
7 Magnetic monopoles and solitons

Anyone who has inspected Maxwell’s equations even briefly has probably speculated about
the existence of magnetic monopoles. There is no experimental evidence for magnetic
monopoles, but the equations would be far more symmetric if they existed. It was Dirac
who first considered carefully the implications of monopoles, and he came to a striking
conclusion: the existence of monopoles would require that electric charge be quantized
in terms of a fundamental unit. The problem of describing a monopole lies in writing
�B = �∇ × �A. We could simply give up this identification, but Dirac recognized that �A is
essential in formulating quantum mechanics. To resolve the problem we can follow Wu
and Yang and maintain that �B = �∇ × �A but not require that the vector potential be single
valued. Suppose that we have a monopole located at the origin. In the northern hemisphere
we can take

�AN = g
4πr

1 − cos θ

sin θ
êφ , (7.1)

while in the southern hemisphere we take

�AS = − g
4πr

1 + cos θ

sin θ
êφ . (7.2)

By looking up the formulae for the curl operator in spherical coordinates, you can check
that, in both hemispheres,

�B = g
4πr2 r̂, (7.3)

so indeed this does describe a magnetic monopole.
Each of expressions (7.1) and (7.2) is singular along a half-line: AN is singular along

θ = π ; AS is singular along θ = 0. These string-like singularities are known as Dirac
strings. They are suitable vector potentials to describe long thin solenoids which start at
the origin and go to infinity along the negative or positive z axis. With discontinuous �A,
though, we need to ask whether quantum mechanics is consistent. Consider the equator
(θ = π/2). We have

�AN − �AS = g
2πr

êφ = −�∇χ , χ = − g
2π
φ, (7.4)

where φ is the azimuthal angle and χ is a general function. So, the difference has the form
of a gauge transformation. But to be a gauge transformation it must act sensibly on particles
of definite charge. In particular, it must be single valued. As such a particle circumnavigates
the sphere, its wave function acquires a phase

exp

(
ie
∫

d �x · �A
)

. (7.5)
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117 7.1 Solitons in 1 + 1 dimensions

Potentially, this phase is different for �AN and �AS, in which case the string would be a
detectable, real, object. But the phases are the same if

exp
(

i
eg
2π

∮
d �x · �∇φ

)
= 1 or eg = 2πn. (7.6)

This is known as the Dirac quantization condition. Dirac argued that, since e can be the
charge of any charged particle, if there is even one monopole somewhere in the universe,
this result shows that charge must be quantized.

In pure electrodynamics the status of magnetic monopoles is obscure; the �B field is
singular and the energy is infinite. In non-Abelian gauge theories with scalar fields (Higgs
fields), however, monopoles often arise as finite-energy non-dissipative solutions of the
classical equations. Such solutions cannot arise in linear theories like electrodynamics; all
configurations in such a theory spread with time. Non-dissipative solutions can only arise
in non-linear theories, and even then, such solutions – known as solitons – can only arise
in special circumstances.

The simplest theory which exhibits monopole solutions is SU(2) (more precisely O(3))
Yang–Mills theory with a single Higgs particle in the adjoint representation. But, before
considering this case, which is somewhat complicated, it is helpful to consider solitons in
lower-dimensional situations.

7.1 Solitons in 1 + 1 dimensions

Consider a quantum field theory in 1 + 1 dimensions, with

L = 1
2
(∂μφ)

2 − V(φ). (7.7)

Here

V(φ) = −1
2

m2φ2 + λ

4
φ4. (7.8)

This potential, which is symmetric under φ → −φ, has two degenerate minima, ±φ0.
Normally, we would choose as our vacuum a state localized about one or the other
minimum. These correspond to trivial solutions of the equations of motion. We can
consider a more interesting configuration, a localized finite-energy solution known as a
soliton, for which

φ(x → ±∞) → ±φ0. (7.9)

Such a solution interpolates between the two different vacua. We can construct this solution
much as one solves analogous problems in classical mechanics, by quadrature. Finding the
solution for this particular model, known as a kink, is left for the exercises; the result is

φkink = φ0 tanh[(x − x0)m]. (7.10)

This solution is shown in Fig. 7.1. The kink has finite energy. As we have indicated,
there is a continuous infinity of solutions, corresponding to the fact that this kink can be
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118 Magnetic monopoles and solitons

φ

x

Fig. 7.1 Kink solution of the two-dimensional field theory.

located anywhere; this is a consequence of the underlying translational invariance. We can
use this to understand in what sense the kink is a particle. Consider configurations which
are not quite solutions of the equations of motion, in which x0 is allowed to be a slowly
varying function x0(t) of t. We can write down the action for these configurations:

Skink =
∫

dt
∫

dx
[

1
2
(∂μφkink)

2 − V(φkink)

]
. (7.11)

Only the φ̇ term contributes. The result is

Skink =
∫

dt
M
2

ẋ2
0. (7.12)

Here M is precisely the energy of the kink. So, the kink truly acts as a particle. The quantity
x0 is called a collective coordinate. We will see that such collective coordinates arise for
each symmetry broken by the soliton. These are similar to the collective coordinates we
encountered in the Euclidean problem of the instanton.

7.2 Solitons in 2 + 1 dimensions: strings or vortices

As we go up in dimension, the possible solitons become more interesting. Consider a U(1)
gauge theory in 2 + 1 dimensions, with a single charged scalar field φ. This model is often
called the Abelian Higgs model. The Lagrangian is

L = |Dμφ|2 − V(|φ|). (7.13)

We assume that the potential is such that

〈φ〉 = v. (7.14)

Now we have a possibility that we have not considered before. Working in plane polar
coordinates r, θ , if we consider only the potential then we can imagine obtaining finite-
energy configurations for which, at large r,

φ → einθv. (7.15)
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119 7.3 Magnetic monopoles

Because the potential tends to its minimum at infinity, such a configuration has finite
potential energy. However, the kinetic energy diverges, since ∂μφ includes (1/r)∂θφ. We
can try to cancel this with a non-vanishing gauge field. At ∞, the scalar field is a gauge
transformation of the constant configuration, so to achieve finite energy we want to gauge-
transform the gauge field as well,

Aθ → n; (7.16)

consequently, at ∞, Dμφ → 1/r 2 or a higher negative power of r. It is not hard to construct
such solutions numerically. As for the kinks, these configurations again have collective
coordinates, corresponding to the two translational degrees of freedom and a rotational (or
charge) degree of freedom.

We can take these configurations as configurations in a (3+1)-dimensional theory, which
are constant with respect to z. Viewed in this way, these are vortices, or strings. One has
collective coordinates corresponding to transverse motions of the string, x0(z, t), y0(z, t).
These string configurations could be quite important in cosmology. Such a broken U(1)
theory could lead to the appearance of long strings, which could carry enormous amounts
of energy. For a time, these were considered a possible origin of inhomogeneities leading
to the formation of galaxies, but the data now disfavors this possibility.

7.3 Magnetic monopoles

Dirac’s argument shows that, in the presence of a monopole, electric charges are all
multiples of a basic charge. This means that the U(1) symmetry is effectively compact.
So, a natural place to look for monopoles is in gauge theories where U(1) is a subgroup of
a simple group. The SU(5) grand unified theory is an example, in which electric charge is
quantized.

We start, though, with the simplest example of this sort, an SU(2) gauge theory with
Higgs fields in the adjoint representation, φa. Such a theory was first considered by Georgi
and Glashow as a model for weak interactions without neutral currents and is known as the
Georgi–Glashow model. An expectation value for φ, φ3 = v or

φ = v
2

(
1 0
0 −1

)
(7.17)

leaves an unbroken U(1). The spectrum includes massive charged gauge bosons W ± and a
massless gauge boson, which we will call the photon, γ . By analogy to the string or vortex
solutions, we require finite energy at ∞:

φ → gv. (7.18)

In the (2 + 1)-dimensional case we could think of the gauge transformation as a mapping
from the space at infinity (topologically a circle) onto the gauge group (also a circle).
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120 Magnetic monopoles and solitons

In three dimensions we want gauge transformations which map the two-sphere S2 into the
gauge group SU(2). For example, we can take

g(�x) = i
x̂iσ i

2
. (7.19)

This suggests the following ansatz (guess) for a solution:

φa = r̂ ah(r), Aa
i = −εa

ij
r̂ j

r
j(r). (7.20)

This solution is very symmetric: it is invariant under a combined rotation in spin and
isospin (rather similar to the sorts of symmetry of the instanton solution). Note that h and j
satisfy coupled non-linear equations, which in general must be solved numerically. We can
see from the form of the action that the mass is of order 1/g2. In the next section we show
that an analytic solution can be obtained in a particular limit.

We can write down an elegant expression for the number of times g(x) maps the sphere
into the gauge group:

N = 1
4π

∫
dS i εijk Tr(g∂jg∂kg). (7.21)

In terms of the field, φ,

N = 1
8πv3

∫
dS i εijkεabc∂iφ

a∂jφ
b∂kφ

c. (7.22)

Finally, we need a definition of the magnetic charge. A natural choice is∫
d3x

1
v
∂i
(
φaBa

i
) = 4πN

e
.

Putting these statements together, we see that this solution, the ’t Hooft–Polyakov
monopole, has one Dirac unit of magnetic charge.

7.4 The BPS limit

Prasad and Sommerfield wrote down an exact monopole solution in the limit V = 0. This
limit seemed originally rather artificial, but we will see later that some supersymmetric field
theories automatically have a vanishing potential for a subset of fields. What simplifies the
analysis in this limit is that the equations for the monopole, which are ordinarily second-
order non-linear differential equations, become first-order equations. We will shortly see
how to understand this in terms of supersymmetry. First, though, we will derive this result
by looking directly at the potentials for the gauge and scalar fields. We start by deriving a
bound, the Bogomol’nyi–Prasad–Sommerfield (BPS) bound, on the mass of a static field
configuration. Again we call the gauge coupling e, to avoid confusion with the magnetic
charge g:

Mm =
∫

d3x
1
2

[
1
e2

�Ba · �Ba + ( �D�)a · ( �D�)a
]

. (7.23)
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121 7.4 The BPS limit

We can compare this with

A± =
∫

d3x
[

1
e

�Ba ± ( �D�)a
]2

= 1
2

∫
d3x

[
1
e2

�Ba2 + ( �D�)a2
]

±
∫

d3x
1
e

�Ba( �D�)a. (7.24)

We can integrate the last term by parts. You can check that this works for both parts of the
covariant derivative, i.e. this term becomes:

1
e

∫
d3x ( �D · �B)a�a − 1

e

∫
d2a�an̂ · �Ba. (7.25)

The first term vanishes by the Bianchi identity (the Yang–Mills generalization of the
equation �∇ · �B = 0). The second term is v times what we have defined to be the monopole
charge, g. So we have

A± =
∫

d3x
[

1
e2

�Ba ± ( �D�)a
]2

= Mm ± vg
e

. (7.26)

The left-hand side of this equation is clearly greater than zero, so we have shown that

Mm ≥
∣∣∣vg

e

∣∣∣. (7.27)

This bound, known as the Bogomol’nyi or BPS bound, is saturated when

�Ba = ±1
e
( �D�)a. (7.28)

Note that while so far in this chapter we have worked in terms of SU(2), this result
generalizes to any gauge group with Higgs in the adjoint representation. But let us still
focus on SU(2) and try to find a solution which satisfies the Bogomol’nyi bound. As in the
case of the ’t Hooft–Polyakov monopole, it is convenient to write:

�a = r̂ a

er
H(evr), Aa

i = −εa
ij

r̂ j

er
[1 − K(evr)]. (7.29)

Here we are using a dimensionless variable, u = evr, in terms of which the
Hamiltonian scales simply. We are looking for solutions for which H → 0 and K → 1
as r → 0. Otherwise, the solutions would be singular at the origin. At ∞, we want the
configuration to look like a gauge transformation of the vacuum solution, so we require

K → 0, H → evr as r → ∞. (7.30)

We will leave the details to the exercises, but it is straightforward to show that these
equations are solved by

H(y) = y coth y − 1, K(y) = y
sinh y

. (7.31)

The monopole mass is

Mm = vg
e

= 2πv
e2 , (7.32)

as predicted by the BPS formula.
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122 Magnetic monopoles and solitons

7.5 Collective coordinates for the monopole solution

In lower-dimensional examples we witnessed the emergence of collective coordinates,
which described the translations and other collective motions of the solitons. In the case
of the monopole we have similar collective coordinates. Again, the solutions violate
translational invariance. As a result we can generate new solutions on replacing �x by �x−�x0.
Now viewing x0 as a slowly varying function of t, we obtain as before the action of a
non-relativistic particle of mass Mm. The particle is non-relativistic in the weak coupling
limit because its mass scales as 1/g 2 and it becomes infinitely heavy as g → 0.

There is another collective coordinate of the monopole solution, which has quite remark-
able properties. In the monopole solution, charged fields are excited. So the monopole
solution is not invariant under the U(1) gauge transformations of electrodynamics. One
might think that this is not important; after all, we have stressed that gauge transformations
are not real symmetries but instead represent a redundancy of the description of a system.
But we need to be more precise. In interpreting Yang–Mills instantons, we worked in the
A0 = 0 gauge. In this gauge the important gauge transformations are time-independent
gauge transformations, and these fall into two classes: large gauge transformations and
small gauge transformations. The small gauge transformations are those which fall rapidly
to zero at infinity, and physical states must be invariant under these. For large gauge
transformations this is not the case, and they can correspond to physically distinct
configurations.

For the monopole configurations, the interesting gauge transformations are those which
tend, at infinity, to a transformation in the unbroken U(1) group. For large r, this direction
is determined by the direction of the Higgs fields. We must be careful how we fix the gauge;
again we will work in the A0 = 0 gauge. For our collective motion, we want to study gauge
transformations in this direction which vary slowly in time. It is important, however, that
we remain in the A0 = 0 gauge, so the transformations that we will study are not quite
gauge transformations. Specifically, we consider

δAi = Di[χ(t)�]
v

, (7.33)

where χ(t) is a general time-dependent function, but we transform A0 by

δA0 = D0(χ�)

v
− χ̇�

v
(7.34)

and, in order that the Gauss law constraint be satisfied, we require that δ� = 0. The action
for χ has the form:

S = C
2e2 χ̇

2. (7.35)

Note that χ is bounded between 0 and 2π , i.e. it is an angular variable. Its conjugate
variable is like an angular momentum; calling this Q we have

Q = pχ = C
e2 χ̇ , H = 1

2C
e2Q2. (7.36)
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123 7.6 The Witten effect: the electric charge in the presence of θ

In the case of a BPS monopole, the constant C is e2Mm/(2v2). So, each monopole has
a tower of charged excitations, with energies of order e2 above the ground state. These
excitations of the monopole about the ground state are known as dyons. The mass formula
for these states has the form, in the case of a BPS monopole:

M = vg + vQ2

g
. (7.37)

We will understand this better when we embed this structure in a supersymmetric field
theory.

7.6 The Witten effect: the electric charge in the presence of θ

We have argued that in a U(1) gauge theory it is difficult to see the effects of θ . But, in the
presence of a monopole, a θ term (see Section 5.3) has a dramatic effect, pointed out by
Witten: the monopole acquires an electric charge that is proportional to θ .

We can see this first in an heuristic way. We will work in a gauge with non-zero A0 and
take all fields as static. Then

�E = −�∇A0, �B = g
4π

�r
r2 + �∇ × �A. (7.38)

For such a configuration, the θ term,

Lθ = θe2

8π2
�E · �B, (7.39)

takes the form

Lθ = − θe2g
32π2

∫
d 3rA0 �∇ · r̂

r2 = −θe2g
8π2

∫
d 3rA0δ(�r). (7.40)

We started with a magnetic monopole at the origin, but we now also have an electric charge
at the origin, θe2g/(8π2).

One might worry that in this analysis one is dealing with a singular field configuration,
but in the non-Abelian case the configuration is non-singular. We can give a more precise
argument. Let us go back to the A0 = 0 gauge. In this gauge we can sensibly write down
the canonical Hamiltonian. In the absence of θ , the conjugate momentum to �A is �E. But, in
the presence of θ , there is an additional contribution,

�� = −d �A
dt

+ θe2

8π2
�B. (7.41)

Now we will think about the invariance of states under small gauge transformations.
For θ = 0 we saw that the small gauge transformations, with gauge parameter ω, are
generated by

Qω =
∫

d 3x �∇ω · �E. (7.42)
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124 Magnetic monopoles and solitons

An interesting set of large gauge transformations is those with ωa = λ�a/v. For these,
if we integrate by parts then we obtain a term which vanishes by Gauss’s law (Gauss’s
law is enforced by the invariance under small gauge transformations), and a surface term.
This surface term gives the total U(1) charge times λ. We can think of this another way.
For the low-lying excitations, multiplication by eiQω corresponds to shifting the dynamical
variable χ by a constant, λ. In general the wave functions for χ have the form eiqχ , where
q is quantized. So the states pick up a phase eiqλ. This is just the transformation of a state
of charge q under a global gauge transformation with phase λ.

In the presence of θ , however, the operator which implements time-independent gauge
transformations is modified. The field �E is replaced by the canonical momentum above.
Now acting on states, the extra term gives a factor gθ/(2π) in the exponent. Even states
with q = 0 pick up a phase, so there is an additional contribution to the charge,

Q = nee − θnm

2π
. (7.43)

7.7 Electric–magnetic duality

As mentioned earlier, Maxwell’s equations suggest a possible duality between electricity
and magnetism. If there were magnetic charges, these equations would take the form

�∇ · �E = ρe, �∇ · �B = ρm, (7.44)

�∇ × �E = −∂ �B
∂t

+�jm, �∇ × �B = ∂ �E
∂t

+ �je. (7.45)

These equations retain their form if we replace �E by − �B and �B by �E and also let ρe → ρm
and ρm → −ρe (and similarly for the electric and magnetic currents).

Now that we have a framework for discussing magnetic charges, it is natural to ask
whether some theories of electrodynamics really obey such a symmetry. In general,
however, this is a difficult problem. We have just learned that electric and magnetic charges,
when they both exist, obey a reciprocal relation, g ∝ 1/e. From the point of view of
quantum field theory, this means that exchanging electric and magnetic charges also means
replacing the fundamental coupling by its inverse. In other words, if there is such a duality
symmetry, it relates a strongly coupled theory to a weakly coupled theory. We do not know
a great deal about strongly coupled gauge theories, so investigating the possibility of such
a duality is a difficult problem. That such a symmetry might exist in theories of the type we
have been discussing is not entirely crazy. For example the monopole masses behave, at
weak coupling, like 1/g2. So as the coupling becomes strong, these particles become light,
even as the charged states become heavy. They have complicated quantum numbers (some
monopole states are fermionic, for example).

Remarkably, there is a circumstance where such dualities can be studied, namely
theories with more than one supersymmetry (in four dimensions): N = 4 supersymmetric
Yang–Mills theory turns out to exhibit an electric–magnetic duality. These theories will be
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discussed in Chapter 15. Crucial to verifying this duality will be a deeper understanding of
the Bogomol’nyi–Prasad–Sommerfield (BPS) condition, which will allow us to establish
exact formulas for the masses of certain particles that are valid for all values of the
coupling. These formulas will exhibit precisely the expected duality between electricity
and magnetism.

Suggested reading

There are many excellent reviews and texts on monopoles. These include Coleman (1981)
and Harvey (1996), and this chapter borrows ideas from both. You can find an introduction
to the subject in Chapter 6 of Jackson’s electrodynamics text (1999).

Exercises

(1) Verify that Eqs. (7.1) and (7.2) are those for infinitely long, thin, solenoids ending at
the origin.

(2) Find the kink solution of the (1 + 1)-dimensional model. Show that the collective
coordinate action is

S =
∫

dt
1
2

Mkinkẋ2
0.

(3) Verify that Eqs. (7.31) solve the BPS equations.
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