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Recently several authors have studied dualizing Goldie dimension of a module:
spanning dimension in [2], codimension in [13], corank in [16] and also [9,17,12, 5,11, 6,
4, 7] ([13] may be read in comparison with the others). In the present note we prove the
equality corank RP = corank SS, where P is a quasi-projective left R-module and S is its
endomorphism ring. This result is an answer to the question [12, p. 1898] and an extension
of [3, Corollary 4.3] which shows the above equality for a S-quasi-projective left
ft-module P.

Throughout what follows R denotes an associative ring with identity and RP, RM left
/^-modules. Let S be the endomorphism ring of RP. Then P is an (/?,5)-bimodule:
P = RPS, P* •= Horn R(P, M) is a left 5-module and

P*(A):={f sP*\Pf<=A}

is a submodule of SP* for a submodule RA of RM. For the definitions and properties we
refer to [13] on coindependency of a set of submodules (which accords with meet-
independency in [3]), to [16] on corank of a module and to [10] on a S-quasi-projective

n-\

module. A set 5^of proper submodules of M is said to be coindependent if O A, + A,, =
i=\

M for any finite subset {Al,A2,...,A,,} of Sf with n §2. Every single-element set is
coindependent. We say corank RM = n, a positive integer, if there exists an epimorphism
from M to a direct product of n nonzero modules but there is no epimorphism from M to
one of n + 1 nonzero modules. Then corank RM = n if and only if there exists a
coindependent set of n proper submodules of M but there is no coindependent set of
n + 1 proper ones. A module M is said to be l.-quasi-projective if the direct sum of any
number of copies of M is quasi-projective. It is said that P (finitely) generates M, or M is
{finitely) P-accessible, if M is a homomorphic image of a (finite) direct sum of copies of P.
It is also said that P is finitely M-projective if for every homomorphism /of P into N and
every epimorphism h of M onto N, with N an arbitrary finitely cogenerated left
/?-module, there exists a homomorphism g in P* such that gh =/(see [15]).

As the first half of our preparation we borrow the following from [3, Theorem 4.2i)].
PROPOSITION 1. // P is quasi-projective and P finitely generates M, then corank SP* ^

corank RM.

Proof. See [3, p. 104] or [1, Section 4].

The second half of our preparation is a continuation of [14] and [15].

LEMMA 2. Let P be finitely M-projective and let {BX,B2,.. • ,B,,} be a coindependent
set of proper submodules of M such that each MIB, is finitely cogenerated. Then for any
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f\,fi,- • • ,fn in f* there exists a homomorphism g in P* such that g —fi belongs to P*(Bj)
for each i.

_ n

Proof. Set M := 0 M/6, and define homomorphisms/, h as follows:
/i

h:M-+M, xh = (x+Bi) (x e M).

Then coindependency £, + (~) Bt•. = M implies that h is an epimorphism. Since M is finitely

cogenerated and P is finitely M-projective, there exists a homomorphism g in P* such that
gh =/. Thus we have P(g -f) <= ZJ, for each i.

PROPOSITION 3. / / P is finitely M-projective and P generates M, then corank RM ^
corank SP*.

Proof. Assume that {AUA2, •.., An} is a coindependent set of proper submodules of
M. Then it is easily deduced from [8, Lemma 1.1], or proved directly that there exist
proper submodules Bh A,<=Bh of M such that each M/B, is finitely cogenerated.
Evidently {BUB2, •. • ,Bn} is a coindependent set. Since 6, is proper in M = PP*, we
know that each SP*(5,-) is a proper submodule of SP*. Let / be in P*. Then Lemma 2
implies that for each i there exists a homomorphism g in P* such that

g-feP'iB,) and g - 0 E P*{BS)

Thus />*(#,)+ ("I P*(Bj) = P* for each i and hence {P^B^), P*(B2),.. . , P*(Bn)} is a

coindependent set of proper submodules of P*. This gives the conclusion.

COROLLARY 4 ([3, Theorem 4.2ii)]). If P is 1,-quasi-projective and P generates M, then
corank RM ^ corank SP*.

Proof. This is clear since every 2-quasi-projective module that generates M is
M-projective.

Combining Propositions 1 and 3, we have the following.

THEOREM 5. / / P is quasi-projective and P finitely generates M, then corank RM =
corank SP*.

COROLLARY 6. If P is quasi-projective, then corank RP = corank SS.
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