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Abstract

We show that there is a Borel graph on a standard Borel space of Borel chromatic number three that admits a

Borel homomorphism to every analytic graph on a standard Borel space of Borel chromatic number at least three.

Moreover, we characterize the Borel graphs on standard Borel spaces of vertex-degree at most two with this property

and show that the analogous result for digraphs fails.
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1. Introduction

The investigation of definable chromatic numbers is a blooming field of research with numerous

applications, as can be found in [2, 6, 7, 8, 15, 16, 17, 18, 23]. The survey [13] contains many of the

latest results.

Recall that a digraph on a set - is an irreflexive set� ⊆ -2, and a graph on - is a symmetric digraph

on - . A ^-coloring of a digraph � on - is a map 2 : - → ^ such that (G, H) ∈ � =⇒ 2(G) ≠ 2(H) for
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all G, H ∈ - . We will be interested in digraphs on spaces - that are endowed with a Borel structure. In

this case, one may consider the Borel chromatic number of �, or j� (�), defined as the least cardinal ^

that admits a standard Borel structure with respect to which there is a Borel ^-coloring of �. (Note that

a standard Borel structure exists on ^ iff ^ ∈ {0, 1, 2, . . . ,ℵ0, 2
ℵ0 }, and for each such ^, it is unique up

to Borel isomorphism.)

A homomorphism from a digraph � on - to a digraph � ′ on - ′ is a map q : - → - ′ such that

(G, H) ∈ � =⇒ (q(G), q(H)) ∈ � ′ for all G, H ∈ - . When � and � ′ are digraphs on standard Borel

spaces, we write � ≤� �
′ to indicate the existence of a Borel homomorphism from � to � ′. Similarly,

when� and� ′ are digraphs on Polish spaces, we write� ≤2 �
′ to indicate the existence of a continuous

homomorphism from � to � ′. It is easy to see that � ≤� �
′ =⇒ j� (�) ≤ j� (�

′). The complete

graph on ^ is given by  ^ = {(U, V) ∈ ^2 | U ≠ V}. It is also easy to see that if ^ is endowed with a

standard Borel structure, then j� (�) ≤ ^ ⇐⇒ � ≤�  ^ .

The systematic investigation of Borel chromatic numbers was initiated by Kechris, Solecki and To-

dorčevic [14]. One of their primary successes was the isolation of a Borel graphG0 on 2N of uncountable

Borel chromatic number that admits a continuous homomorphism to every analytic Borel graph on a

Polish space of uncountable Borel chromatic number. This result lies at the heart of a vast number

of seemingly unrelated theorems in descriptive set theory (see, e.g. [4, 5, 19, 21, 22]), often yielding

shorter, more elegant proofs and substantial generalizations. Todorčevic and Vidnyánszky [25] recently

ruled out the most straightforward analogs of the G0 dichotomy for graphs of Borel chromatic number

at least =, where 4 ≤ = ≤ ℵ0.

We will introduce a Borel graph L0 that plays a role analogous to G0 for graphs of Borel chromatic

number at least three:

Theorem 1.1. Suppose that � is an analytic graph on a Polish space. Then exactly one of the following

holds:

(1) The graph � has Borel chromatic number at most two.

(2) There is a continuous homomorphism from L0 to �.

It is easy to see that there is no analogous finite basis in the case of finite graphs, where the notions of

Borel graph and Borel chromatic number coincide with their classical counterparts.

The graph L0 can be described using an inverse limit-like construction as follows: let -0,0 be a two-

point set, let !0,0 be the unique connected graph on -0,0, and define -0 = -0,0. Given = ∈ N, a finite

set -0,=, and a tree !0,= on -0,= of vertex degree at most two, let -0,=+1 be the disjoint union of two

copies of -0,= with a set -=+1 of cardinality 2= + 2, fix a point B= ∈ -0,= of !0,=-vertex degree one, fix a

tree !=+1 on -=+1 of vertex degree at most two, and let !0,=+1 be the graph on -0,=+1 whose restriction

to each copy of -0,= is the corresponding copy of !0,=, whose restriction to -=+1 is !=+1, and which

connects the two copies of B= in -0,=+1 to distinct points of -= of !=-vertex degree one (see Figure 1).

Let c=+1 : -0,=+1 \ -=+1 → -0,= be the projection sending each point in one of the two copies of -0,=

within -0,=+1 to the corresponding point of -0,=. Let X0 be the set of pairs of the form (=, G), where

= ∈ N and G ∈ -= ×
∏

<>= -0,<, such that G(<) = c=+<+1 (G(< + 1)) for all < ∈ N. Let L0 be the graph

on X0 consisting of all pairs ((=, G), (=′, G ′)) ∈ X0 × X0 with the property that (G(<), G ′(<)) ∈ !0,<

for all < ≥ max(=, =′). We will give a slightly different description of this graph in Section 2.

Our proof of Theorem 1.1 splits into two parts: we first establish the existence of continuum-many

L0-like Borel digraphs that serve as a basis for the analytic digraphs on Polish spaces of Borel chromatic

number at least three under continuous homomorphism, and then we show that the undirected version

of any of these digraphs admits a continuous homomorphism to the undirected version of any other.

Suppose that - is a set and ! is a graph on - of vertex degree at most two. We say that a set . ⊆ -

has large gaps if every !-component contains !-connected sets disjoint from. of arbitrarily large finite

cardinality. When - is a standard Borel space, we say that ! has the large gap property if there is a Borel

set � ⊆ - with large gaps that intersects every !-component. We say that ! has the large gap property

modulo a two-colorable set if there is an !-invariant Borel set " ⊆ - such that ! ↾ (- \ ") has the
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Figure 1. The first four stages of the construction of L0.

large gap property and j� (! ↾ ") ≤ 2. We also characterize the family of Borel graphs ! on standard

Borel spaces of vertex degree at most two satisfying the analog of Theorem 1.1 in which the existence

of a continuous homomorphism from L0 to � is replaced with the existence of a Borel homomorphism

from ! to �:

Theorem 1.2. Suppose that - is a standard Borel space and ! is an acyclic Borel graph on - of vertex

degree at most two. Then the following are equivalent:

(1) There is a Borel homomorphism from ! to every Borel graph � of Borel chromatic number at least

three.

(2) The graph ! has the large gap property modulo a two-colorable set.

An oriented graph on a set - is an antisymmetric digraph on - . Whereas the oriented analog of G0

satisfies the analog of the Kechris-Solecki-Todorčevic dichotomy for analytic digraphs, we also show

that there is no such analog of Theorem 1.1:

Theorem 1.3. Suppose that � is an analytic digraph on a Polish space of Borel chromatic number

at least three. Then there is a sequence (!C )C ∈2N of Borel oriented graphs on Polish spaces of Bor-

el chromatic number three that admit continuous homomorphisms to � but for which every analytic

digraph on a standard Borel space that admits a Borel homomorphism to at least two distinct graphs of

the form !C has Borel chromatic number at most two.

One can view L0 as being built via towers over a canonical acyclic graph ! on 2N of vertex degree at

most two that is not the graph of a Borel function. In a future paper, we will establish a basis theorem for

the analytic graphs on Polish spaces of Borel chromatic number at least three under the finer notion of

injective continuous homomorphism. While the cardinality of the basis we will provide is necessarily

(at least) that of the continuum, its elements are reminiscent of L0, in that they too can be viewed as

being built via towers, albeit this time over three canonical graphs: the graph ! over which L0 is built,

the graph of the odometer on 2N and the graph of the unilateral shift on increasing N-sequences of

natural numbers (for a summary of the results, see [3]).

In Section 2, we collect the most important definitions and facts used in our arguments. In Section

3, we give the first half of the proof of Theorem 1.1. In Section 4, we give the second half and establish

Theorem 1.2. In Section 5, we establish our anti-basis result. In Section 6, we discuss open problems.

2. Preliminaries and basic facts

We refer the reader to [12] for general background on descriptive set theory.

For each ordered pair (G, H), set (G, H)1 = (G, H) and (G, H)−1 = (H, G). Define �−1 = {(G, H)−1 |

(G, H) ∈ �} for all sets � ⊆ -2. Given a digraph � on a set - and G, H ∈ - , an (undirected) �-walk

from G to H is a pair ? = ((G0, . . . , Gℓ), 3?) consisting of a finite sequence of vertices (G0, ..., Gℓ) with

G0 = G and Gℓ = H, and 3? ∈ {±1}ℓ such that (G8 , G8+1)
3? (8) ∈ � for all 8 < ℓ. In the case that ? is a

�-walk and � is a graph, we will omit the second coordinate of ?.
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For all 3 ∈ {±1}<N, we use Σ(3) to denote
∑

8∈dom(3) 3 (8). We set dilength(?) = Σ(3?) and

length(?) = ℓ for the directed length and (undirected) length of ?. Let dist� (G, H) be the minimal length

of a �-walk from G to H.

It is easy to verify the next claim.

Claim 2.1. Let� be an acyclic1 oriented graph on the space - , and G, H ∈ - . Then for any two�-walks

? and ?′ from G to H, we have dilength(?) = dilength(?′).

Thus, for an oriented acyclic graph � on the space - and G, H ∈ - , defining didist� (G, H) to be

the directed length of a walk from G to H makes sense. If it is clear from the context, we will omit the

superscript from dist(·, ·) and didist(·, ·).

Note also that the parity of dilength(?) and length(?) is the same. So, when referring to the parity

of the length of a walk, we will always omit the word directed.

Define an equivalence relation �� on - by letting G�� H iff there exists a � -walk from G to H. The

�� equivalence classes will be called the connected components or components of� . For standard defi-

nitions and facts from the theory of equivalence relations (e.g. smoothness, saturation and countability),

see [10]. As usual, a set ( ⊆ - will be called �-invariant if it is ��-invariant.

The restriction of � (�� ) to �, in notation � ↾ � (�� ↾ �), is the digraph � ∩ �2 (the equivalence

relation �� ∩ �2) on �. A set � ⊆ - is called � -independent if �2 ∩ � = ∅.

Definition of L0-type graphs. Now we outline a general scheme for constructing Borel graphs; the

graph L0 will be a particular example of such a construction. First, we define finitary approximations

to our graphs, parametrized by a sequence 2 ∈ N
N. For all = ∈ N, let != denote the graph on

{(0), . . . , (=)} with respect to which (8) and ( 9) are neighbors if and only if |8 − 9 | = 1 (here, the

symbol (B) stands for the sequence containing a single element B). For the rest of the paper, we fix

a sequence (B=)=∈N given by B0 = (2(0)) and B= = (0)= ⌢ (1), for = > 0. Define graphs !2,= on

-2,= =
⋃

<≤={0, . . . , 2(<)} × 2=−< by setting !2,0 = !2 (0) and letting !2,=+1 be the acyclic connected

graph, containing {(E8 a ( 9))8<2 | 9 < 2 and (E8)8<2 ∈ !2,=} and !2 (=+1) , in which (B=, 0) is a neighbor

of (0) and (2(= + 1)) is a neighbor of (B=, 1).

Now set X2 = {(=, :, A) ∈ N×N× 2N | : ≤ 2(=)}, define c2,= : X2 ∩ ({0, . . . , =} ×N× 2N) → -2,=

by c2,= (<, :, A) = (:) a A ↾ (= −<) for all = ∈ N, and let L2 be the graph on X2 consisting of all pairs

of the form ((=8 , :8 , A8))8<2 such that (c2,= (=8 , :8 , A8))8<2 ∈ !2,= holds ∀= ≥ max(=0, =1).

Recall that, in the introduction, we described the graph L0 = L2 with 2(0) = 1 and 2(=) = 2= − 1 for

= > 0.

Definition of L0-type oriented graphs. We modify the preceding construction slightly, considering

oriented finitary approximations, which yield oriented Borel graphs as limits.

An extra parameter is necessary to encode the orientation of the graphs. For all = ∈ N and 3 ∈ {−1, 1}:

with : > =, let !3
= denote the oriented graph on {(0), . . . , (=)} containing ((8), ( 9))3 (max{8, 9 }) whenever

|8 − 9 | = 1.

Let = ∈ {0, 1, . . . ,ℵ0}. To ease notation, we will call a pair 1 = (2, 3) an odd =-pair if 2 : 1 + = →

2N + 1, 3 : 1 + =→ {−1, 1}<N and |3 (:) | = 2(:) + 2 for all : ≤ =.

Given an odd ℵ0-pair 1 = (2, 3), define graphs !1,= on -2,= by setting !1,0 = !
3 (0)

2 (0)
and letting

!1,=+1 be the acyclic connected oriented graph, containing {(E8 a ( 9))8<2 | 9 < 2 and (E8)8<2 ∈ !1,=}

and !
3 (=+1)

2 (=+1)
, in which

((B=, 0), (0)))
3 (=+1) (0) and ((2(= + 1)), (B=, 1))

3 (=+1) (2 (=+1)+1)

are edges. Finally, let L1 be the graph on X2 consisting of all pairs of the form ((=8 , :8 , A8))8<2 such that

(c2,= (=8 , :8 , A8))8<2 ∈ !1,= holds ∀= ≥ max(=0, =1).

1Throughout the paper, the term acyclic will mean that there are no undirected cycles: that is, the graph � ∪�−1 contains no
cycles.

https://doi.org/10.1017/fms.2020.58 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.58


Forum of Mathematics, Sigma 5

Basic observations. Note that for any 2 ∈ N
N and any odd ℵ0-pair 1, the definitions of !2,=, -2,=

and !1,= depend only on (2(8))8≤= and (1(8))8≤=, respectively. For natural numbers =′ > =, define

c2,=,=′ : -2,=′ ∩{(:, C) | C ∈ 2=
′−< for some < ≤ =} → -2,= by c2,=,=′ (:, C) = (:) a C ↾ (=−<), where

< is chosen such that C ∈ 2=
′−<. Observe that

c2,=,=′ ◦ c2,=′ ↾ dom(c2,=) = c2,=

holds.

Let us use the abbreviation �2 for �L2
. We list a number of useful basic observations about the

family of digraphs and graphs defined above.

Claim 2.2. Assume that 1 = (2, 3) is an odd ℵ0-pair. Then

(1) X2 is a closed subset of N × N × 2N; hence it is a Polish space with the subspace topology.

(2) L2 = L1 ∪ L
−1
1

, !2,= = !1,= ∪ !
−1
1,=

.

(3) If for some =, : ∈ N, Y < 2, C ∈ 2<N, we have (:) ⌢ C ⌢ (Y) ∈ !2,=, then (:) ⌢ C ⌢ (1 − Y) ∈ !2,=
and dist!2,= ((:) ⌢ C ⌢ (Y), (:) ⌢ C ⌢ (1 − Y)) is odd.

(4) Let (=, :, A), (=′, : ′, A ′) ∈ X2 with = ≤ =′. Then (=, :, A)�2 (=
′, : ′, A ′) if and only if A = C ⌢ A∗,

A ′ = C ′ ⌢ A∗ with |C | − |C ′ | = =′ − = for some A∗ ∈ 2N, C, C ′ ∈ 2<N.

(5) L2 is acyclic and is 2-regular, except for a single vertex of degree 1.

(6) If � ⊆ X2 is Borel and meager, then so is [�]�2
.

(7) If � ⊆ X2 is Borel and non-meager, then j� (L2 ↾ [�]�2
) = 3.

(8) If lim sup= 2(=) = ∞, then L2 has the large gap property.

Proof. It is immediate from the definition of the graphs L1 that (1) and (2) hold, while (3) follows from

the fact that 2 ∈ (2N + 1)N.

To see (4), note that if ? = (G0, . . . , G;) is an injective L2-walk, then, for large enough <, the

sequence (c2,< (G0), . . . , c2,< (G;)) is an injective !2,<-walk. It follows from the fact that the graphs

!2,< are acyclic that distL2 ((=, :, A), (=′, : ′, A ′)) ≥ dist!2,< (c2,< (=, :, A), c2,< (=
′, : ′, A ′)) for every

large enough <. In particular, as the distance of the vertices in different copies of !2,<−1 in !2,< is at

least 2(<) + 2, we have that (=, :, A)�2 (=
′, : ′, A ′) if and only if c2,< (=, :, A) and c2,< (=

′, : ′, A ′) are

in the same copy of !2,<−1 in !2,< for every large enough <, which is equivalent to the right-side

condition in (4).

For (5), observe that for every =, every degree in !2,= is at most 2, and hence the same must be

true for L2 . Also, it is easy to see that if the degree of a vertex (=, :, A) ∈ X2 is < 2, then for every

large enough =′, the degree of c2,=′ (=, :, A) in !2,=′ must be < 2. It follows that this is possible only if

(=, :, A) = (0, 0, (0)N). Finally, acyclicity follows from the acyclicity of !2,=.

From (4), we get that �2 is the union of the graphs of the partial maps and their inverses of the form

5=,=′,:,:′,C ,C′ (=
′, : ′, C ′

⌢
A) = (=, :, C ⌢ A),

where =′ ≥ =, |C | − |C ′ | = =′−=. It is clear that the above partial maps are injective and preserve category.

Thus,

[�]�2
=

⋃

=,=′,:,:′,C ,C′

5 ±1
=,=′,:,:′,C ,C′ (�)

is also meager and Borel.

To see (7), first note that (5) implies j� (L2 ↾ [�]�2
) ≤ 3 using the standard fact that the maximal

vertex degree + 1 is an upper bound [14, Proposition 4.6].

Assume that � is a non-meager Borel set and 2 : [�]�2
→ 2 is a Borel 2-coloring of L2 ↾ [�]�2

.

Then there exist an 8 < 2 and a basic open set of the form [(=, :, C)] (= {(=, :, A) ∈ X2 | A ⊐ C}),

with =, : ∈ N and C ∈ 2<N, such that [(=, :, C)] \ (� ∩ 2−1 (8)) is meager. Using (6), we have that

[[(=, :, C)] \ (� ∩ 2−1 (8))]�2
is also meager, so we can pick a point (=, :, A) ∈ [(=, :, C)] ∩ � ∩ 2−1 (8)
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that does not belong to this meager set. Assume that A = C
⌢ (Y) ⌢ A ′. Then, by (4), we have that

(=, :, C ⌢ (1 − Y) ⌢ A ′) ∈ [(=, :, C)] ∩ � ∩ 2−1(8), so 2(=, :, C ⌢ (Y) ⌢ A ′) = 2(=, :, C ⌢ (1 − Y) ⌢ A ′) = 8.

As in the proof of (4), it follows that

distL2 ((=, :, C ⌢ (Y) ⌢ A ′), (=, :, C ⌢ (1 − Y) ⌢ A ′)) =

dist!2,=+|C |+1 (c2,=+|C |+1 (=, :, C
⌢ (Y) ⌢ A ′), c2,=+|C |+1 (=, :, C

⌢ (1 − Y) ⌢ A ′)) =

dist!2,=+|C |+1 ((:) ⌢ C ⌢ (Y)), (:) ⌢ C ⌢ (1 − Y)),

which is an odd number by (3). This contradicts the assumption that 2 is a Borel 2-coloring of L� ↾

[(=, :, A)]�2
⊆ L� ↾ [�]�2

.

Finally, for (8), it is easy to verify that � = {(0, 0, A) ∈ X2 | A ∈ 2N} witnesses the large gap property

for L2 whenever lim sup= 2(=) = ∞.

�

Claim 2.3. Assume that !, ! ′ are ≤ 2-regular acyclic Borel graphs on standard Borel spaces -, - ′.

(1) Let � be an !-invariant Borel set so that �! ↾ � is smooth. Then j� (! ↾ �) ≤ 2.

(2) Assume that q is a Borel homomorphism from ! to ! ′. Define " = {G ∈ - | [q(G)]�!′
\q([G]�!

) ≠

∅}. Then " is Borel and j� (! ↾ ") ≤ 2.

Proof. To see (1), note that �! is countable, so smoothness is equivalent to the existence of an !-

invariant Borel partial mapping G → HG so that HG�!G holds for every G ∈ �. Clearly the map 2 : � → 2,

defined by 2(G) = 0 iff dist! (G, HG) is even, is a Borel 2-coloring of the graph ! ↾ �.

For (2), first note that the Luzin-Novikov theorem yields that" is Borel. Fix a Borel linear ordering <

of - . Since ! ′ ↾ q([G]�!
) and ! ′ ↾ [q(G)]�!′

are ≤ 2-regular acyclic connected graphs, there are one or

two vertices in [q(G)]�!′
\q([G]�!

) that have an ! ′-neighbor in q([G]�!
). Let HG be the <-minimal such

vertex. Now, as in (1), letting 2(G) = 0 iff dist!
′

(q(G), HG) is even, it follows that j� (! ↾ ") ≤ 2. �

The following claim will be used to establish Theorem 1.1 for Borel graphs.

Claim 2.4. Assume that � is a Borel graph on a standard Borel space - , 2 ∈ (2N + 1)N and (q=)=∈N
is a sequence of Borel partial maps from - to -2,= with the following properties for every = ∈ N:

(1) dom(q=) ⊆ dom(q=+1) and
⋃

=∈N dom(q=) = - .

(2) The map q= is a partial homomorphism from � to !2,=.

(3) q= = c2,=,=+1 ◦ q=+1 ↾ dom(q=).

Then there exists a Borel homomorphism q from � to L2 .

Moreover,

(4) If - is Polish, for every = ∈ N, the set dom(q=) is open in - , and the maps q= are continuous,

then q can be chosen to be continuous.

Proof. Let G ∈ - be arbitrary, and take =G
0

to be minimal such that G ∈ dom(q=0
). For = ≥ =0, we have

that q= (G) = (:=)
⌢
C= for some C= ∈ 2=−<= and :=, <= ∈ N. By (3), for every = ≥ =0, the relations

:= = :=+1,<= = <=+1 and C= ⊏ C=+1 hold. Let q(G) = (<=0
, :=0

,
⋃

=≥=0
C=). Clearly, q is a Borel map; we

will check that it is a homomorphism. Indeed, if (G8)8<2 ∈ �, then, by (2), letting = ≥ max{=
G8
0

| 8 < 2},

we have that (q= (G8))8<2 ∈ !2,=. Notice that c2,= (q(G)) = q= (G) whenever G ∈ dom(q=), so we obtain

(c2,= (q(G8)))8<2 = (q= (G8))8<2 ∈ !2,=, which verifies our claim by the definition of L2 .

Finally, one can easily check that the assumptions in (4) of the claim yield the continuity of q. �
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3. A basis under continuous reducibility

In this section, we construct a basis for Borel digraphs with Borel chromatic number > 2. We will

show these results in somewhat greater generality than stated in the introduction, namely for analytic

graphs defined on Hausdorff spaces. The proof relies on a slight modification of the idea behind the

G0 dichotomy, together with an observation about the Borel 2-colorability of Borel digraphs, which is

essentially summarized in Claims 3.3, 3.4 and 3.5 below.

Theorem 3.1. Let � be an analytic digraph on a Hausdorff space - . Then exactly one of the following

holds:

(1) j� (� ) ≤ 2.

(2) There exists an odd ℵ0-pair 1 so that L1 admits a continuous homomorphism to � . Moreover,

for any 5 ∈ N
N, the pair 1 = (2, 3) can be chosen in such a way that, for every 8 ∈ N, we have

Σ(3 (8)) > 5 (8) ·
∑

9<8 |Σ(3 ( 9)) |.

Proof. The proof will follow the proof of the G0 dichotomy presented in [20].

Fix a function 5 ∈ N
N. As � is analytic, there exist a continuous surjection q� : NN → � and a

continuous map q- : NN → - such that q- (N
N) is the union of the two projections of � to - . By

iteratively throwing away � -invariant sets restricted to which � has a Borel 2-coloring, we will define

a decreasing sequence (-U)U<l1
of analytic subsets of - . Let -0 = q- (N

N) and -_ =
⋂

U<_ -
U if _

is a limit ordinal.

Let us now describe the successor stage.

An approximation is a quadruple 0 = (=0, 10, q0, k0), where =0 ∈ N, 10 = (20, 30) is an odd =0-

pair, q0 : -20 ,=0 → N
=0

and k0 : !10 ,=0 → N
=0

. An approximation 0′ is said to one-step extend 0 if

(a) =0
′
= =0 + 1.

(b) 20
′
⊐ 20, 30

′
⊐ 30.

(c) Σ(30
′
(=0

′
)) > 5 (=0) ·

∑
9≤=0 |Σ(30 ( 9)) |.

(d) ∀G ∈ dom(c20′ ,=0 ,=0′ ) q0
′
(G) ⊐ q0 ◦ c20′ ,=0 ,=0′ (G).

(e) ∀G, H ∈ dom(c20′ ,=0 ,=0′ )

(G, H) ∈ !10′ ,=0′ =⇒ k0′ (G, H) ⊐ k0 (c20′ ,=0 ,=0′ (G), c20′ ,=0 ,=0′ (H)).

A configuration is a quadruple of the form W = (=W , 1W , qW , kW), where =W ∈ N, 1W is an odd =W-pair,

qW : -2W ,=W → N
N and kW : !1W ,=W → N

N has the following property: for every (G, H) ∈ !1W ,=W ,

(q� ◦ kW) (G, H) = (q- ◦ qW (G), q- ◦ qW (H)). (3.1)

A configuration W is said to be compatible with an approximation 0 if

(1) =0 = =W .

(2) 10 = 1W .

(3) ∀G ∈ -2W ,=W q0 (G) ⊏ qW (G).

(4) ∀(G, H) ∈ !1W ,=W k0 (G, H) ⊏ kW (G, H).

We say that a configuration W is compatible with a set . ⊆ - if q- ◦ qW (-2W ,=W ) ⊆ [. ]��
. An

approximation 0 is . -terminal if no configuration is compatible with both . and a one-step extension

of 0. Let

�(0,. ) = {q- ◦ qW (B=W ) | W is compatible with 0 and . }.

Lemma 3.2. Suppose that . ⊆ - is an analytic set and 0 is a . -terminal approximation. Then there

exists a� -invariant Borel set �(0,. ) ⊇ [�(0,. )]��
so that� ↾ �(0,. ) has a Borel 2-coloring, 20,. .

We start with a series of claims.
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Claim 3.3. Suppose that � ⊆ - is an analytic set such that for every G, H ∈ �, every � -walk from G

to H has even (undirected or, equivalently, directed) length. Then there exists a � -invariant Borel set

� ⊇ [�]��
on which � ↾ � admits a Borel 2-coloring.

Proof. For 8 < 2, define �8 ⊆ [�]��
as follows: let G ∈ �8 if there exists a walk of length = from G to

some H ∈ �, where = ≡ 8 mod 2. It is clear that the sets �8 are analytic, their union covers [�]��
and

they are � -independent. Note that their � -independence implies that �0 ∩ �1 = ∅. By the separation

theorem for analytic sets, there exist Borel sets �8 ⊇ �8 with �0∩�1 = ∅. Define 2(G) = 8 ⇐⇒ G ∈ �8 ,

and let � = {G ∈ - | 2 is a 2-coloring of � ↾ [G]��
}. Clearly, the sets - \ � and �0 ∪ �1 are disjoint,

analytic and � -invariant. Hence, by [11, Lemma 5.1], there exists a � -invariant Borel set � ⊇ �0 ∪ �1

with � ∩ (- \ �) = ∅. Then 2 ↾ � is a Borel 2-coloring of � ↾ �. �

Claim 3.4. Let �′ ⊆ � ⊆ - be analytic sets and 3 ∈ Z be an odd number. Assume that, for every

G ′ ∈ �′, there exists an G ∈ � such that there exists a� -walk from G ′ to G of directed length 3. Moreover,

assume that every odd length� -walk between elements of � has directed length ≤ |3 |. Then there exists

a � -invariant Borel set � ⊇ [�′]��
on which � ↾ � admits a Borel 2-coloring.

Proof. Suppose that 3 > 0; the other case is analogous. Let �′
0
= {G ′ ∈ �′ | there exists a � -walk from

G ′ to some element of � with odd negative directed length}. We claim that �′
0

satisfies the assumptions

of Claim 3.3. Assume that this is not the case: that is, there exists G ′, H′ ∈ �′
0

so that there exists a � -

walk of odd length between G ′ and H′. As the directed length of an odd length walk is non-zero, we can

assume (switching the roles of G ′ and H′ if necessary) that there exists a walk ? from G ′ to H′ of positive

odd directed length. Then, using our assumptions on �′
0

and �′, there exist F, I ∈ � and � -walks @, A

such that @ is a walk from F to G ′, A is a walk from H′ to I and dilength(@) > 0, dilength(A) = 3 and both

of these numbers are odd. But then the walk @⌢ ?⌢ A (i.e. the walk (@(0) ⌢ ?(0) ⌢ A (0), 3@
⌢
3?

⌢
3A ))

connects F with I and dilength(@ ⌢
?
⌢
A) > 3 + dilength(?), and the former is an odd number > 3,

contradicting our assumption on �.

Now let �0 be the invariant Borel superset of [�′
0
]��

provided by Claim 3.3, and define �′
1
= �′\�0.

Clearly, by the definition of �′
0

and as �′
1
⊆ �, the set �′

1
also satisfies the requirements of Claim 3.3,

so let �1 ⊇ [�′
1
]��

be the Borel set it yields. Then it is easy to see, from the invariance of �0 and �1,

that � = �0 ∪ �1 satisfies the requirements of the claim. �

Claim 3.5. Let � ⊆ - be an analytic set, and assume that there exists an = ∈ N such that if G, H ∈ �

and ? is a � -walk of odd length from G to H, then dilength(?) ≤ =. Then there exists a � -invariant

Borel set � ⊇ [�]��
such that � ↾ � admits a Borel 2-coloring.

Proof. We prove this statement by induction on the minimal = with this property. If = = 0, then Claim

3.3 yields the required conclusion.

Now assume that we have shown the statement for every natural number ≤ = − 1. If = > 0 is even,

then it cannot be minimal, and hence there is nothing to show. So we can assume that = is odd. For

Y ∈ {−1, 1}, let �=,Y = {G ∈ � : there exists a � -walk from G to some H ∈ � of directed length Y · =}.

Now we can apply Claim 3.4 to the sets �=,Y , � and Y · =. This yields � -invariant Borel sets �Y ⊇ �=,Y

on which � admits a Borel 2-coloring. Note that if G ∈ � \ (�−1 ∪ �1), then every odd length walk

between G and an element of � must have directed length < =. So, by the inductive hypothesis, we can

find an invariant Borel set �=−1 ⊇ [� \ (�−1 ∪ �1)]��
such that � ↾ � admits a Borel 2-coloring.

Using the invariance of �=−1, �−1, and �1 again, we obtain that � ↾ �=−1 ∪ �−1 ∪ �1 also admits a

Borel 2-coloring, which finishes the proof. �

Proof of Lemma 3.2. By definition, the set �(0,. ) is analytic. If there exists an = ∈ N such that every

walk ? of odd length between vertices from �(0,. ) has directed length ≤ =, then Claim 3.5 yields the

� -invariant Borel set �(0,. ) ⊇ [�(0,. )]��
and a Borel 2-coloring 20,. of � ↾ �(0,. ).

So assume that such an = does not exist; we will show that 0 is not. -terminal. Using this assumption

for = = 5 (=0) ·
∑

9≤=0 |Σ(30 ( 9)) |, we obtain two configurations (W 9 ) 9<2 compatible with 0 and . , a
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� -walk of odd length ? = ((G0, . . . , G<+2), 3?) with dilength(?) > 5 (=0) ·
∑

9≤=0 |Σ(30 ( 9)) | such that

G0 = (q- ◦ qW0) (B=0 ) and G; = (q- ◦ qW1) (B=0 ). Pick A0, . . . , A<+2 ∈ N
N and 40, . . . , 4<+1 ∈ N

N so that

◦ A0 = qW0 (B=0 ), A<+2 = qW1 (B=0 ),

◦ ∀ 9 ≤ < + 2 q- (A 9 ) = G 9 , and

◦ ∀ 9 < < + 2 q� (4 9 ) = (G 9 , G 9+1)
3? ( 9) .

We define a configuration X as follows: let =X = =0 + 1 and 1X = (2X , 3 X) = (20 ⌢
<, 30

⌢
3?), and

define qX : -2X ,=X → N
N by

{
qX (G ⌢ ( 9)) = qW 9 (G) for G ∈ -20 ,=0 and 9 < 2, and

qX (( 9)) = A 9+1 for 9 ≤ <.

Finally, define k X : !1X ,=X → N
N by




k X (G ⌢ ( 9), H ⌢ ( 9)) = kW 9

(G, H) for (G, H) ∈ !10 ,=0 and 9 < 2.

k X ((B=0
⌢ (0), (0))3 (0) ) = 40.

k X (((<), B=0
⌢ (1))3 (<+1) ) = 4<+1.

k X (( 9 , 9 + 1)3 ( 9+1) ) = 4 9+1 for 9 ≤ < − 1.

It is not hard to check that X is a configuration. Moreover, as W0 and W1 are compatible with. , so is X.

Finally, using the fact that Σ(3) = dilength(?) > 5 (=0) ·
∑

9≤=0 |Σ(30 ( 9)) |, one can deduce that there

exists a unique one-step extension 0′ of 0 that is compatible with X. This contradicts the assumption

that 0 was . -terminal. �

Define

-U+1
= -U \

⋃

0 is - U-terminal,

�(0, -U).

Since there are only countably many possible approximations, and -0 is an analytic set, the set -U is

analytic for every U < l1. Note also that each -U is � -invariant.

Lemma 3.6. Assume that U < l1 and 0 is an approximation that is not -U+1-terminal. Then 0 has a

one-step extension that is not -U-terminal.

Proof. Let 0′ be a one-step extension of 0 for which there exists a configuration W compatible with

-U+1 and 0′. Then ∅ ≠ (q- ◦ qW) (-2W ,=W ) ⊆ [-U+1]��
= -U+1; but if 0′ was -U-terminal, then

[(q- ◦ qW) (-2W ,=W )]��
⊆ [�(0′, -U)]��

would be covered by �(0′, -U), contradicting the definition

and the � -invariance of -U+1. �

Note that the set of -U-terminal approximations increases as U increases, and there are only count-

ably many approximations. Thus we can fix an U < l1 so that the -U-terminal and -U+1-terminal

approximations are the same.

Lemma 3.7. If every approximation is -U+1-terminal, then � has a Borel 2-coloring.

Proof. Observe first that -U+1 is � -independent: otherwise, if (G, H) ∈ � ∩ (-U+1)2, then there exists

a configuration W with 2W = (1) compatible with {G, H}. Consequently, there exists an approximation 0

that is compatible with W and -U+1. Then 0 is -U+1-terminal, so G, H ∈ [�(0, -U+1)]��
, but then 0 is an

-U-terminal approximation as well, so G, H ∈ [�(0, -U)]��
⊆ �(0, -U), contradicting the definition

of -U+1.

Moreover, -U+1 ⊆ -0 is � -independent and � -invariant, so, by the definition of -0, it must be

empty.
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Let 4 : {(0, V) : 0 is -V terminal, V ≤ U} → N be an injection and let 20,-V be the Borel 2-coloring

of � ↾ �(0, -V) given by Lemma 3.2, for (0, V) ∈ dom(4). If G ∈ - , define

2(G) =

{
20,-V (G) if 4(0, V) is minimal such that G ∈ �(0, -V), and

0 if G ∉
⋃

(0,V) ∈dom(4) �(0, -
V).

It is easy to check that 2 is a Borel map defined on - , while the � -invariance of the sets �(0, -V)

implies that 2 is a 2-coloring. �

Now we are ready to finish the proof of Theorem 3.1. Assume j� (� ) > 2. Then, by Lemma

3.7, there exists an approximation that is not -U+1-terminal. Clearly we can find such an 00 with

=00 = 0. By applying Lemma 3.6 recursively, we obtain one-step extensions 0=+1 of 0= that are not

-U-terminal, with =0= = =. Define 1 = (2, 3 ) =
⋃

= 1
0= , q : X2 → N

N, and k : L1 → N
N

by letting q(<, :, A) =
⋃

=≥< q
0= (c2 ,= (<, :, A)) and, for (<8 , :8 , A8)8<2 ∈ L1 , k((<8 , :8 , A8)8<2) =⋃

=≥<0 ,<1
k0= ((c2 ,= (<8 , :8 , A8))8<2). It follows from the fact that 0=+1 one-step extends 0= (using

conditions (d) (e), and the fact that c2,=,=′ ◦ c2,=′ ↾ dom(c2,=) = c2,=) that q and k are well-defined.

Now we check that q- ◦ q is a continuous homomorphism from L1 to � . The continuity of this

mapping is clear from its definition; we check that it is a homomorphism. To this end, let (G0, G1) ∈ L1

with G8 = (=8 , :8 , A8), for 8 < 2. We claim that

(q� ◦ k) (G0, G1) = ((q- ◦ q) (G0), (q- ◦ q) (G1)), (3.2)

which is clearly sufficient, as the left side is an element of � . We show that if * and + are open

neighborhoods of (q� ◦ k) (G0, G1) and ((q- ◦ q) (G0), (q- ◦ q) (G1)), then* ∩+ ≠ ∅.

By the definition of L1 , we have that (c2,= (G8))8<2 ∈ !1,= for every = ≥ max(=0, =1). Thus,

using the continuity of q, k, q� and q- , we can find an = ≥ max(=0, =1) so large that * ⊇

q� ([k0= ((c2,= (G8))8<2)]) and + ⊇ q- ([k
0= ◦ c2,= (G0)]) × q- ([q

0= ◦ c2,= (G1)]).

Let W be a configuration compatible with 0=. Then, by (3.1), we have that

(q� ◦ kW) ((c2,= (G8))8<2) = ((q- ◦ qW) (c2,= (G0)), (q- ◦ qW) (c2,= (G1)). (3.3)

It then follows from the compatibility of W and 0= that

((q- ◦ qW) (c2,= (G0)), (q- ◦ qW) (c2,= (G1))) ∈ q- ([q
0= ◦ c2,= (G0)]) × q- ([q

0= ◦ c2,= (G1)]) ⊆ +

and

q� ◦ kW ((c2,= (G8))8<2) ∈ q� ([k0= ((c2,= (G8))8<2)]) ⊆ *,

which together with (3.3) implies* ∩+ ≠ ∅, finishing the proof of Theorem 3.1. �

4. Large gaps

In this section, we complete the proof of Theorem 1.1 and prove Theorem 1.2. Note that graphs (rather

than digraphs) will be considered. Let ! be a graph on the space - , and assume that � ⊂ - . The

minimal cardinality of an ! ↾ - \ �-component will be denoted by mgs(�).

We start with an easy observation.

Claim 4.1. Let ! be a ≤ 2-regular acyclic Borel graph on a standard Borel space - that has the large

gap property. Then there exists an increasing sequence (�=)=∈N of Borel subsets of - such that
⋃

=∈N �=

is !-invariant, �! ↾ - \
⋃

=∈N �= is smooth, for every = ∈ N the ! ↾ �=-components are finite, and

mgs(�=) → ∞ as =→ ∞.

https://doi.org/10.1017/fms.2020.58 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.58


Forum of Mathematics, Sigma 11

Proof. Let � be a Borel set witnessing the large gap property for !. The graph ! restricted to an

!-component is an infinite, connected ≤ 2-regular graph that can be partitioned into disjoint ! ↾ - \ �-

components. Let (0 be the union of those !-components

◦ That contain an infinite ! ↾ - \ �-component, or

◦ For which the lim sup of the cardinality of the ! ↾ - \�-components is finite in one of the directions.

It follows from the choice of � that (0 is Borel and �! ↾ (0 is smooth. Let

�= = � ∪ {G ∈ - \ (0 : the ! ↾ - \ �-component of G has size < =}.

Clearly the sets �= are increasing, - \ (0 =
⋃

=∈N �= and mgs(�=) ≥ =. Finally, note that if the ! ↾ �=-

component of G is infinite, then the cardinality of the ! ↾ - \ �-components would be bounded by = in

some of the directions in the !-connected component of G: that is, G ∈ (0. �

The next proposition is the essence of the argument.

Proposition 4.2. Assume that 2 ∈ (2N + 1)N.

(1) Let ! be a ≤ 2-regular acyclic Borel graph on the standard Borel space - . Assume that (�=)=∈N
is an increasing sequence of Borel subsets of - with

⋃
=∈N �= = - and mgs(�=) → ∞, and for

every =, the ! ↾ �=-components are finite. Then ! ≤� L2 .

(2) If 20 ∈ (2N + 1)N and 20(=) → ∞, then L20 ≤2 L2 .

Our strategy is to inductively define sequences := ∈ N and q= : �:= → -2,= and appeal to Claim 2.4.

We start with the key lemma.

Lemma 4.3.

(1) Let � ⊆ �′ ⊆ - be Borel sets for which every component of ! ↾ � is finite, = be a natural number

for which mgs(�) > 2 · length(!2,=+1), and q be a Borel homomorphism from ! ↾ � to !2,=. Then

there exists a homomorphism q′ from ! ↾ �′ to !2,=+1 so that c2,=,=+1 ◦ q
′ ↾ � = q.

(2) Moreover, if ! = L20 , � = {(;, <, A) ∈ X20 : ; < :}, �′ = {(;, <, A) ∈ X20 : < < : ′} for : < : ′,

and q is continuous, then q′ can be taken to be continuous.

Proof. First we show (1). Note that the graph ! ↾ �′ is a disjoint union of finite walks. Fix a Borel

linear ordering < of - . We will define q′ so that the value q′(G) will only depend on

(a) The values of q on the ! ↾ �′-component of G, and

(b) The index of G in the unique enumeration (EG
8
)8≤<G of the ! ↾ �′-component of G with the property

that EG
0
< EG<G and ∀8 < <G , we have (EG

8
, EG

8+1
) ∈ ! .

Claim 4.4. For a connected component of ! ↾ �′, let (E8)8<< be the enumeration described in (b). There

exists a homomorphismk of ! ↾ {E0, . . . , E<} to !2,=+1 so that we have c2,=,=+1◦k ↾ {E0, . . . , E<}∩� =

q ↾ {E0, . . . , E<} ∩ �.

Proof of Claim 4.4. To see that such a homomorphism k exists, note that the set {E0, . . . , E<} de-

composes into connected components of ! ↾ � and walks connecting them: more precisely, there

are an odd number ; and a sequence 0 ≤ 80 < 81 < · · · < 8; ≤ < with the property that if

8 ∈ [0, 80) ∪ (81, 82) ∪ (83, 84) ∪ · · · ∪ (8; , <] (where the first and last intervals could be empty), then

E8 ∈ �
′ \ �, while for every even 9 < ;, {E8 9 , . . . , E8 9+1

} is an ! ↾ �-component.

Define k(E8) for 8 ∈ [80, . . . , 81] to be q(E8)
⌢ (0), and extend this to a homomorphism from

! ↾ {E0, . . . , E81 } to !2,=+1. Now, assume that k has been defined on {E8 : 8 ≤ 8 9 } for odd 9 < ; −1, with

c2,=,=+1 ◦k ↾ {E8 : 8 ≤ 8 9 } ∩ � = q ↾ {E8 : 8 ≤ 8 9 } ∩ � remaining true on these vertices. We will extend

k to {E8 : 8 ≤ 8 9+2}. Since c2,=,=+1 (k(E8 9 )) = q(E8 9 ) holds, k(E8 9 ) is of the form q(E8 9 )
⌢ (Y) for some

Y ∈ {0, 1}. Note that since mgs(�) > 2 · length(!2,=+1), we have that 8 9+1 − 8 9 > 2 · length(!2,=+1).
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If the parity of the distance between q(E8 9 ) and q(E8 9+1
) in !2,= is the same as the parity of 8 9+1 − 8 9 ,

then since 8 9+1 − 8 9 > 2 · length(!2,=+1) > length(!2,=), the map k extends to a homomorphism from

! ↾ {E0, . . . , E8 9+1
} to !2,=+1 with k(E8 9+1

) = q(E8 9+1
) ⌢ (Y). In this case, define k(E8) = q(E8)

⌢ (Y) if

8 ∈ [8 9+1, 8 9+2].

Otherwise, if the parity is different, using 8 9+1 − 8 9 > 2 · length(!2,=+1) again and the fact that the

distance of q(E8 9+1
) ⌢ (0) and q(E8 9+1

) ⌢ (1) is odd in !2,= (see (3) of Claim 2.2), we have that k can be

extended to a homomorphism from ! ↾ {E0, . . . , E8 9+1
} to !2,=+1 with k(E8 9+1

) = q(E8 9+1
) ⌢ (1 − Y). In

this case, define k(E8) = q(E8)
⌢ (1 − Y) if 8 ∈ [8 9+1, 8 9+2].

This inductive process yields a homomorphism from ! ↾ {E0, . . . , E8; } to !2,=+1 with c2,=,=+1 ◦ k ↾

{E0, . . . , E<} = q ↾ {E0, . . . , E8; }, and this, of course, can be extended to a homomorphism to the set

{E8; , . . . , E<} (which is disjoint from �). This finishes the proof of Claim 4.4. �

For a given <, there are only finitely many homomorphisms from the walk of length < to !2,=+1.

Fix an enumeration of those homomorphisms (k<
9
) 9<;< for each < ∈ N. Now, for G ∈ �′, let (EG

8
)8≤<G

be the enumeration described in (b), and let 9 G be the minimal index for which k<G

9G
satisfies Claim 4.4.

It is clear that the map G ↦→ k<G

9G
is Borel, as is the map q′(G) = k<G

9G
(G). Moreover, q′ depends only on

(a) and (b) and the requirements of the lemma. This finishes the proof of (1).

Now assume that the assumptions of (2) hold, and let < be the lexicographic ordering of L2 . It is

enough to check that the map q′, defined as in the first part, is a continuous mapping. For a given G,

q′(G) depends only on finitely many values. Hence, it suffices to show that if G= → G, then the values

determining q′(G=) converge to the values determining q′(G).

From the definition of L20 , it follows that a connected component of L20 ↾ �′ contains the points of

the form {(;, <, C⌢A) : ; < : ′, < ≤ 20 (;), C ∈ 2:′−;−1} for some A ∈ 2N. Moreover, if (;=
8
, <=

8
, C=

8
⌢
A=) →

(;8 , <8 , C8
⌢
A) for 8 < 2 with ;8 < :

′, then (;8 , <8 , C8
⌢
A)8<2 ∈ L2 iff (c20 ,:′−1(;8 , <8 , C8

⌢
A))8<2 ∈ !20 ,:′−1

iff (c20 ,:′−1(;
=
8
, <=

8
, C=

8
⌢
A=))8<2 ∈ !20 ,:′−1 for every large enough =. This and the fact that < is open

imply that if (E
G=
8
)8≤<G= and (EG

8
)8≤<G are the enumerations of L20 ↾ �′-components described in (b),

then <G= must stabilize to <G and E
G=
8

→ EG
8

for all 8 ≤ <G . Since � is clopen and q is continuous, we

get that q′(G=) = q
′(G) for every large enough =. �

Proof of Proposition 4.2. We define a sequence (:=, q=)=∈N inductively. For convenience, we will

assume that �0 = ∅. Choose :0 = 0. Then �:0
= ∅, q0 = ∅ and mgs(�:0

) = ℵ0 > 2 · length(!2,1). Now

assume that (q8 , :8)8≤= has already been defined with the properties that mgs(�:= ) > 2 · length(!2,=+1)

and q8 is a Borel homomorphism from ! ↾ �:8 to !2,8 . Choose :=+1 so large that mgs(�:=+1
) >

2 · length(!2,=+2). An application of (1) of Lemma 3.6 to �:= , �:=+1
, = and q= yields a homomorphism

q=+1 of ! ↾ �:=+1
to !2,=+1 so that c2,=,=+1 ◦ q=+1 ↾ �:= = q=. Thus, we obtain a sequence (:=, q=)=∈N

that satisfies the assumptions (1)–(3) of Claim 2.4, which finishes the proof of the first part.

Finally, a similar proof yields the second half: first, note that if � = {(;, <, A) ∈ X20 : ; < :},

then mgs(�) = min{2(8) + 1 : 8 ≥ :}. This and the assumption that 20 (=) → ∞ allow us to find the

sequence (�:= )=∈N and iterate (2) of Lemma 4.3. This yields a sequence (:=, q=)=∈N satisfying (1)–(4)

of Claim 2.4. �

Combining the preceding theorems, we obtain the following result, which, of course, implies

Theorem 1.1.

Theorem 4.5. Assume that � is an analytic graph on a Hausdorff space. Then exactly one of the

following holds.

(1) j� (�) ≤ 2: that is, � is Borel bipartite.

(2) L0 admits a continuous homomorphism to �.
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Proof. The fact that (1) and (2) are mutually exclusive follows from the observations that j� (L0) > 2

((7) of Claim 2.2) and L0 ≤2 � =⇒ j� (L0) ≤ j� (�).

Now assume that (1) is false. Recall that L0 = L20 , where 20 (0) = 1 and 20 (=) = 2= − 1. Then, by

Theorem 3.1, there exists an odd ℵ0-pair 1 = (2, 3) such that L1 ≤2 �. But then L2 ≤2 �, and using

(2) of Proposition 4.2, we obtain L0 ≤2 L2 ≤2 �. �

We conclude this section by proving:

Theorem 1.2. Suppose that - is a standard Borel space and ! is an acyclic Borel graph on - of vertex

degree at most two. Then the following are equivalent:

(1) There is a Borel homomorphism from ! to every Borel graph � of Borel chromatic number at least

three.

(2) The graph ! has the large gap property modulo a two-colorable set.

Proof. First, assume (2). Using Claim 4.1 together with (1) of 4.2, we obtain a sequence (�=)=∈N of

Borel sets and an !-invariant Borel set " such that ! ↾
⋃

= �= ≤� L0, �! ↾ - \ (" ∪
⋃

= �=) is

smooth, - \
⋃

= �= is !-invariant and j� (! ↾ ") ≤ 2. By Claim 2.3 and the invariance of " , we have

that j� (! ↾ - \
⋃

= �=) ≤ 2, so ! ↾ - \
⋃

= �= admits a Borel homomorphism to each non-empty

Borel graph. Putting together the Borel homomorphisms on the invariant sets - \
⋃

= �= and
⋃

= �=,

we obtain ! ≤� L0. Thus, by Theorem 4.5, ! admits a Borel homomorphism to each Borel graph with

Borel chromatic number > 2.

Now assume that ! ≤� L0, as witnessed by the Borel map q. Let " be the set from (2) of Claim

2.3, and let � ⊆ X0 witness that L0 has the large gap property ((8) of Claim 2.2). To show the theorem,

it is enough to check that ! ↾ - \ " has the large gap property. Letting �′ = (q ↾ - \ ")−1(�), it is

easy to see from the fact that q ↾ - \" maps !-components onto L0-components that �′ witnesses the

large gap property for ! ↾ - \ " . �

5. An antibasis result for digraphs

Finally, we show a slightly more general version of Theorem 1.3:

Theorem 5.1. Suppose that � is an analytic digraph on a Hausdorff space with j� (� ) > 2. Then

there is a sequence (!C )C ∈2N of Borel oriented graphs on Polish spaces such that for each C ∈ 2N, we

have !C ≤2 � and j� (!C ) > 2, and any analytic digraph on a Hausdorff space that admits a Borel

homomorphism to at least two oriented graphs of the form !C has a Borel two-coloring.

Let us start with some definitions. Assume that � is an acyclic oriented graph on a space - , and let

� ⊆ - . Using Claim 2.1, we can define the didistance set of � by letting �� (�) = {= ∈ Z : ∃G, H ∈

� didist� (G, H) = =}.

Lemma 5.2. Assume that ! is a ≤ 2-regular acyclic Borel oriented graph on the space - , 1 = (2, 3)

is an odd ℵ0-pair and L1 ≤� ! . Assume that � is a Borel �! -complete set. There exists a non-meager

Borel set � ⊆ X2 such that �L1 (�) ⊆ �! (�).

Proof. Let q be a Borel homomorphism from L1 to ! , and let " = {G ∈ X2 : q mapping [G]� →

[q(G)]�!
is not onto}. By Claim 2.3, we have j� (L1 ↾ ") ≤ 2. By the invariance of " and (7) of

Claim 2.2, it must be meager. Define � = q−1(�) \ "; we will check that � is non-meager. Note that,

as � is an �! -complete set, the set � is a �2 ↾ (X2 \")-complete. As [�]�2
⊇ X2 \" is comeager, it

follows from (6) of Claim 2.2 that � cannot be meager.

Finally, if G, H ∈ �, let ? = ((I0, . . . , I;), 3?) be an L1-walk with I0 = G and I; = H.

Then ?′ = ((q(I0), . . . , q(I;)), 3?) is an !-walk with dilength(?′) = dilength(?). It follows that

didistL1 (q(G), q(H)) ∈ �! (�). Thus �L1 (�) ⊆ �! (�). �
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To carry out our construction, we will impose a growth condition on the approximations to our graphs.

Assume that 1 = (2, 3) is an odd ℵ0-pair. We say that 1 has property (∗) if for every 8 ∈ N, we have

Σ(3 (8)) > 8 ·
∑

9<8

28− 9 · |Σ(3 ( 9)) |.

Lemma 5.3. Suppose that 1 = (2, 3) is an odd ℵ0-pair with property (∗). Then there exists a collection

(%C )C ∈2N of perfect subsets of X2 such that, for every C ≠ C ′, we have

(1) |�L1 (%C ) | = ℵ0.

(2) There exists an 80 ∈ N such that, for every :, : ′ ≥ 80, if : ∈ �L1 (%C ) and : ′ ∈ �L1 (%C′), then
:
:′

∉ [ 1
4
, 4].

(3) j� (L1 ↾ [%C ]�2
) = 3.

Proof. Let ( ⊆ 2N be a perfect almost disjoint family of infinite sets (identifying 2N with P(N)). Of

course (using a bijection between ( and 2N), it is enough to construct a family indexed by the elements

of (.

For C ∈ (, let

%C = {(=, :, A) ∈ X2 : = = : = 0,∀8 ∈ N (C (8) = 0 =⇒ A (8) = 0)}.

Claim. Assume that G ≠ H ∈ %C and G�2H. Let G = (0, 0, A G) and H = (0, 0, A H), and let 8 ∈ N

be maximal with A G (8) ≠ A H (8) (such an 8 exists since G�2H). Then C (8) = 1 and | didistL1 (G, H) | ∈

[
Σ (3 (8))

2
, 2 · Σ(3 (8))].

Proof. It is obvious from the definition of %C that C (8) = 1.

Moreover, it follows from the definition of L1 and the choice of 8 that didistL1 (G, H) =

didist!1,8 (c2,8 (G), c2,8 (H)), so it is enough to give an estimate of the latter. Since A G (8) ≠ A H (8), c2,8 (G)

and c2,8 (H) are in different copies of !1,8−1 in !1,8 . But then

Σ(3 (8)) − | dilength(!1,8−1) |) ≤ | didist(c2,8 (G), c2,8 (H)) | ≤ Σ(3 (8)) + | dilength(!1,8−1) |.

So, by an easy induction, we have

Σ(3 (8)) −
∑

9<8

28− 9 · Σ(3 ( 9)) ≤ | didist(c2,8 (G), c2,8 (H)) | ≤ Σ(3 (8)) +
∑

9<8

28− 9 · Σ(3 ( 9)),

which implies our statement, by (∗). �

The claim clearly implies property (1).

Assume that C ≠ C ′ are given. By the choice of (, there exists an 8∗
0
∈ N such that C ∩ C ′ ⊆ 8∗

0
. Let

80 =
Σ (3 (8∗

0
))

2
, and assume that :, : ′ ≥ 80, with : ∈ �L1 (%C ), :

′ ∈ �L1 (%C′). The choice of 8∗
0

and 80,

together with the claim and (∗), yields that : ∈ [
Σ (3 (8))

2
, 2 · Σ(3 (8))] and : ′ ∈ [

Σ (3 (8′))
2

, 2 · Σ(3 (8′))]

with 8 ≠ 8′. But then :
:′

∉ [ 1
4
, 4] follows from (∗), showing (2).

Finally, a Baire category argument analogous to the one in the proof of (7) of Claim 2.2 yields that

(3) holds for each C ∈ (. �

Lemma 5.4. Assume that 1∗ = (2∗, 3∗) is an odd ℵ0-pair with property (∗), and � ⊆ X2∗ is a Borel set

so that the set [�]�2∗
is comeager. Then there exists an 81 ∈ N such that, for every 8 > 81, we have that

�L1∗ (�) ∩ [
Σ (3∗ (8))

2
, 2 · Σ(3∗(8))] ≠ ∅.

Proof. By our assumption on � and (6) of Claim 2.2, we can find an 81 and a non-empty basic open set

of the form [(81, :, f)] in which � is comeager. Let 8 > 81. By shrinking � with the �2∗ -saturation of

the meager set [(8, :, f)] \� (which is also a meager set), we can assume that [(8−1, :, f)] ∩� = [(8−
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1, :, f)]∩[�]�2∗
. In particular, we can find an A ∈ 2N so that (8−1, :, f⌢(0)⌢A), (8−1, :, f⌢(1)⌢A) ∈ �.

Let G = (8 − 1, :, f ⌢ (0) ⌢ A) and H = (8 − 1, :, f ⌢ (1) ⌢ A).

Again, it is clear that didistL1∗ (G, H) = didist!1∗ ,8 (c2,8 (G), c2,8 (H)). Moreover, c2,8 (G) and c2,8 (H)

are in different copies of !1∗ ,8−1 in !1∗ ,8 . So

Σ(3∗(8)) −
∑

9<8

28− 9 · Σ(3∗( 9)) ≤ | didist(c2,8 (G), c2,8 (H)) | ≤ Σ(3∗(8)) +
∑

9<8

28− 9 · Σ(3∗( 9)),

which implies our statement, by (∗). �

Proof of Theorem 5.1. By Theorem 3.1, without loss of generality, we can assume that � = L1 for

some odd ℵ0-pair 1 = (2, 3) with property (∗). Now, using Lemma 5.3, we obtain a family (%C )C ∈2N

of perfect subsets of X2 having properties (1)–(3). For each C ∈ 2N, let !C = L1 ↾ [%C ]�2
. We show

that (!C )C ∈2N satisfies the requirements of the theorem. The condition on the Borel chromatic numbers

is clear from (3) of Lemma 5.3.

Let C, C ′ ∈ 2N be distinct. Assume that � ≤� !C , !C′ with j� (�) = 3. Then, by Theorem 3.1,

we can assume that � = L1∗ and 1∗ has property (∗). As %C and %C′ are �!C
- and �!C′

-complete

sets, using Lemma 5.2, we obtain non-meager Borel sets �, �′ in X2∗ with �L1∗ (�) ⊆ �!C (%C ) and

�L1∗ (�′) ⊆ �!C′ (%C′). Let 8 > 80, 81, 8
′
1
, where 80 comes from (2) of Lemma 5.3, while 81, 8

′
1

are obtained

from applying Lemma 5.4 to � and �′.

By Lemma 5.4, we can find : ∈ �L1∗ (�) ∩ [
Σ (3∗ (8))

2
, 2 · Σ(3∗(8)))], : ′ ∈ �L1∗ (�′) ∩ [

Σ (3∗ (8))
2

, 2 ·

Σ(3∗(8))]. But then :
:′

∈ [ 1
4
, 4], which contradicts : ∈ �!C (%C ), :

′ ∈ �!C′ (%C′) and (2) of

Lemma 5.3. �

6. Open problems

We conclude with a number of open problems. First, it is not clear how Theorem 1.2 can be generalized

to arbitrary Borel graphs.

Problem 6.1. Characterize the Borel graphs with Borel chromatic number 3 that admit a Borel homo-

morphism to each Borel graph � with j� (�) > 2 (or, equivalently, those that are ≤� L0).

The product of graphs � on - and � ′ on - ′ is the graph on - × - ′ given by ((G, G ′), (H, H′)) ∈

� × � ′ ⇐⇒ (G, H) ∈ � and (G ′, H′) ∈ � ′. The Borel version of Hedetniemi’s conjecture reads as

follows: is j� (� × � ′) = min{j� (�), j� (�
′)}?

Theorem 1.1 implies that the answer is affirmative when min{j� (�), j� (�
′)} ≤ 3. El-Zahar and

Sauer [9] showed that, for finite graphs, the bound 4 already implies an affirmative answer. Hence the

following problem is quite natural.

Problem 6.2. Assume that �,� ′ are Borel graphs on standard Borel spaces and

min{j� (�), j� (�
′)} ≤ 4. Is j� (� × � ′) = min{j� (�), j� (�

′)}?

A recent breakthrough result of Shitov [24] ensures that the answer is negative in general; there is a

counterexample for finite graphs.

The G0 dichotomy, the results in [25] and the current paper give a complete description of the

existence of simple bases for Borel graphs with a given Borel chromatic number. However, the natural

reformulation of the notion of chromatic numbers in terms of homomorphisms raises the following

problem:

Problem 6.3. Characterize the Borel graphs� so that the collection {� : � is a Borel graph, � �� �}

has a single element basis.

It is conceivable that such a characterization is impossible due to a complexity barrier.

https://doi.org/10.1017/fms.2020.58 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.58


16 Raphaël Carroy et al.

Babai’s celebrated results [1] suggest that, among finite graphs, the isomorphism relation is simpler

than the homomorphism relation. It would be interesting to know the answer to the analogous question

for Borel graphs.

Problem 6.4. Determine the projective complexity of the isomorphism relation for Borel graphs on

Polish spaces.
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