hand,

ϕ
(

(C⋊τ,rH)⋊σ⋊id,rK
〈e , f 〉

)
· ι(g) =

(C⋊σ,rK)⋊τ⋊id,rH
〈e , f 〉 · g(s)

= e · 〈 f , g〉
Cσ

⋊τ̄ ,rH
(s)

which, using the Combes action, is

=

∫

H

e(r) · τ̄r

(
〈 f , g〉

Cσ
⋊τ̄ ,rH

(r−1s)
)

dr

=

∫

H

e(r)τ̄r

(∫

H

τ̄−1
u

(〈
f (u) , g(ur−1s)

〉
Cσ

))
dudr

=

∫

H

∫

H

∫

K

e(r)σtτru−1

(
f (u)∗g(ur−1s)

)
dtdudr

which is the same as (3.10) by two applications of Fubini’s Theorem.

So far we have shown that

(ϕ, ι) : (C⋊τ,rH)⋊σ⋊id,rK E0 →
(C⋊σ,rK)⋊τ⋊id,rH

(Y ⋊τ ,r H)

extends to a monomorphism of left-Hilbert modules. To produce

ψ : (C ⋊r,τ H)σ⋊id → Cσ
⋊τ̄ H

taking

〈e , f 〉
(C⋊τ,rH)σ⋊id

to 〈ι(e) , ι( f )〉
Cσ

⋊τ̄ ,rH
,

let π be a faithful representation of C on Hπ and π̄ its extension to M(C). By our

assumptions, τ̄ : H → Aut Cσ is continuous, so that the regular representation (π̃, λ)

of (C,H, τ ) extends to a covariant representation (˜̄π, λ) of (Cσ,H, τ̄ ). The represen-

tations

π̃ ⋊ λ : (C ⋊τ ,r H)σ⋊id → B(L2(H,Hπ)) and ˜̄π⋊λ : Cσ
⋊τ̄ ,r H → B(L2(H,Hπ))

are faithful. We will show that for e, f ∈ E0

(3.11) π̃ ⋊ λ
(
〈e , f 〉

(C⋊τ,rH)σ⋊id

)
= ˜̄π ⋊ λ

(
〈ι(e) , ι( f )〉

Cσ
⋊τ̄ ,rH

)
.

It then follows that ψ := (˜̄π⋊λ)−1 ◦ π̃ ⋊ λ is an injective homomorphism satisfying

(3.12) ψ
(
〈e , f 〉

(C⋊τ,rH)σ⋊id

)
= 〈ι(e) , ι( f )〉

Cσ
⋊τ̄ ,rH

.
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As the first step we show that ι(g · 〈e , f 〉
(C⋊τ,rH)σ⋊id

) = ι(g) · 〈ι(e) , ι( f )〉
(C⋊τ,r H)σ⋊id

whenever e, f , g ∈ E0; this will then also give us that (ι, ψ) extends to a right-Hilbert

module homomorphism. Well,

ι
(

g · 〈e , f 〉
(C⋊τ,rH)σ⋊id

)
= ι

(
(C⋊τ,rH)⋊σ⋊id,rK

〈g , e〉 · f
)

= ϕ
(

(C⋊τ,rH)⋊σ⋊id,rK
〈g , e〉

)
· ι( f )

=
(C⋊σ,rK)⋊τ⋊id,rH

〈
ι(g) , ι(e)

〉
· ι( f )

= ι(g) · 〈ι(e) , ι( f )〉
Cσ

⋊τ̄ ,rH
.

Note that for all g ∈ E0 and ξ, η ∈ L2(H,Hπ)

(
π̃ ⋊ λ

(
〈e , f 〉

(C⋊τ,rH)σ⋊id

)
ξ

∣∣ π̃ ⋊ λ(g∗)η
)

=

(
π̃ ⋊ λ

(
g · 〈e , f 〉

(C⋊τ,rH)σ⋊id

)
ξ

∣∣ η
)

=

(
π̃ ⋊ λ

(
ι(g) ·

〈
ι(e) , ι( f )

〉
Cσ

⋊τ̄ ,rH

)
ξ

∣∣ η
)

=

(
˜̄π ⋊ λ

(〈
ι(e) , ι( f )

〉
Cσ

⋊τ̄ ,rH

)
ξ

∣∣ π̃ ⋊ λ(g∗
)
η),

so that (3.12) follows from the nondegeneracy of π̃ ⋊ λ.

We now know that the triple (ϕ, ι, ψ) is an isomorphism of E0 into Y ⋊τ ,r H; to

see that this map is onto Y ⋊τ ,r H, we will show that ι(E0) is invariant under the

right action of Cσ and H, and then must be invariant under the action of Cσ
⋊τ̄ ,r H

as well. This suffices because ϕ maps (C ⋊τ ,r H) ⋊σ⋊id,r K onto (C ⋊σ,r K) ⋊τ⋊id,r

H and the Rieffel correspondence then implies that ι(E0) = Y ⋊τ ,r H. Therefore

ψ : (C ⋊r,τ H)σ⋊id → Cσ
⋊τ̄ ,r H is an isomorphism.

Consider e ∈ E0, say e(s) = ∆H(s)−1/2xτs(y∗), and 〈v ,w〉
Cσ where v,w, x, y ∈ X0.

Then

(
e · 〈v ,w〉

Cσ

)
(s) = e(s)τs

(
〈v ,w〉

Cσ

)
= ∆H(s)−1/2xτs(y∗)τs

(
〈v ,w〉Cσ

)

= ∆H(s)−1/2xτs

(
y∗〈v ,w〉

Cσ

)

so that e · 〈v ,w〉
Cσ is back in E0 because 〈v ,w〉

Cσ multiplies X0. Also,

(e · iH(r))(s) = e(sr−1)∆H(r−1) = ∆H(sr−1)−1/2
(
∆H(r−1)xτsr−1 (y∗)

)

so e · iH(r) is back in E0.

We can summarize our above discussions as follows.

Theorem 3.7 Suppose that τ : H → Aut C and σ : K → Aut C are commuting ac-

tions which are proper and saturated with respect to the same dense ∗-subalgebra C0.
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(1) (Continuity) If the maps t 7→ 〈σt (x) , x〉
C⋊τ,r H

and s 7→
C⋊σ,rK

〈τs(x) , x〉 are contin-

uous for all x ∈ X0 = Y0 = C0 then the actions (σ̄, σ, σ ⋊ id) of K on Cτ XC⋊τ,rH

and (τ ⋊ id, τ , τ̄) of H on C⋊σ,rKYCσ are continuous. In particular, Cτ
⋊σ̄,r K and

Cσ
⋊τ̄ ,r H are Morita equivalent.

(2) (Properness) The action (σ̄, σ, σ ⋊ id) of K on Cτ XC⋊τ,rH is proper with respect to

(D0,σ̄)(X0, σ)(E0,σ⋊id) if for all u, v,w, x ∈ X0

(a) the function t 7→
Cτ〈x , σt (v)〉 and its product with ∆K (t)−1/2 are in L1(K,Cτ );

(b) the function s 7→ ∆H(s)−1/2〈x , τs(v)〉
Cσ is in L1(H,Cσ);

(c) the integral
∫

H

∫
K
τr(w)σt (τr(x∗)v) dt dr is in X0;

(d) the function (r, s, t) 7→ uτr(v∗)σt

(
τr(w∗)τs(x)

)
∆H(s)−1/2 is integrable.

(3) (Tensor decomposition isomorphism) If in addition to (1) and (2) above,

(a) the action σ ⋊ id of K on C ⋊τ ,r H is saturated with respect to E0, and

(b) E0 ⊂ L1(H,Y )

then X0 completes to a Cτ
⋊σ̄,r K – Cσ

⋊τ̄ ,r H-imprimitivity bimodule and

(X ⋊σ,r K) ⊗ (Y ⋊τ ,r H) ∼= X0

as Cτ
⋊σ̄,r K – Cσ

⋊τ̄ ,r H-imprimitivity bimodules.

Proof Item (1) follows from Proposition 2.2, item (2) from Proposition 3.4, and

item (3) from Proposition 3.6 and [13, Theorem 3.1].

Corollary 3.8 Suppose that τ : H → Aut C and σ : K → Aut C are commuting

actions which are proper and saturated with respect to the same dense ∗-subalgebra C0,

and suppose that the hypotheses of Theorem 3.7(1)–(3) are satisfied. Then C0 completes

to a Cτ
⋊σ̄,r K – Cσ

⋊τ̄ ,r H-imprimitivity bimodule where the actions and inner products

are given on dense objects by equations 3.13–3.16 below.

Proof The action (σ̄, σ, σ ⋊ id) of K on Cτ XC⋊τ,rH is continuous by item (1) and is

proper with respect to (D0,σ̄)(C0, σ)(E0,σ⋊id) by item (2). The action σ ⋊ id of K on

C ⋊τ ,r H is saturated with respect to E0 by item (3a), and since E0 = 〈C0,C0〉C⋊τ,rH ,

it follows from [13, Theorem 3.1] that the action σ on X is saturated with respect to

C0. By [13, Theorem 2.16] the completion of C0 is a Cτ
⋊σ̄,r K – (C ⋊τ̄ ,r H)σ⋊id-im-

primitivity bimodule. Finally, items (2d), (3b), and Proposition 3.6 allow us to iden-

tify (C ⋊τ ,r H)σ⋊id and Cσ
⋊τ̄ ,r H.

Chasing through the construction and identification above we can write down the

actions and inner products for the Cτ
⋊σ̄,r K – Cσ

⋊τ̄ ,r H-imprimitivity bimodule

obtained by competing C0. Let x, y, c ∈ C0. By [13, Lemma 2.17],

(3.13) Cτ
⋊σ̄,rK〈x , y〉 · c =

∫

K
Cτ

⋊σ̄,rK〈x , y〉(t)σt (c)∆K (t)−1/2 dt

=

∫

K
Cτ 〈x , σt (y)〉σt (c) dt

=

∫

K

∫

H

τs(xσt (y∗))σt (c) dsdt,

https://doi.org/10.4153/CJM-2005-038-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-038-2


A Symmetric Imprimitivity Theorem for Commuting Proper Actions 997

and now

(3.14) c · 〈x , y〉Cσ
⋊τ̄ ,rH = Cτ

⋊σ̄,rK〈c , x〉 · y

=

∫

K

∫

H

τs(cσt (x∗))σt (y) dsdt.

By [13, Theorem 2.16] the left inner product is

(3.15) Cτ
⋊σ̄,rK〈x , y〉(t) = ∆K (t)−1/2

Cτ 〈x , σt (y)〉,

and the right inner product is defined using the isomorphism of (C ⋊τ ,r H)σ⋊id onto

Cσ
⋊τ̄ ,r H and equation 3.3:

(3.16) 〈x , y〉Cσ
⋊τ̄ ,rH(s) = ∆H(s)−1/2〈x , τs(y)〉Cσ .

4 Examples

Our examples are based on the proper actions constructed in [25, Section 5]. There

Rieffel starts with a proper action of G on the left of a locally compact Hausdorff

space P, a nondegenerate homomorphism θ : C0(P) → M(A), and an action α of G

on A such that

αs(θ( f )a) = θ(lts( f ))αs(a).

Rieffel proves in [25, Theorem 5.7] that α is proper in the sense of [24] with respect

to the subalgebra

A0 := θ(Cc(P))Aθ(Cc(P)) = span{ θ( f )aθ(g) : a ∈ A, f , g ∈ Cc(P) }.

The homomorphism θ does not necessarily have range in ZM(A), and consequently

this setup includes striking examples (see Remark 4.5). If θ is central then A is a

C0(P)-algebra, and Proposition 4.2 and Theorem 4.4 below reduce to results in [12].

Rieffel also says in [25] that the action is saturated if the action of G on P is free;

this is the content of the following lemma which we prove in Appendix C.

Lemma 4.1 (Rieffel) Suppose that G acts freely and properly on a locally compact

Hausdorff space P, and that there is a nondegenerate homomorphism θ : C0(P) →
M(A) and an action α of G on A such that αs(θ( f )a) = θ(lts( f ))αs(a). Then the

proper action α of G on A is saturated with respect to A0 := θ(Cc(P))Aθ(Cc(P)).

For our example, consider commuting proper actions of K and H on the left and

right of P. Suppose that we have a nondegenerate homomorphism θ : C0(P) →
M(C), and that we have commuting actions σ : K → Aut C and τ : H → Aut C

satisfying

(4.1) σ̄t (θ( f )) = θ(ltt ( f )) for t ∈ K, and τ̄s(θ( f )) = θ(rts( f )) for s ∈ H.

Then [25, Theorem 5.7] implies that both σ and τ are proper with respect to the

same subalgebra C0 := θ(Cc(P))Cθ(Cc(P)).
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Proposition 4.2 Suppose that σ : K → Aut C and τ : H → Aut C are commuting

actions and that the actions of K and H on P are free and proper. If C0(P) maps bi-

equivariantly into M(C) then Cτ
⋊σ̄,r K and Cσ

⋊τ̄ ,r H are Morita equivalent.

By Theorem 3.7(1), it suffices to verify that the actions (σ̄, σ, σ × id) and

(τ⋊id, τ , τ̄) of K and H on Cτ XC⋊τ,rH and C⋊σ,rKYCσ are continuous. Furthermore, if

B := C ⋊σ×τ ,r (H ×K), then (X ⋊σ,r K)⊗B (Y ⋊τ ,r H) is a Cτ
⋊σ̄,r K – Cσ

⋊τ̄ ,r H-im-

primitivity bimodule by Proposition 2.2. We retain the notation from Sections 2

and 3, and we will drop all mention of θ — we must remember that f c 6= c f . The

key to our calculations is the following lemma.

Lemma 4.3 For x = f bg and y = hck in C0, the functions s 7→ xτs(y) and t 7→
xσt (y) have compact support depending only on supp g and supp h.

Proof The consistency conditions (4.1) imply that xτs(y) = f bg
(

rts(h)
)
τs(ck). But

g rts(h) is nonzero only if

supp g ∩ supp(rts(h)) = supp g ∩ (supp h)s−1

is nonempty. Therefore the support of s 7→ xτs(y) is contained in

{s ∈ H : supp g ∩ (supp h)s−1 6= ∅}

which is compact because H acts properly on P. The other part is similar.

Proof of Proposition 4.2 We want to show that (σ̄, σ, σ⋊ id) is a continuous action

on Cτ XC⋊τ,rH , and Theorem 3.7(1) implies it suffices to see that for each fixed x ∈
X0 = C0 the map t 7→ 〈σt (x) , x〉

C⋊τ,r H
is continuous. Note that

(4.2) ‖〈σt (x) , x〉
C⋊τ,r H

− 〈x , x〉
C⋊τ,r H

‖ ≤

∫

H

‖〈σt (x) − x , x〉
C⋊τ,r H

(s)‖ ds

=

∫

H

‖(σt (x) − x)∗τs(x)‖∆H(s)−1/2 ds.

We claim that the integrand in (4.2) has support in a compact set L whenever t is in

a sufficiently small neighborhood M of e, so that

(4.2) ≤ ‖σt (x) − x‖‖τs(x)∆H(s)−1/2‖∞µH(L) → 0 as t → 0

because σ : K → Aut C and s 7→ τs(x)∆H(s)−1/2 are continuous.

To prove our claim, set x = f cg, and choose h, k ∈ Cc(P) such that h = 1 on a

neighborhood of supp f and k = 1 on a neighborhood of supp g. Then there exists

a neighborhood M of e in K such that if t ∈ M then h = 1 on supp ltt ( f ) and k = 1

on supp ltt (g), so that

σt (x) − x = h(σt (x) − x)k.

Now, by Lemma 4.3, when t ∈ M the support of (σt (x) − x)∗τs(x) is compact and

depends only on k and f . This proves the claim. Note that by the symmetry of our

situation the action (τ ⋊ id, τ , τ̄) is continuous on C⋊σ,rKYCσ .
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In fact, our Theorem 3.7 gives us two Cτ
⋊σ̄,r K–Cσ

⋊τ̄ ,r H-imprimitivity bimod-

ules and an isomorphism between the two:

Theorem 4.4 Suppose that σ : K → Aut C and τ : H → Aut C are commuting ac-

tions and that the actions of K and H on P are free and proper. If C0(P) maps bi-

equivariantly into M(C), then all the hypotheses of Theorem 3.7 are satisfied. That is,

the two Cτ
⋊σ̄,r K – Cσ

⋊τ̄ ,r H-imprimitivity bimodules (X ⋊σ,r K) ⊗B (Y ⋊τ ,r H) and

X0 are isomorphic.

Proof In view of the proof of Proposition 4.2 we only need to verify items (2)and

(3) of Theorem 3.7.

(2) (Properness) To see that (σ̄, σ, σ⋊ id) is a proper action on Cτ XC⋊τ,rH with re-

spect to D0
(X0)E0

we need to check items (a)–(d) of Theorem 3.7(2). For parts (a) and

(b), note that if x, v ∈ X0, then t 7→ xσt (v) has compact support by Lemma 4.3. Since

Cτ〈x , σt (v)〉c =

∫

H

τs(xσt (v∗))c ds

for every c ∈ C0, it follows that the continuous function t 7→
Cτ〈x , σt (v)〉 has com-

pact support with norm at most ‖x‖‖v‖. Thus it and its product with ∆K (t)−1/2 are

integrable. By the symmetry of our situation the function s 7→ ∆H(s)−1/2〈x , τs(v)〉
Cσ

is in L1(H,Cσ).

For (c), we need

(4.3)

∫

H

∫

K

τr(w)σt (τr(x∗)v) dtdr ∈ X0 whenever v,w, x ∈ X0.

Note that r 7→ τr(x∗)v has compact support L, say, by Lemma 4.3. Let w = f cg and

choose h ∈ Cc(P) such that h = 1 on (supp f ) · L−1. Then τr(w) = hτr(w) for r ∈ L

so that the left-hand side of (4.3) equals

h

∫

H

∫

K

τr(w)σt (τr(x∗)v) dtdr,

and is therefore an element of Cc(P)C . Since t 7→ wσt (x∗) is also compactly sup-

ported, we just repeat the argument for the right side of the integral to get that∫
H

∫
K
τr(w)σt (τr(x∗)v) dtdr ∈ X0 = Cc(P)CCc(P).

For part (d), we check that

(r, s, t) 7→ uτr(v∗)σt

(
τr(w∗)τs(x)

)
∆H(s)−1/2

is integrable whenever u, v,w, x ∈ X0. Again, by Lemma 4.3, the maps r 7→ uτr(v∗)

and t 7→ v∗σt (w∗) have compact supports. Thus it suffices to see that for r in a

compact set L the function s 7→ τr(w∗)τs(x) has compact support. If w∗
= f cg and

x = kdh where f , g, k, h ∈ Cc(P), then τr(w∗)τs(x) = τr( f c)τr(g)τs(k)τs(dh) and

τr(g)τs(k) is nonzero if and only if (supp g) · L−1 ∩ (supp k) · s−1 6= ∅. Since the
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action of H on P is proper, the set {s ∈ H : (supp g) · L−1 ∩ (supp k) · s−1 6= ∅} is

compact.

(3) (Tensor decomposition isomorphism) That the action of σ⋊ id of K on C ⋊τ ,r

H is saturated with respect to E0 follows by noting that E0 = Cc(P)E0Cc(P) and

applying Lemma 4.1 with A0 = E0. To see that E0 = Cc(P)E0Cc(P), let x = f cg and

y = kdh ∈ C0 and let L be the compact support of xτs(y). Choose l ∈ Cc(P) such

that l is identically one on (supp h) ·L−1 and on supp f . Then xτs(y) = f cgτs(kdh) =

l
(

f cgτs(kdh)
)

l.

Finally, if e ∈ E0 is given by e(s) = ∆H(s)−1/2xτs(y∗), then

(4.4) ‖e‖L1(H,Y ) =

∫

H

‖e(s)‖Y ds =

∫

H

‖
C⋊σ,rK

〈e(s) , e(s)〉‖1/2 ds

≤

∫

H

∫

K

‖
C⋊σ,rK

〈e(s) , e(s)〉(t)‖
1/2

C dtds

=

∫

H

∫

K

‖e(s)σt (e(s)∗)‖
1/2

C ∆K (t)−1/4 dtds

=

∫

H

∫

K

‖xτs(y∗)σt (τs(y)x∗)‖
1/2

C ∆H(s)−1/2
∆K(t)−1/4 dtds <∞

because the integrand is continuous with compact support (because s 7→ xτs(y∗) and

t 7→ y∗σt (y) have compact supports). Hence E0 ⊂ L1(H,Y ) as required.

Remark 4.5 It has apparently not been noticed that Rieffel’s construction in [25,

Theorem 5.7] implies that the dual action on any crossed product by a coaction is

proper. To see this, suppose δ : A → M(A⊗C∗(G)) is a coaction of a locally compact

group G on a C∗-algebra A. Then the crossed product A ⋊δ G is generated by a

universal covariant representation ( jA, jC(G)) of (A,C0(G)) in M(A ⋊δ G). Since the

dual action δ̂ : G → Aut(A ⋊δ G) is characterized by

δ̂s

(
jA(a) jC(G)( f )

)
= jA(a) jC(G)(rts( f )),

the homomorphism jC(G) is equivariant for the actions δ̂ and rt : G → Aut(C0(G)).

Applying [25, Theorem 5.7] to jC(G) shows that δ̂ is a proper action. More generally,

it shows that δ̂|H is proper for any closed subgroup H of G; this improves a result of

Mansfield [16, Theorem 30] for normal amenable H.

We can therefore apply Rieffel’s original theorem from [24] to obtain a Morita

equivalence between (A⋊δG)⋊δ̂,r H and a generalized fixed-point algebra (A⋊δG)H .

Since A ⋊δ G is generated by the universal covariant representation ( jA, jC(G)), and

is even spanned by elements of the form jA(a) jC(G)( f ) (see [21, §2]), it is tempting

to guess that (A ⋊δ G)H is at least generated by elements of the form jA(a) jC(G)( f )

for f ∈ C0(G/H), and hence coincides with the candidate for the crossed product

A ⋊δ G/H by the homogeneous space discussed in [6]. This is indeed the case if G

is discrete [3]. Thus, Rieffel’s theorem could give an extension of Mansfield’s im-

primitivity theorem to coactions of arbitrary homogeneous spaces (as opposed to

quotients by normal amenable subgroups as in [16]; see [15] for a discussion of this

https://doi.org/10.4153/CJM-2005-038-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-038-2


A Symmetric Imprimitivity Theorem for Commuting Proper Actions 1001

problem for non-amenable normal subgroups). Unfortunately it does not seem to

be easy to write a typical element of Cc(G)(A ⋊δ G)Cc(G) in the form jA(a) jC(G)( f ),

or to do so approximately in such a way that one can verify the existence of the mul-

tiplier 〈x , y〉
D

. Indeed, it is the content of one of Mansfield’s main theorems [16,

Theorem 19], that there are such multipliers when H is normal and amenable and

x, y lie in a dense subalgebra D of A ⋊δ G, and the proof of this theorem relies on

some very subtle estimates. This analysis is a crucial ingredient in the proof of [16,

Theorem 30].1

Pask and Raeburn showed in [19] that a free action on a directed graph E induces

a proper action on the associated graph algebra C∗(E). In their result, too, there is an

underlying proper G-space P together with a non-central equivariant map of C0(P)

into M(C∗(E)): just take P to be the set of vertices of the graph with the discrete

topology.

Thus all the main examples of proper actions come with the existence of an un-

derlying proper action on a space.

A Proof of Proposition 3.2

The object of these appendices is to make sense of certain manipulations with vector-

valued integrals needed to give careful proofs of Proposition 3.2 and Lemma 3.3. If A

is a C∗-algebra, then the collection of Bochner-integrable functions from G to A will

be denoted by L1(G,A), and the Banach space of equivalence classes of integrable

functions agreeing almost everywhere will be denoted by L1(G,A).

For motivation, recall that we can realize A ⋊α G as the enveloping C∗-algebra of

the Banach ∗-algebra L1(G,A). The product and involution are given by the usual

formulas: for f , g ∈ L1(G,A) we have

f ∗ g(s) :=

∫

G

f (r)αr

(
g(r−1s)

)
ds,(A.1)

and

f ∗(s) := ∆(s−1)αs

(
f (s−1)∗

)
.

It takes some work, though, to see that f ∗ and f ∗ g are well-defined elements of

L1(G,A). The first step is to see that (r, s) 7→ f (r)αr

(
g(r−1s)

)
is a measurable func-

tion from G×G to A. This is a bit thorny as there is no a priori reason to suspect that

(r, s) 7→ g(r−1s) is measurable if g is merely measurable rather than continuous or

Borel. There are a number of finesses for this. Here, we use the following lemma; we

assume g is integrable to ensure that we can approximate it globally with functions

in Cc(G,A).

Lemma A.1 Let (A,G, α) be a dynamical system. Suppose that g ∈ L1(G,A) and

h(r, s) := αr

(
g(r−1s)

)
. Then h : G × G → A is measurable.

1This program has now been successfully implemented by the first two authors in [10].
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Proof Since Haar measure is a Radon measure, a subset S of G is measurable if and

only if S ∩ C is measurable for all compact sets C ⊂ G [9, Theorem III.11.31]. It

follows that h is measurable if and only if h|L is measurable for each compact set

L ⊂ G × G. Therefore it will suffice to show that h|K×K is measurable for each

compact set K ⊂ G. To do this, we will produce measurable functions hn such that

hn → h almost everywhere on K × K.

Since g ∈ L
1(G,A), there are gn ∈ Cc(G,A) such that gn → g in L1(G,A). Passing

to a subsequence and relabeling, we can assume that there is a Borel null set N such

that gn(s) → g(s) for all s /∈ N . Since gn is continuous, hn(r, s) := αr

(
gn(r−1s)

)

defines a measurable function (continuous in fact), and

hn(r, s) → h(r, s)

for all (r, s) ∈ K × K \ D, where D = {(r, s) ∈ K × K : r−1s ∈ N}. Since N is Borel,

D is a measurable subset of K ×K. Since K ×K has finite product-measure, Tonelli’s

Theorem, as proved in [9, Theorem III.13.9], implies that

µ× µ(D) =

∫

G

µ(Dr) dr,

where Dr := {s : (r, s) ∈ D}. Since Dr ⊂ rN and µ(rN) = 0 for all r, it follows that

D is a null set. This completes the proof.

With Lemma A.1 in hand, the measurability of the function m given by (r, s) 7→
f (r)αr

(
g(r−1s)

)
follows because the product of vector-valued measurable functions

is measurable.2 Since f and g are integrable, m must be supported on a σ-finite

set, and Tonelli’s Theorem shows that ‖m‖ is in L1(G × G). Consequently, m ∈
L1(G × G,A). Now a vector-valued Fubini’s Theorem, such as [8, Theorem II.16.3],

implies that the right-hand side of (A.1) is defined for almost all s and that f ∗ g is a

well-defined element of L1(G,A). (Since ‖ f ∗ g‖1 ≤ ‖ f ‖1‖g‖1, it is not hard to see

that the class of f ∗ g depends only on the classes of f and g.)

Remark A.2 Similar considerations are often glossed over when it is observed that

convolution is associative. For example, if f , g and h are in L1(G,A), then Lemma A.1

implies that

(A.2) (r, t, s) 7→ f (r)αr

(
g(r−1t)

)
αt

(
h(t−1s)

)

is measurable, and Tonelli’s Theorem implies that (A.2) is integrable on G × G × G.

Then Fubini’s Theorem implies that for almost all s ∈ G,

(A.3) (r, t) 7→ f (r)αr

(
g(r−1t)

)
αt

(
h(t−1s)

)

is in L1(G × G,A). This will allow us to apply Fubini’s Theorem to double integrals

with integrands such as (A.3) in the sequel.3

2It suffices, for example, to see that a product of measurable simple functions is again a measurable
simple function.

3It is possible (by approximating by simple functions) to see that (A.3) is measurable without resorting
to functions on G × G × G. However, it is interesting to note that it is not obvious that (A.3) is integrable
without appealing to the integrability of (A.2).
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We can view the multiplier algebra M(A) as the C∗-algebra L(AA) of adjointable

operators on the right Hilbert A-module AA.

Lemma A.3 Suppose that (A,G, α) is a dynamical system and that T and S are

bounded linear operators on L1(G,A) such that for all f and h in L1(G,A) we have

T( f ∗ h) = T f ∗ h, S( f ∗ h) = S f ∗ h, and (T f )∗ ∗ h = f ∗ ∗ Sh.

Then T and S extend to elements of L(A ⋊α G) = M(A ⋊α G) satisfying T∗
= S.

Proof Let {ei} be a bounded approximate identity for L1(G,A). Then if π is a rep-

resentation of A ⋊α G,

∥∥π(T f )
∥∥ = lim

i

∥∥π
(

T(ei ∗ f )
)∥∥

≤ lim sup
i

∥∥π
(

Tei)
)∥∥∥∥π( f )

∥∥

≤ M‖T‖
∥∥π( f )

∥∥ .

It follows that T is bounded with respect to the universal norm on L1(G,A) ⊂ A⋊αG.

Thus T and S extend to operators on A ⋊α G. Since

〈T f , h〉
A⋊αG

= (T f )∗h = f ∗Sh = 〈 f , Sh〉
A⋊αG

,

it follows that T is adjointable with T∗
= S.

Remark A.4 If B is any C∗-subalgebra of M(A), then we can identify L1(G,B) with

a subalgebra of L1(G,M(A)). In particular, if f ∈ L1(G,A) and g ∈ L1(G,B), then

Lemma A.1 implies that

(r, s) 7→ f (r)ᾱr(g(r−1s))

is a measurable function of G×G into M(A) taking values in A. Thus, it is a measur-

able function of G × G into A. A similar statement can be made if f ∈ L
1(G,B) and

g ∈ L1(G,A).

Proof of Proposition 3.2 The integrand on the right-hand side of (3.4) is measur-

able in view of Remark A.4 and Lemma A.1. Thus applications of the Tonelli and

Fubini Theorems imply that the right-hand side of (3.4) defines an element Tg f in

L1(G,A). Furthermore, ‖Tg‖ ≤ ‖g‖1.

If h ∈ L1(G,A), then f ∗ h is too, and by definition, for almost all s,

Tg( f ∗ h)(s) =

∫

G

g(r)αr

(
f ∗ h(r−1s)

)
dr

=

∫

G

∫

G

g(r)αr

(
f (t)αt

(
h(t−1r−1s)

))
dtdr

=

∫

G

∫

G

g(r)αr

(
f (r−1t)

)
αt

(
h(t−1s)

)
dtdr.
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The integrand (r, t) 7→ g(r)αr( f (r−1t))αt (h(t−1s)) is in L1(G×G,A) by Remark A.2,

so Fubini’s Theorem implies that for almost all s,

Tg( f ∗ h)(s) =

∫

G

Tg f (t)αt

(
h(t−1s)

)
dt

= Tg f ∗ h(s).

Thus Tg( f ∗ h) = Tg f ∗ h in L1(G,A).

Next we want to show that (Tg f )∗ ∗ h = f ∗ ∗ (Tg∗h) in L1(G,A). But for almost

all s,

(Tg f )∗ ∗ h(s) =

∫

G

(Tg f )∗(r)αr

(
h(r−1s)

)
dr

=

∫

G

αr

(
Tg f (r−1)

)∗
∆(r−1)αr

(
h(r−1s)

)
dr

=

∫

G

∫

G

αr

(
g(t)αt

(
f (t−1r−1)

))∗
∆(r−1)αr

(
h(r−1s)

)
dtdr

=

∫

G

∫

G

αr−1t

(
f (t−1r)∗

)
αr−1

(
g(t)∗

)
αr−1

(
h(rs)

)
dtdr.

It follows from simple variations on Lemma A.1 that the integrand above is measur-

able, and (the scalar version of) Tonelli’s Theorem implies it is integrable. Hence we

can use the vector-valued version of Fubini’s Theorem to conclude that, for almost

all s,

(Tg f )∗ ∗ h(s) =

∫

G

∫

G

αr−1t

(
f (t−1r)∗

)
αr−1

(
g(t)∗

)
αr−1

(
h(rs)

)
drdt

and, since it now makes sense to send r 7→ tr, this is equal to

∫

G

∫

G

αr−1

(
f (r)∗

)
αr−1t−1

(
g(t)∗h(trs)

)
drdt,

which, after sending r 7→ r−1 and t 7→ t−1, is equal to

∫

G

∫

G

f ∗(r)αr

(
g∗(t)αt

(
h(t−1r−1s)

))
drdt.

To apply Fubini’s Theorem we need to see that the above integrand is a measurable

function of r, t and s; as before, this follows from variations on Lemma A.1. Thus for

almost all s,

(A.4) (Tg f )∗ ∗ h(s) =

∫

G

f ∗(r)αr

(∫

G

g∗(t)αt

(
h(t−1r−1s)

)
dt

)
dr

=

∫

G

f ∗(r)αr

(
Tg∗h(r−1s)

)
dr

= f ∗ ∗ (Tg∗h)(s).
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It follows from Lemma A.3 that Tg defines a multiplier with adjoint T∗
g = Tg∗ .

Next we want to establish (3.5). Fubini’s Theorem implies that the right-hand side

of (3.5) defines a function l in L
1(G,A). Since f Tg = (Tg∗ f ∗)∗ in A ⋊α G, it follows

that f Tg ∈ L1(G,A), and we have to show that l = f Tg in L1(G,A).

Let h ∈ L1(G,A). We can repeat the computation of (Tg f )∗ ∗ h above with f

replaced by f ∗ and g replaced by g∗, and use (A.4) to conclude that

( f Tg) ∗ h(s) =
(

Tg∗ f ∗
)∗

∗ h(s) =

∫

G

∫

G

f (r)αr

(
g(t)αt

(
h(t−1r−1s)

))
dtdr

=

∫

G

∫

G

f (r)ᾱr

(
g(r−1t)

)
αt

(
h(t−1s)

)
dtdr,

which by Fubini’s Theorem is equal to

∫

G

(∫

G

f (r)ᾱr

(
g(r−1t)

)
dr

)
αt

(
h(t−1s)

)
dt =

∫

G

l(t)αt

(
h(t−1s)

)
dt

= l ∗ h(s).

It follows that l = f Tg in L1(G,A), as claimed.

B The Proof of Lemma 3.3

To begin with, let C be an arbitrary C∗-algebra. We let H and K be arbitrary locally

compact groups with Haar measures µH and µK , respectively. (For most of what

follows, C could be any Banach space and H and K could be arbitrary locally compact

spaces equipped with Radon measures µH and µK , respectively.)

If f ∈ L1(H,C), then we will sometimes write

∫ C

H

f (s) ds

to emphasize where our integral takes its value.

The key lemma is a very special case of [4, Lemma III.11.17], and, modulo some

facts about vector-valued integrals, has a fairly straightforward proof. We include

the proof here because the arguments from [4] are difficult and can be substantially

simplified in our situation.

Lemma B.1 Suppose that g ∈ L1
(

K, L1(H,C)
)

and that f is a µK × µH-integrable

C-valued function on K × H such that for almost all t, the class of f (t, ·) equals g(t).

Then

(a) for almost all s ∈ H, f (·, s) ∈ L1(K,C),

(b) the function

s 7→

∫ C

K

f (t, s) dt

is in L1(H,C), and
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(c) as elements of L1(H,C),

∫ L1(H,C)

K

g(t) dt =
(

s 7→

∫ C

K

f (t, s) dt
)

;

that is, for almost all s,

∫ L1(H,C)

K

g(t) dt(s) =

∫ C

K

f (s, t) dt.

The first two assertions follow immediately from any vector-valued Fubini Theo-

rem worthy of the name. Our proof of the third assertion is straightforward except

for the following result which is [4, Lemma III.6.8].

Lemma B.2 If f ∈ L
1(H,C) and if

∫

E

f (s) ds = 0

for all measurable subsets E ⊂ H, then f vanishes almost everywhere.

Although the proof of Lemma B.2 is routine in the scalar-valued case, we see no

elementary proof in the vector-valued case. The proof in [4, III §2] goes as follows.

Given h ∈ L1(H,C), define a C-valued set function on measurable subsets of H by

λ(E) :=

∫ C

E

h(s) ds.

Of course, λ is additive, and has a total variation defined by

ν(E) := sup
{∑

i

‖λ(Ei)‖ : E1, . . . , En is a partition of E
}
.

One sees easily that

ν(E) ≤

∫

E

‖h(s)‖ ds.

But it can be shown [4, Theorem III.2.20] that

ν(E) =

∫

E

‖h(s)‖ ds.

With these assertions in place, Lemma B.2 is an easy consequence; if h = f as in

Lemma B.2, then ν(E) = 0 for all E, and so f is zero almost everywhere.

The only other tool we need for the proof of Lemma B.1 is that bounded linear

maps commute with vector-valued integrals. For each measurable subset E ⊂ H, we

can define a bounded linear map ϕE : L1(H,C) → C by

ϕE(h) :=

∫ C

E

h(s) ds.
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Proof of Lemma B.1 To prove the final assertion, it suffices, in view of Lemma B.2,

to show that for all measurable subsets E ⊂ H,

(B.1) ϕE

(∫ L1(H,C)

K

g(t) dt
)

= ϕE

(
s 7→

∫ C

K

f (t, s) dt
)
.

Since bounded linear maps commute with integrals, the left-hand side of (B.1) is

∫ C

K

ϕE(g(t)) dt =

∫ C

K

∫ C

E

g(t)(s) dsdt

which, by assumption, is equal to

∫ C

K

∫ C

E

f (t, s) dsdt

which, since having f ∈ L1(K × E,C) allows us to apply Fubini’s Theorem, is equal

to ∫ C

E

∫ C

K

f (t, s) dtds = ϕE

(
s 7→

∫ C

K

f (t, s) dt
)
.

This establishes (B.1) and completes the proof.

Example B.3 Now suppose that (C,H, α) is a dynamical system, and that h and k

are in L
1(H,C). Then

h ∗ k =

∫ L1(H,C)

H

h(r)iH(r)(k) dr.

Proof of the Example We want to apply Lemma B.1 with

g(r) := h(r)iH(r)(k) and f (r, s) := h(r)iH(r)(k)(s).

In order to do so, we have to check that g and f are integrable. However, f (r, s) =

h(r)αr

(
k(r−1s)

)
, and f is known to be in L1(K × H,C) by standard arguments.

Note that r 7→ iH(r)(k) is continuous from H to L1(H,C). It follows that r 7→
h(r)iH(r)(k) is measurable from H to L1(H,C) and has σ-finite support. Since

‖h(r)iH(r)(k)‖ ≤ ‖k‖1‖h(r)‖,

it follows from Tonelli that g ∈ L1(K, L1(H,C)).

Now the result follows immediately from Lemma B.1: for almost all s,

∫ L1(H,C)

H

g(r) dr(s) =

∫ C

H

f (r, s) dr = h ∗ k(s).
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Remark B.4 In the statement of Lemma 3.3, we view the ei as elements of C ⋊τ ,r H,

and consequently we write their product as e1e2. In the proof however, we will want

to use that each ei is in L1(H,C), and that the product is given by convolution. Thus

it will be a bit clearer to use the usual notation e1 ∗ e2 for their product.

Proof of Lemma 3.3 Let

(B.2) h(r, t, s) := e1(r)iH(r)
(

(σ ⋊ id)t (e2)
)

(s).

Our assumptions imply that h is integrable on H × H × K: for example if e1(r) =

∆H(r)−
1

2 uτr(v∗) and e2(r) = ∆H(r)−
1

2 w∗τr(x), then

h(r, t, s) = ∆H(r)−
1

2 uτr(v∗)τr

(
(σ ⋊ id)t (e2)

)
(r−1s)

= ∆H(r)−
1

2 uτr(v∗)τr

(
σt (w∗τr−1s(x))

)
∆H(r−1s)−

1

2

= uτr(v∗)σt

(
τr(w∗)τs(x)

)
∆H(s)−

1

2 ,

which is integrable by assumption. In general, the integrability of h follows as e1

and e2 are sums of functions of the form given above.

Now Fubini’s Theorem implies that r 7→ h(r, s, t) is integrable for almost all (t, s),

and that

(B.3) f (t, s) :=

∫ C

H

h(r, t, s) dr

defines an integrable function f on K×H.4 Furthermore, it follows from Example B.3

that for almost all t and s,

f (t, s) = e1 ∗ (σ ⋊ id)t (e2)(s).

Next we define g(t) := e1 ∗ (σ⋊ id)t (e2). Then g is a function from K to L1(H,C)

and g(t) = f (t, · ) for almost all t . We want to see that g ∈ L1(K, L1(H,C)). How-

ever, t 7→ (σ ⋊ id)t (e2) is continuous from K to L1(H,C). Therefore g itself is con-

tinuous, hence measurable, and it suffices to see that ‖g‖ is integrable. But

∫

K

‖g(t)‖1 dt =

∫

K

∫

H

‖g(t)(s)‖ dsdt

=

∫

K

∫

H

‖ f (t, s)‖ dsdt

= ‖ f ‖1 <∞.

Therefore g ∈ L1(K, L1(H,C)). Now an application of Lemma B.1 implies that (3.8)

is a representative for ∫ L1(H,C)

K

g(t) dt.

4Of course, (B.3) only defines f almost everywhere. As is standard practice, we assume the convention
that f (t, s) := 0 when r 7→ h(r, t, s) is not integrable.
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Since inclusion is a bounded linear map of L1(H,C) into C ⋊τ ,r H, it follows that

(3.8) is also a representative for

∫ C⋊τ,rH

K

g(t) dt,

which is what we wanted to prove.

C The Proof of Lemma 4.1

Lemma C.1 (Rieffel) Suppose G acts freely and properly on a locally compact Haus-

dorff space P, there is a nondegenerate homomorphism θ : C0(P) → M(A), and an

action α of G on A such that αs(θ( f )a) = θ(lts( f ))αs(a). Then the proper action α of

G on A is saturated with respect to A0 := θ(Cc(P))Aθ(Cc(P)).

For the proof, we need to know that the action of G on C0(P) is saturated in the

sense of [24]; this is proved, for example, in [23].

Let E0 =
E
〈A0 ,A0〉 ⊂ L1(G,A) where E is the closure of E0 in A ⋊α,r G. It suffices

to see that E0 is dense in L1(G,A) in the inductive limit topology. To see this, it

suffices to see that functions of the form s 7→ (ϕ⊗ a)(s) := ϕ(s)a, where ϕ ∈ Cc(G)

and a is in any dense subset of A, belong to E. Since A2
0 is dense in A, we can fix

f , p, k ∈ Cc(P), a, b ∈ A0 and ϕ ∈ Cc(G) and let

(C.1) F(s) := ϕ(s)θ( f )aθ(p)b∗θ(k̄),

and it will suffice to see that F can be approximated in the inductive limit topology

by elements of E0.

First we prove a related statement: if ϕ, a, b, f , p and k are as above then

s 7→ ϕ(s)θ( f )aθ(p)αs(b∗)θ
(

lts(k̄)
)

belongs to E. Let W be a compact neighborhood of suppϕ. Because the action of

G on C0(P) is proper and saturated with respect to Cc(P), given ǫ > 0, we can find

gi, hi ∈ Cc(P) such that

∥∥ϕ(s)p − ∆(s)−1/2
∑

i

gi lts(h̄i)
∥∥
∞
<

ǫ

‖ f ‖∞‖a‖‖b‖‖k‖∞
and

supp
(

s 7→ ∆(s)−1/2
∑

i

gi lts(h̄i)
)
⊂ W.

Now let

ai := θ( f )aθ(gi) and bi := θ(k)bθ(hi).

Then
∑

i
E
〈ai , bi〉(s) =

∑

i

∆(s)−1/2aiαs(b∗i )

= θ( f )aθ
(
∆(s)−1/2

∑

i

gi lts(h̄i)
)
αs(b∗)θ

(
lts(k̄)

)
.
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Now ∥∥∥θ
(

∆(s)−
1

2

∑

i

gi lts(h̄i)
)
− ϕ(s)θ(p)

∥∥∥ <
ǫ

‖ f ‖∞‖a‖‖b‖‖k‖∞
.

Thus ∥∥∥
∑

i
E
〈ai , bi〉(s) − ϕ(s)θ( f )aθ(p)αs(b∗)θ

(
lts(k̄)

)∥∥∥ < ǫ.

Since the neighborhood W does not depend on ǫ, and ǫ is arbitrary, it follows that

the function s 7→ ϕ(s)θ( f )aθ(p)αs(b∗)θ
(

lts(k̄)
)

is in E.

Now let N be a neighborhood of e in G such that s ∈ N implies that

‖b∗θ(k̄) − αs(b∗)θ
(

lts(k̄)
)
‖ = ‖b∗θ(k̄) − αs

(
b∗θ(k̄)

)
‖ <

ǫ

‖ϕ‖∞‖ f ‖∞‖a‖‖p‖∞
.

Choose r1, . . . , rn ∈ G such that suppϕ ⊂
⋃

Nri . Let {ϕi} ⊂ C+
c (G) be such that

suppϕi ⊂ Nri and
∑

i ϕi ≡ 1 on suppϕ and dominated by 1 elsewhere. We showed

above that

Fi(s) := ϕ(s)ϕi(s)θ( f )aθ(p)αsr
−1

i

(b∗)θ
(

ltsr
−1

i

(k̄)
)

defines an element of E; if

F(s) := ϕ(s)θ( f )aθ(p)b∗θ(k̄),

then

∥∥F(s) −
∑

Fi(s)
∥∥ =

∥∥∥
∑

ϕi(s)F(s) − Fi(s)
∥∥∥

=

∥∥∥
∑

ϕ(s)ϕi(s)θ( f )aθ(p)
(

b∗θ(k̄) − αsr
−1

i

(b∗k̄)
)∥∥∥

≤
∑

ϕi(s)‖ϕ‖∞‖ f ‖∞‖a‖‖p‖∞‖b∗θ(k̄) − αsr
−1

i

(
b∗θ(k̄)

)
‖

which, since we may assume s ∈ Nri , is

≤ ǫ
∑

ϕi(s) ≤ ǫ.

Since
∑

i Fi ∈ E and both supp Fi and supp F ⊂ suppϕ, the result follows.
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