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INEQUALITIES WITH WEIGHTS FOR DISCRETE 
HILBERT TRANSFORMS! 

BY 

KENNETH F. ANDERSEN 

1. Introduction. Let Z(Z+) denote the set of all (positive) integers and let T 
denote the discrete Hilbert transform defined for suitable sequences a = {ak}keZ 

by 

(Ta)n=-l'-^-y (neZ) 
7T iZ k-n 

where as usual the prime denotes omission of the term k = n. When a = {ak} is 
an odd sequence, {(Ta)n} is even and given by the discrete odd Hilbert transform 
T0: 

( T o û ) " = f Ê ' ^ + 9 ^ ' (nSZ+) 
IT fc=i K —n 2rrn 

while for a ={ak} even with a0 = 0, {(Ta)n} is odd and is given by the discrete 
even Hilbert transform Te: 

Norm inequalities of the form 

(1-1) I l (Ta ) n | p w„<C^ | ;k l P w k ) (Kp<oc) 
—oo —oo 

and weak type inequalities of the form 

(1-2) X w„<(Cya)PXk|pw f c , ( l<p<° ° , a>0 ) 
{neZ:|(Ta)n |>«} -«> 

where w = {vvk} is a fixed non-negative sequence and Cp is a constant indepen
dent of a = {ak} have been widely studied. In [4] Hunt, Muckenhoupt, and 
Wheeden have shown that for Kp <°° inequalities (1.1) and (1.2) are each 
equivalent to the Ap condition for w = {wk}, namely: 
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There exists a constant K such that 

(1-3) (t wk ) (J WZl/(p-1>)P~l^K(n-m + l)p 

for all m,meZ, with m < n, while for p = 1, (1.2) is equivalent to Au where 
of course for p = 1 the second factor on the left of (1.3) is understood to be 
sup jwk^m^ fc< n}, 

In this note we obtain a similar characterization of those sequences w = 
{wfc}k6Z

+ which satisfy the inequalities corresponding to (1.1) and (1.2) for T0 

and Te. The conditions which we derive and denote by Ap1 and Ae
p respectively 

are separately weaker than the Ap condition but a w = {wk} satisfying both Ap* 
and Ap must satisfy Ap (with m, n in (1.3) restricted to Z + ) . 

The inequalities for T quoted above were deduced in [4] from their non-
discrete analogues (also contained in [4]) by the standard technique of (essen
tially) associating a suitable step function to the various sequences encountered 
and showing that the error thus introduced also satisfies the required in
equalities. However, if one attempts to follow this approach directly in order to 
derive results for T0 and Te from their non-discrete analogues in [2] one 
encounters the same "error integral" 

(JS/)(y)= f ~r^%dx (fi>0) 

that occurs in [4] for T, where it is only shown that the operation f-*Ef 
satisfies inequalities of the form (1.1) and (1.2) for w satisfying Ap. The main 
objective then of §2 of this note is to prove a Lemma giving the required 
inequality under the (weaker) assumption that w satisfies A°p and to indicate 
how the Lemma may be applied to derive the analogues of (1.1) and (1.2) for 
T0 and Te. 

Several variants of the operator T appear in the literature (see for example 
[3] especially pp. 222-223). In the final section of the paper, we indicate some 
applications of our results to other discrete analogues of the Hilbert transform. 

2. Results for T0 and Te. In this section we shall derive the following 
theorems: 

THEOREM 1. Let w = {wk} be a non-negative sequence on Z+. For K p < o o , 
(a), (b), and (c) are equivalent, while for p = l, (a) and (c) are equivalent: 

(a) w sadsfies the A°p condition, i.e. There exists a constant K such that for 
all m, n e Z+ with m < n we have 
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(b) There exists a constant Bp such that 

t\(T0a)n\
pwn^Bp

Pt\ak\
pwk. 

i i 

(c) There exists a constant Cp such that for all a > 0 

oo 

X wn<(Cp/a)PXl^|Pwk. 
{neZ+: |(T0a)n |>a} 1 

THEOREM 2. Let w = {wk} be a non-negative sequence on Z+. For K p < o o , 
(a), (b), (c) are equivalent, while for p = 1, (c) implies (a): 

(a) w satisfies the Ae
p condition, i.e. There exists a constant K such that for all 

m,neZ* with m<n we have 

(£tv)(É.>-.»-raK(""-"+')""^))' 

(b) There exists a constant Bp such that 

oo oo 

ll\(Tea)n\
pwH<Bp

PZ\ak\
pwk. 

1 1 

(c) There exists a constant Cp such that for all a > 0 

oo 

X w n <(C p / a ) P X|a k |w k . 
{neZ+:|(Tea)n |>a} 1 

The second factor on the left of (a) in Theorem 1 is understood to be 
sup jkwfc^m^k^n} when p = 1. 

The first assertion of the next lemma may easily be verified by direct 
computation and the last statement is then a consequence of Lemma 1 of [2]. 

LEMMA 1. Let w = {wk} be a non-negative sequence on Z+ and define W(x) 
on [|, oo) by W(x)= wk for | f c - x | < i and linear in between. Then w satisfies the 
Ap condition if and only if W(x) satisfies 

(2.1) ( | V ( x ) ) ( [ i , ( x p W ( x r 1 ) 1 « " - 1 ) ) P " ^ x ( ^ ^ ) P 

for some constant K and all (a, b ) c [ | , oo). Moreover, if w satisfies the APo 

condition for some p0, l<p 0 <oo , then w satisfies the A° condition for all 
p>p0 — e, £>0, e sufficiently small. 

Now let w = {wk} and W(x) be related as in Lemma 1 and for a = {ak} define 
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f(x) = ak when | x - k | < | and zero otherwise. Then for | n - y | < | we have 

7T k = 1 k -n IT 

2xfM
 dx-P.v.* 2 2 

3/4 x -y 7T 

n + 1/4 2x/(x) 
2 2 

!n-l/4 X y 
dx 

+ 0 x > 3 / 4 / x: 

| x - y | s l / 2 U _ y ; 
dx 

(where the notation P.V. indicates that the integrals are understood to be 
Cauchy Principal values at x = y). For | n - y | < § we have 

2 r 
TT Jn 

2x/(x) 
2 2 

-1/4 * - y 
dx k|0(i) 

w i / 

l/MI 

so that 

where 

and 

l/8<|x-y|<l/2 \X yY 

(T0a)n\<2 |(H0/)(y)| + C((JE/)(y)), (|n - y | s | ) 

dx 

(Ho/)(y) = P.V.-f 
•n- Jo 

(B / ) (y )= | i 

x 2 - y2 

l/(x)| 

dx 

x>3/4 ( x - y ) 2 dx. 

Consequently, 

I wn<4f 
{ n e Z + : | ( T 0 a ) n | > a } J{y 

W(y) dy 
J{y 2=7/8 : |2(H0/)(y)| + C|(E/)(y )| > a} 

and therefore in order to show that (a) => (c) in Theorem 1 it suffices to show 
that w satisfying A° implies 

'{y: | (Ho/)(y )!><*} 

and 
L 
1 
Jfv: 

V¥(y)dy<(Cp/ 

{ y : | ( E f ) ( y ) | > « } 
W ( y ) d y s ( Q / 

«)P[ |/(x)|' 

/•ao 

«)"[ |/(x) 

p W(x) dx 

W{x) dx. 

However, the first of these follows from Lemma 1 and Theorem 1 of [2] while 
the second, the crux of the proof, is contained in the next Lemma: 

LEMMA 2. Suppose f(x) is non-negative, even and supported on \x\>8, 
0 < 8 < 1. For y e [25, ») We have 

(2.2) ! JWdx^C{Mf(J\-\))(y2) 
J|x-y|>8 V * _ y ) 
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where M denotes the Hardy-Littlewood Maximal function operator, 

(Mg)(y) = s u p { ^ | |g|:ye(a,fc)} 

and C is a constant depending on 8 but independent of f. Moreover, if W satisfies 
(2.1), then there exists a constant Q, such that for all a>0 

(2.3) f w(y) dy <(Q/a)p f^|/(x)|p W(x) dx. 
J{y:(M/(V|-|))(y2)>a} *> 

For the remainder of Theorem 1, the proof is entirely analogous to that of the 
non-discrete case as given in [2], moreover, Theorem 2 may be deduced from 
Theorem 1 just as Theorem 2 was deduced from Theorem 1 in [2]. It remains 
then to prove Lemma 2: 

Proof of Lemma 2. Since / is even and supported on \x\>8 we have 

f fix) 
(x-y)-|x-y|>ô \X~y) J |x-y|>8 

dx = xs=6 7 T2 dx + / , x2 àx 
Jlx-yl^aU-y) Jx^s (x + y) 

= 2 I « . TZ^dx + ̂ J^8 fix)dx 
\x-y\>six-y) \*OZ Jy-0 

2 f (y+s) 2 

f(Ji\ 

(y+S)2 

f fUt) dt (IV (<>+» dt 

= Ii+^(M/(Vkl)(y2) 

and it therefore suffices to prove the inequality for Ilm Now 

J l = ( L + LJ(7^7r/2+'3 

and we consider J2 and I3 separately. Integrating by parts in I2 we obtain 

/2 = 7 _ ^ ) ^ l / 0 ) ^ + j 8 2 2 ( y_V r )3^1 ̂ « ^ (y-«) : 

. 2 _ g 2 ! fy* f(y-8)* 

(y-sfsy 

:3(M/(VN))(y2)(ffS[^]2dx) 
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and this last integral is bounded by 

,y_S dx ^J°°dx 20 
/ T2- 2 0 -2 = T -

J8 * Jy/3 (y-*) h * S 

Finally, the inequality for 73. may be derived by assuming first that f(x) = 0 
for all large |JC| so that when J3 is integrated by parts, the integrated term 
vanishes to yield 

Ayl3dx f> ax 1 

Jô X Jyl 

> = 1( h ,A3,3/2 fUu)dU 
J(y+8)2 l(\/t-y) * J(y+8)2 

^(M/(V|u|))(y )J(y+g)2 2 (Vf_y)2 (3 /2 dt 

<(M/(V|u|))(y2)6f" -dt 
y)2 

= |(M/(V|«|))(y2) 

from which the general case follows, and the proof of inequality (2.2) is 
complete. Now according to Lemma 1 of [2], if W(y) satisfies (2.1) then 
W(Vy)/(2Vy) satisfies the conditions of Theorem 1 of [5, p. 209] so that 

f W(Vy)-^(Qa)p(|g(y)|pW(Vy); dy 

2Vy 

which, via the change of variable y = x2 implies (2.3). 

3. Applications to other discrete Hilbert transforms. Among the variants of 
T noted by Hardy, Littlewood, and Poly a [3, p. 222] is the operator 

(Tka)n = — 2, - — 
77 *z> k-n + A 

where the ' is required only for À integral. When À is integral we have 
(Txa)n = (Xa)n_À 

and if w = {wk} satisfies (1.3) it follows that 

/ i i y-1 

(wk + wk+1) 1 i/(p-i)+ i/(p-i)l ^2 P X, 
\W k Wfc + i / 

and in particular 

( l /2 p K)w k <w k + 1 <2 p Kw k 

for all fc, and hence also 

(3.1) (1/2PK)|X|wk < wk+A < (2pK)'x'wk. 
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But then it follows easily that Tx (A integral) satisfies (1.1) or (1.2) (with 
modified constants) whenever T does, and conversely. Now for À non-integral, 
say 0 < A < 1 , we have 

|((TA-T)a)„|SCA£-M^+l^J 
_oo ( k - n ) 7TÀ 

so that in this case also (via Lemma 2) T and Tk behave equivalently with 
regard to inequalities (1.1) and (1.2). Now it follows similarly that a sequence 
{wk} satisfying the A £ or A e

v conditions also satisfies an inequality of the form 
(3.1) and hence if TK0 and TKe denote the restriction of TA to odd and even 
sequences respectively, it is easy to check that TK0 and Tke may replace T0 and 
Te respectively in Theorems 1 and 2 of §2. 

A more interesting discrete analogue of the Hilbert transform is the operator 
J given by 

. . 2 y A ( f c - t t ) 
{Ja)n=-ld— ak 

7Tzi k-n 
where A(k) = [1 + ( - l)k_1]/2. This transform shares more of the formal proper
ties of the (non-discrete) Hilbert transform than does T, in particular, J(Ja) -
-a and if a = {ak} are the Fourier coefficients of (Fa)(x), then Ja = {(Ja)n} are 
the Fourier coefficients of - / sgn x(Fa)(x). Moreover, / plays the same role in 
the boundary value theory of discrete analytic functions as that of the usual 
Hilbert transform in the classical theory of functions analytic in the upper half 
plane. From a different point of view this transform has also been studied in 

We claim that / may replace T in (1.1) and (1.2) and that / 0 and Je: 

2 yA(fc~M) f 

(J0a)n = — 2, -j2 r kak 
77 i k - n 

(neZ+) 
2 y A ( f c - n ) 

{Jea)n = — L ~T1 T nak 
77 i k - n 

may replace T0 and Te respectively in Theorems 1 and 2. We give the details 
only for the implication: "{wk} satisfies Ap => (1.2) holds with T replaced by J", 
the remaining parts being left to the reader. 

We have 
2(Ta)n = (Ja)n + (Ja)n+1 + (Sa)n 

where 
2 / , y ; Mn-k + l)ak 

{Sa)n = — I an + £ — r—— 
7T \ -L (k-n)(n-k + l 

(k-n)(n-k + l) 

Now put ak = ak + ae
k where 

10 

ak if k is odd 

otherwise. 
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Then 

{n:\(Ja)n\>a} = {n even : \(Ja°)n \ > a} U {n odd: \(Jae)n\> a} 

Q{n:\2(Ta°)n-(Sa°)n\>a}U{n:\2(Tae)n-(Sae)n\>a} 
so that 

I Wn < ( - ) l I \al\* wk + l \al\* wk}= l-X I \ak\> wk 

since both T and S (via Lemma 2) satisfy the required weak type inequality 
whenever {wk} satisfies Ap. 
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