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Basal-flow characteristics of a linear rnedium. sliding 
frictionless over sm.all bedrock undulations 
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ABSTRACT. The basal defo rma tion of a g ravity-drive n linear creeping fl ow sliding 
fri ctionless over slowly varying bed undul ati ons in two dimensions is a nalysed a n a ly t
ica lly, using results from second-order perturbation theory. One of the key res ults is tha t, 
close to sinuso ida l bedrock undula tions, up to two differenL spati a l regions orJocal extru
sion flow m ay a rise. The ofTse t a nd onse t of ex trusio n Oow is controlled primaril y by the 
a mplitude-to-wavelength ra ti o. Above the crest o f a sinusoidal bed lin e, a local maximum 
of the surface-pa ra llel velocity develops for c : = ak < 0.1 38, where a is the a mplitude a nd 
k is the wave n umber. As c increases from ze ro to t hi s crit ical va l ue, the ve rtical position of 
the velocity maximum moves from kz = 1 to kz ~ 1.98, where z is the ve rtica l di sta nce 
a bove the mean bed line. Within and above the troug h of a sinusoid , a region of local 
minimum of the surface-para ll e l velocity compo nent develops, which shifts from kz = 1 
towards the bed line as c increases from zero to!. Below thi s \"C locity minimum, a nd fo r 
some di sta nce a bove the velocity maximum, the surface-para ll el veloc it y increases with 
depth. This typ e o f extrusion fl ow will cau e a reve rsal of borehol e-inclina ti on profiles 
c lose to the bedrock. 

INTRODUCTION 

M ost of the intern a l deform a tio n o f g laciers ta kes pl ace in a 
rel a tively narrow region close to the base. One must, in gen
e ra l, expec t sm a ll loca l bedrock undulati ons, which pro
trucle into the ice, to a fTec t the basal 0011' a nd poss ibly to 
cause a fl ow pattern considerabl y different from the one pre
di cted by the well-known pla ne-sla b solution. Kn owledge of 
the fl ow perturba ti ons associa ted with bedrock undulations 
is, a mong other things, importa nt fo r the interpreta tion 0 [" 

s lo pe measurem e nts in ice, a nd beca use of their possible 
effect on ice stra tig raphy. 

This paper de\"Clops a n a na ly ti cal solution fo r a highl y 
v iscous medium fl owing over a perfec tly lubricatcd sinuso i
da l bed a nd a na lyses its properti es. A numeri ca l treatmcnt 
o f the problem fo r high roughness \ 'a lues, where the rough
ness r is defin ed as the rati o o f th e bed 's amplitude a to its 
wave length A (T : = a/ A) a nd using Glen's fl ow law, is the 
subj ec t of a furth e r paper (Gudmundsson, 1997). 

p 

Pa 

Poc 
l ' 

s(c .8. n) 

Vi 

fv 

~rea n norm a l pressure 
Atmospheric press ure 
O ve rburde n press ure 
Roughness; T : = a/ A 
Sliding func tio n: 

s(c. 8, 17) : = c//+1 kUb(c . 8. n) / (2 AT,,n) 
Basa l sliding \'elocity 
Non-dimen sio na l sliding veloc ity, 

U" = ATb" AU" 
Surface \'eloc ity 

The loca l m ax imum of v.r a t k.T = 7r/ 2 

The saddle po i III of V.r at kx = 7r / 2 

The local minimum of ur a t kx = 37r/ 2 

Scaled \'e lociti es, defin ed as 

(\Ix , Vz ) : = (V l' VJhLi, 
Components o f the \'elociry vec to r 

'Ch: = AI A* = k./It 
Space coordi nates 
Scaled coordin ates; (X. Z) = k( ~r, z) 

:r , y, z 
X , Z 
Zcri l 

Zo 

The Z coord i na te of u saclcl lp a nd U~'~IX at c = c tTil 
rr/2 ,,/2 ,,/2 

NOTATION 

All , Morl a nd's A para me ter, defin ed through 
Equa ti on (18) 

CL Amplitude ofa sinuso ida l wme 
Co C la usius C lapey ron consta nt 
9 Accel era tion ofgra\'it y 
h Mean g lac ier thickn ess 

k ''\law' number 
k. Contro lling wave number, defin ed by 

Equ ation (17) 
J( Thermal conductivity 
L L atent heat of fu sion per unit volume of ice 
N Set of intege rs 

0' 

(3(x ) 
(3J 
8 
8ij 
Ell 

f " I) 

Vertica l p ositio n of glacier bed 
Mean surface slope 

Loca l bedrock slope; tan (3 (x ) = dzo(x) / d:1.' 
(31: = il/ / (ii} + 1) 
Thinness pa ra meter; 8: = (kh )- ' 
Kronccker d elta 
Second inva ri a nt of the stra in-ra te tensor; 

. I " 
f it : = 2 EijEij 

Components o f strain-rate te nso r 

EfTec ti\ 'e st ra in rate' f. . = ~ , . V 2 t ij t ;j 

Loca l bed-slope parameter, c : = ak 
Fo r c < ccr il V (::r z) has a sta ti o nar)' point rr/2' .r , ' 

somewhere a long the vertica l line k:r; = 7r/2 
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c:crit 
3rr/ 2 

SzifJixes 
I 
B 
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Fa r 10 < C:~~/2' V.r(x, z) has a stati ona ry point 
somewhere along the vertical I i ne kx = 37'1/ 2 

Viscosity 
vVavelength 
Tra nsition \I'a\'e!eng th 
Specific density 
Second deviatoric stress inva ri ant; 

I 1 / I 

(TIT: = 2aijaij 
Components of the stress tensor 
Components of the devi atoric stress tensor; 

' I e a ij : = aij - 3Uija kk 

Effective stress; T : = Frr 
Driving stress; Tb : = prgh sin a 

Properties of ice 
Properti es of bed rock 
Basal properti es 

Dimensional quantities a re usuall y in lower-case letters 
and non-dimensional quantiti es are in capita l le tters. 

PREVIOUS WORK 

Theoretica l treatment of flow over undulating bed is diffi
cult and o nl y a few analytical solutions ex ist (Nye, 1969, 
1970; K amb, 1970; Morla nd , 1976a, b; Fowler, 1979, 1981). 
These soluti ons often apply to somewhat idealized condi
tions at the glacier bed but nevertheless give a va luable in
sight into the nature of the fl ow. Numerical work has so far 
been limited to a few cases (M eyssonnier, 1983; Schweizer, 
1989; Schweizer and Iken, 1992; R aymond, unpublished). 

Nye (1969) and Kamb (1970) found an approximate solu
tion for a highly viscous Newtoni a n fluid sliding over a per
fec tl y lubri cated bed. They used a perturba tio n approach 
a nd ca lcul a ted the flo w fi e ld to fir st orde r in 10 : = ak, 
where the vertical position of the bed line is given by Zo = 
a sin kx . 

Ignoring the effec t of regelation and assuming no tan
genti a l trac ti on, the bound a r y condi tions a long th e bed 
line are 

z 

h 

a nd 

d zo -vx -
d 

+ V z = 0, on 
x 

Z= Zo, (1) 

axz =~(aTX- azz)tan2f3(x), on Z=Zo, (2) 

where tan f3( x) : = dZQ (x) / dx. The problem is depic ted in 
Fig ure I and the vari ables have been defined above under 
Nota tion. 

The fi eld perturbations are to fir st order (Nye, 1969; 
K a mb, 1970): 

vx(x, z) = U b + 'ubak2ze-kz sin kx + 0(102
) , (3a) 

Vz(x, Z) = Ubk (l + kz)e-kza cos kx + 0(102
) , (3b) 

p(x , Z) = Poc + 27]Ub k2e-kza cos kx + 0(102
) , (3c) 

a~x(x,z) = -a~z = 27]Uhk3ze-kza cos kx + 0(102
) , (3d) 

axz(x, z) = - 27]ubk3ze-kza sin kx + 0(102) , (3e) 

T(X,Z) = 27]Ubak3ze-kz = 2Tb'::ekz + 0 (102) , (3f) 
a 

where T : = \ ~, which is sometimes called the ellec tive 
stress, Pco is the ~ressure applied a t the upper bounda ry of 
the medium, (T'ij a re the components o f the stress tensor and 
a:j a re the components of the devia LOric stress tensor. The 
drivi ng forcc of the motion is a constant shea r stress ap
plied at the upper boundary. The basal sliding velocit y, Ub, 
is given by 

Tb 
Ub=~k3' 17a 

(4) 

where 7] is the viscosity of the ice, and Tb the dri ving stress. 
Expressions (3a )-(3f) di splay some interesting features. 

One of them is the fact that T , in Equation (3f), shows no 
dep endence on x . This will of course a lso apply to the sec
ond invari ant of the strain-rate tensor. Another interesting 
feature of the linear solutions give n above is the occurrence 
of extrusion flow, which is here defin ed as an increase of the 
horizonta l flow- veloc ity compone nt with depth. At the 
p oint kx = 37'1/ 2 + 27rl where 1 E N, where N is the set of 
integers and z = Zmill : = I / k, Vx has a local minimum: 

~ 9 ~ 

x 

Fig. 1. Flow over a sinusoidal bed. The coordinate system makes the angle et with respect to the horizontaL. The vertical position of 
the bed line Zo, is Zo = a sin kx. The sine wave has the wavelength), = 27'1/ k and amplitude a. The sUljace velocity is denoted 
by 'Us and the sliding velocity by Ub. h is the glacier thickness. 
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Vmin : = v.,. (x = 37f, Z = -k1) = Ub (1 _ ak) . (5) 
2k - e 

From Z = Zmin downwards to the bed the horizonta l velocity 
increases. Note th at, since ak « 1, it follows that Zmin » a. 

Extrusion fl ow, a term introduced by Demorest (1941, 
1942), has been a subj ect of some deba te in the glacio logical 
li te ra ture. On theor eti cal grounds, it can easily be shown 
th at a global extrusion fl ow, tha t is a n increase of the hori
zonta l velocity with depth througho ut an entire g lacier, is 
im possible since the overl ying mass ""ill then experience a 
fo rce in the ma in direction of Dow, which is not co unter
ba la nced by any other force, leading to an accelera ting ve
locity (Nye, 1952). There are, on th e o ther hand , cla ims of 
ex trusion fl ow hav ing been direc tl y observed by bo rehole 
deformation measu rements (H ooke a nd others, 1987) a nd 
by ob erva ti ons within subglacia l caves close to t he bed
rock interface (Caro l, 1947). Extrusive fl ow has a lso been 
obse rved within subglacia l sedim e nts (Blake a nd o th e rs, 
1992). Arguments supporting (global) ex trusion fl ow based 
o n m ass -ba la nce m easurements h ave a lso bee n g ive n 
(StreifT-Becker, 19:)8; Seligman, 1947). 

.Morland (1976a) derived second-o rder solutions fo r fl ow 
over bedrock undula ti ons using bo und a ry conditio n s (I) 
a nd (2), a nd calc ula ted ex plicit solutions va lid a long the 
bed li ne of a sinusoida l bed. Solu t io ns based on hi s work, 
which a re va lid for the half-space above the bed, are g iven 
below a nd discussed. 

M eyssonnier (1983) and Schweize r (1989) did FE calcu
la tions of fl ow ove r a sinusoidal bed . M eyssonnier obta ined, 
in some of hi s nume ri cal calcula tions, a point of maximum 
rel a tive hori zonta l velocity that was situ ated above th e p eak 
of the sine wave, a nd some of Schweizer 's calcu lati ons show 
a po int of rela ti ve h o ri zo ntal ve loc ity minimum sit u a ted 
a bove the trough of th e sine wave. 

SECOND-ORDER SOLUTIONS FOR A GRAVITY
DRIVEN FLOW 

M orla nd (1976a ) incorporated grav ity as the driving force 
of the moti on a nd calcul atedlerm s to second ord e r in c. 

Fo r the spec ia l case of a sinusoidal bed , he gaw expressions 
valid for the pressure fi eld and for th e ve locity components 
a long the bed line, i. e. a t Z = O. Using M o rl and's results, one 
can ca lculate the velocity and the stress fi eld a functi ons of 
X a nd z, onl y so mewh a t labori ou s wo rk is invo lved. All 
equa tions in thi s sec tion foll ow from M o rl and (1976a). 

The basal sliding velocit y Ub is 

Cudmundsson: B asaljlow charaeteTisties if a linear medium 

Tb (iiP+ 1) 
Ub=--

'r}c 2k w2 

=~ (~ +~ k) 
'r}c 2 k k. k. 

(6) 

where the controlling wave number k. is defined by Equ a
ti on (17), and iiJ is defin ed as iiJ : = k./ k. Ta ble 1 compa res 
the no ta tion that is used here with the n o ta ti on of sever a l 
othe r a uthors. 

If k/ k. « 1, the effects of rege lati on a re negligibl e a nd 
the basal sliding velocity is given by 

Tb 
Ub =--. 

T} kc2 (7) 

On th e o ther hand, if k/ k. » 1, which is th e pure rege lation 
limi t, 

Tb k 
Ub =---? ' 

T}c 2 k. -
(8) 

Ub h as a minimum a t k = k •. For a g iven am pli tude-to 
wave le ng th rati o the la rgest part of the drag is contr ibuted 
by th e Fouri cr compo ne l1ls of the bed w ith wavelen gth s 
a ro und A., where A. = 27f/k. is give n by Eq uati on (15) 
(Nye, 1969). Note that 

wh ere 

Tb 
Ub(31 = - 2k' T}c . 

iiJ2 
(31 : = -_-? - . 

w- + 1 

(9) 

(10) 

Equ a ti o n (9) is a useful rela ti on that can b e used to eli m ina te 
the sliding velocity from the foll owing equ a tions. 

Th e velocity fi eld is given by 

v;(x, z) = 1ib + 1';:1 [1 _ (1 _ ~) 2] 

+ Ub f31 kze- kz (sin kx - AI" cos kx) 10 

+ Ub (31e-2kz(eos 2 kx + Alii sin 2 kx) (1- k;) 10
2 

+ 0 (c3
) , (l1a) 

and 

vz(x , z) = ubf31e-kz (eos kx + A 111 sin kx)(l +kz)c 

+~ubf31 kzc-2kZ (sin 2kx - Am cos2kx)c2 

(l1b ) 

whe re Am is defin ed th ro ugh Equatio n (18), and h is th e 
mean g lac ier thickness. 

Table /. Notation used here and that used by several different allthors. k. is the controlling wave number and A. the transition 
wavelength, A. = 27f/k., with k. = J L/2T}Co (1(r + K B)' l ' = a/ A is the single wavelengtlz roughness and 10 : = 
ak = 27fT is the (local bed) slo/Je l1 umbel: L is the latent heat ciffllsion !JeT unit volume of ice 

Thisfiofier . \i'e (1969, 1970) Komb (1970) Lfibolllc)' (1987) M orlalld (19760) 

k, k. lu w. 1/ ~. 
A, 2r./ k' AO 2r./w. 2r. A, 
L L H pL L 
k k h w k 
7' -/2T ( E/2r. 
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J ounzaL qfGLacioLogy 

For th e sp ecial case of z = 0, Equations (I la ) and (11 b) 
reduce ro solut ions for the velocity fi eld along the bed line 
g iven earli er by Morland (1976 a ). Note tha t for z = 0 the 
first-order term in Equati on (l la ) yani shes. 

Equa tions (11a ) and (llb ) lead to the fo llow ing ex pres
sions for the strain rates: 

(Cl = Ub /31 zk2e -b (cos kx + Am sin /.,;x) c 

+ 'lll, /31 ke-2b (sin 2 kx - Alii cos 2 kx) (kz - ~) c2 

+ O(e3
) , (12a) 

a nd 

E. f z = ~ (1 - ~) a2 k3ub 

+ Ub /31 zk2e-kz (AIlI cos kx - sin kx) e 

+ UI> /31 ke-2kZ (kz - ~) (COS 2 kx + Am s in 2 kx) c2 

+ O(e3
) . (12b) 

The second inva riant of the strain-rate tenso r is then found 
to be 

En2 = ±(1 -~ra.J kGUb2 
+ Ub 

2
/31 (1 -~) (A m cos kx - sin kx)zk5a2e-k

: c 

+ UI} /312 (A 1I12 + 1) z2k.J e-2kz c2 

+ '[lI,2 /31 (1 -~) (kz -~) 
. (Am sin 2kx+ cos 2kx)a2kC1e-2I.:zc2 

+ Ub 
2 /312 (Am2 + 1) (2 kz - 1) sin kx zk3 e- 3 

kz c3 

+Ub 2 /312 (kz -~) 2 (Am 2 + 1)k2c- 1b e ' l 

+ O(e6
) . (13) 

Equ ation (17) shows tha t, to second order, Ell depends on 
both x a nd z a nd not on ly on z as is the case in the firsl
order Nye/K a mb solutio n. 

Finall y, the pressure di stribution is given by 

p(x,z) = p" + pg cos 0' (1 -~) 
+ 2Uh /31 7)ke -J.:z( cos kx + Am sin kx)e 

+ Ub /31 7)kc-2kZ(sin 2 kx - AIJl cos 2 kx) c2 

+ O(e3
) . (14) 

T hese expressions can be used to calcu late the flow and the 
sli ding velocity for a genera l b ed geometry as long as c « 1. 

The effect of regelation on the flow field 

Regclation is only important a t waveleng ths comparable to 
or smalle r tha n the tra nsitio n waveleng th A. (\ Veertman, 
1957, 1964, 1979; Nye, 1969; K a mb, 1970), whe re 

87r27) Co (EL + KB) 
A. = (15) 

L 
and where KI and K o a rc thc thermal conductiviti es oUhe 
ice a nd bed, respec ti\·ely. 

Two p a ra meters (ill a nd Am ) enter the fl ow solutions 
(Equations (l la ) and (lI b)) tha t describe the relative impor
tance of regelati on to viscous fl ow ( ~ Io rland , 1976a). ill is the 
rati o of th e bed waveleng th to the transiti on wavelength, i. e. 

(A)2 (k) 2 L 
ill

2
:= ">:. = ; = 2k2 7) Co(K 1 + K B ) ' 

(16) 

where k. is the controll ing w ave number, g ivc n by 

74 

(17) 

I n the no-regelation li mit (3) = 1 (/31 is defi ned by Equation 
(10)) and in the pure-regelation lim.it /31 = O. Am is given by 
( 10rland, 1976a ) 

(KI + KB) eos(O') p 9 Co + 2 Q Am =~~--~~~~~~~--~ 
LUb 

= a2
k

3
7) (Co (.K! + K B ) cot(O') + 2Q) . 

L h Tb 
(18) 

The effect of freez ing and melti ng on the Oow fi eld is negli
g ible if Am « 1 a nd that is a lmost a lways the ca se (Mo r
la nd, 1976a ), which is the reason fo r ignoring the eflec t of 
rcgelation on th e flow fi eld in the fo llowing d iscu ssion of 
t he properties of Equations (l la ) a nd (li b). 

Dimensionless form of the flow solutions 

For the fo llowin g di scussion, it is of a dvantage to rcscale the 
dimensional qu antit ies and to p ut the equations in a d imen
sionless form . 10 thi end, d ime nsio nless vert ica l a nd hori
zonta l length sca les, denoted by capital lctters, are defined 
by 

X: = kx and Z := kz, (19) 

where the wave number k is used as a scaling fac tor. T he 
velocity fi eld is scaled by the sliding velocity, so t ha t 

~\"" : = V.
T and V}, : = Vy . (20) 

Ub Ub 

The dimensionless pa rameters which enter the problem are 
the slope pa r a m eter c and the thinness param e te r {j : = 

(kh rl . Regelation will be ignored so that the following dis
c ussion is only va lid for A » A •. 

Using the above-defin ed scalings, the velocity fi eld is 
? 

Vx(X , Z) = 1 + ~~ (1 - (1 - 8Z)2 ) 

+ cZe- z sinX 

+e2e-2Z G - ~) cos 2X + O(e3
) (21a) 

a nd 

Vz( X , Z) = c( l + Z )e- z eos X 

+ ~c2 Ze- 2Z s in 2X + O(c3 ) , 

where use has been made of Eq ua tion (7). 

(21b) 

OVERALL FEATURES OF THE HORIZONTAL 
VELOCITY FIELD 

Before going into a somewhat tedious mathema tical disc us
sion of" the prope rties of the flo w fi eld, let us look a t some 
contour plots of the horizontal velocity fi eld to get an O\·er
a ll idea of the fl ow perturba tion s caused by the sinusoidal 
bed. 

Figure 2 depicts V\-(X, Z) as a function of X a nd Z , for 
e = 0.01 and 15 = 0, according to Equation (ll a ). The bed 
line is Oat, since in the mathem a tical solution the sinusoidal 
bed profi le has b een projec ted on to the line Z = O. Note 
t hat (X / rr , Z) = G, O) and (X j7r,Z) = G, O) conespond , 
respec ti ve ly, to t he peak and the trough of th e sinuso id . 
The most consp icuous features of the fi gure a re the sta ti on
a ry points situ a ted above the p eak and the trough of the 
sinuso idal curve a t Z ~ I. 
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N 2 

0.5 1.0 
Xht 

1.5 2.0 

Fig. 2. The horizontal velocity, V\", as afunction qf X and Z 
for c: = 0.01 and {) = O. The l'eloci£), ma\·imu1/l al X /7r =! 
and Z ~ 1 is referred to in Ihe lext as U~/~x . T he minimum 

velocity at X /7r = ~and Z ~ 1 is called V3~';~' 

I n Fig ure 3, the \ 'alue of E has been cha nged from c: = 

0.01 to E = 0.1 as compa red to fig ure 2. The effec t of thi s 
inc rease in c: is to mO\'e the loca l max imum of the horizo n
ta l \ 'eloc it y field upwa rd away from the bed , and the mini
mum o f th e ve loc it y fi eld dow n to w a rd s th e bed. Th e 
a mplitudes of the veloc it y penurba ti o n s a re also conside r
ably la rger. fur thermore, a saddle po in t, where t here is a 
loca l m ax imum in ho ri zo nta l direc ti o n but a loca l mini
mum in ve rtical direc ti o n, ca n be see n a bO\'e the \'clocity 

. X/ 1 max imum at 7r = 2' 

4 

3 

N 2 

1 

0.5 1.0 
Xht 

1.5 2.0 

Fig. 3. V\· as afill/clioll of X and ZJor c: = 0.1 and (; = o. 
U~?;X has moved upwards and U31~i;~ downward., wilh res/xct 
to Figure 2. The poillt U;"~dl0 filii also be seen. As E increases 
further. U~?r and U;/~(I{o m01'e 101m rds Z = Zerit ~ 1.98, 
which Ih~J' reachJor c: = E~';i ~ 0.138. SimuLtaneollsly. U~~i;k 
moves dowllwards alld reaches Z = 0 Jar c: = E~~/2 = b 

Increasing the \,{l lue of c: e\'en furt her, as has been do ne 
in Fig ure 4, where E = b, brings the minimum towards the 
be d lin e. The max imu m po int a nd th e sadd le po int at 
X/7f = ~ haw di sappea red. As will be show n be low, t he 
max imum point a nd the saddle point cancel each other fo r 
{) = 0 a t c: ~ 0.138. 

The effect of cha ng ing the va lue o f {5 somewhat on th e 
horizonta l velocit y fi eld can seen by compa ring fig ure 5, 
where E = 0.1 a nd {) = 0.1, to Figure 3, wh ere E = 0.1 but 
{5 = 0.0. The velocit y m ax imummO\"es slig htl y towards the 
bed line a nd the saddl e point furth er away from the bed as {5 

is inc reased fro l11 0 to 0 .1. Increase in {5 causes th e loca l 
m ini m um of t he ho ri zo n ta l velocit y fi e ld to 11100'e away 
from th e bed line. 

CUd17l11lldsson: Basalflow characteristics ofa linear medium 

3 

N 2 

0.5 1.0 
X/Tt 

1,5 2.0 

Fig. 4. V , as afimction of X and ZJor E = 0.5 and {5 = O. 
The 'Joints U1l1

1" and U,,,ddlo call no longer be seen and 'Joint .1' rr/ 2 rr/ 2 l' 
U~'~I;~ is al Z = O. 

4 

3 

N 2 

1.0 
X/Tt 

1.5 2.0 

Fig. 5. V\" as ajill1clion of X and ZJor E = 0.1 and (5 = OJ 
B.)' com/Jarillg Ihisjigllre with Figure 3, Ihe irif/uf1lce qf {5 call 
be seel/ . 

O nc o f the interesting fear ures of Fig ures 2,3 a nd 5 is 
tha t abo\ 'e the \'e locit y m axim um and below th e \'eloc it y 
minimum a reg ion where the hori zo nta l veloc it y increases 
with de plh (ex trusion fl ow ) is fo un d. In the nex t sec ti on, 
the exac t cond iti ons under which ex trusion fl o \\' den'lops 
a re determin ed . Since the fo ll owing di scussio n is somewhat 
tedi ous, the r eade r who is not interested in the fin e de ta il s of 
the ma tte r m ay find it bet ter to skip th e nex t sec ti on a nd 
read th e summ a ry of the results giw n in the las t secti on of 
the paper. 

EXTRUSION FLOW 

It is of pa rtic ul a r inte rest to know when ex trusio n fl o\\' oc
curs acco rdin g to Equ al io n (l la ). T hi s qu es ti on ca n be 
answered by itwesti ga ting when Vx(X, Z) has a local max
imum o r minimulll fo r Z > O. A necessa ry c rite rion fo r a 
stati onary p o int ofVY(X. Z) is that VVdX, Z) = O. 

The horizontal positions of the stationary points 

Differenti a ti o n of Equa ti on (1I a ) gi\'es 

81;\ (X Z) = EZC- Z cosX 8X . . 

+ c:2 G - Z)c- 2Z s iu 2X , (22) 

a nd shows th a t av\,(X, Z)/8X = 0 has as solutio ns X = 
7r/2 a nd X = 37r/2 wit h 11 0 res tri c ti ons o n Z. (It is to be 
understood tha t because o f the periodicity o f the sine fun c-
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tion, an in tege r multiple of 21T can always be added to the 
values of X , a lthough it will not be explicitl y so wrillen.) 

There is another interesting se t of solutions given by 

Zez 
sin X = c( l _ 2Z) . (23) 

It can be shown that thi s solution set is a second-order effect 
which is only important in th e immedi ate vicinity of the bed 
line. This solution branch will not be discussed here further. 
Th e interested reader can find a detailed analys is of this 
solution set out in Gudmundsson (l994a). Ig noring this sec
o nd- orde r effec t t here a re, hence, only two sta ti o na r y 
points. One is loca ted above the peak of th e sinu so id a l 
curve, at X = 1T / 2, a nd can be shown to be a point of m ax
imum velocity with respect to X. The other stationa ry point 
is situa ted above the trough, at X = 31T / 2, and is a point of 
minimum horizonta l velocity with respec t to X . 

The vertical positions of the stationary points 

Differenti ating Vy(X, Z) with res pect to Z and setting the 
resulting expression equ al to zero gives 

1 
1 - 5Z = - (Z - 1)e-z sin X + (1 - Z)e- 2Z cos 2X . 

c 
(24) 

The interesting cases to be considered a re X = 1T/2 and 
X = 31T /2, but there a re also solutions a t X = 0 and X = 1T 
with Z = O. These two soluti on points, situated at the bed
rock interface, are saddl e points, where the hori zonta l velo
city obtains a maximum with respect to X but a minimum 
with respect to Z. The existence of these points is a second
order effect (Gudmundsson, 1994b) and they will not be di s
cussed fur ther. 

Stationary points situated above the peak if a sinusoid 
Let us begin with the case X = 1T /2 in Equ ation (24) a nd see 
if there is a solution to the res ulting equ ation 

1 
1 - 5Z = - (Z - 1)e-z + (Z - 1)e-2z . (25) 
'--v--' c 

= :L(rr/ 2,Z.b) , , 
= :R(rr/ 2.Z,c: ) 

This is a non-linea r equation that does not have a solu tion in 
a closed form. By plotting the lefth and side (L (1T/2, Z, 5) ) 
a nd the righthand side (R (w/2, Z, c) ) sepa rately, as is done 
in Fig ure 6, one sees th at there will be a solu tion to Equation 
(25) if the rightha nd side, for at leas t one value of Z, be
comes greater than, or equa l to, 1 - 5Z . This will happen if 
c is less th an some pa r ticul a r value, that will now be called 
c~;~. Th ere will , h e nce, o nl y be s ta ti o na r y p o in ts a t 
X = w / 2 for some 5 if c < c~/;. To determine c~;~, write c 
in Equation (25) as a function of Z and 5: 

Z - 1 - z 
c(Z,5) = (1 _ 5Z)eZ + (1 - Z)e . (26) 

Then c~Jn can be found by m ax imizing c(Z, 5) g ive n by 
Equation (26) subj ected to Z> 0 and 0 ::; 5 « 1. By sol
ving &(Z, 5)/8Z = 0 numerically, c~)~ can be calcu la ted 
as a function of 5. The deta ils of these calcu lations can be 
found in Gudmundsson (1994b). 

It is found that there are in general two stationary points 
along the line X = 1T /2. An inspection of the determina nt of 
the H essian matrix ofVx( X. Z) at the p oint X = 1T/2 shows 
that one of the stati ona r y points is a point of relative m ax
imum. This veloc it y m aximum will now be called u~/~x. 
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...J 

~ 

er: 

.. fi:.= 0.100 

z 

Fig. 6. L(w/2,Z,8) and R (w/ 2,Z,c) asJunctionsof Z. 
T he solid lines represent the lefthand side if Equation (25) 

Jor aJew different values if 8 and the dolted lines show the 
righthand side oft/wt same equationJor different c values. 

Th e o th e r s ta ti ona r y p o int is a sa ddl e p o in t, wher e 

Vx(X , Z) has a max imum w ith respec t to X , but a mini

mum with respect to Z. The hori zontal velocity component 
at this point will be ca ll ed u sacld\e . 

. rr/ 2 
c~/~ is depicted in Figure 7 as a fun ction of 8. For 8 = 0, 

umax and usadcl\e ex ist as lon o- as c < ccrit ~ 0.1 38. The fig-,,/2 7r/2 b rr/2 
ure also shows that the value of c, above which the hori zon-

ta l velocity has no tationary points at X = w / 2, increases 
with 8. 

0.180 .---.-~----r~~'--'-~~'--'~~--,-~.---.--, 

0.170 

tlJ 0.160 

0.150 

0.140 

0.130 "---'-~-"---'~~'--'-_ _ '--'-_~--'-~~ 

0.00 0.02 0 .04 8 0.06 0.08 0.10 

Fig. 7 c~J)~ as aJunction if 8. For c and 8 values below the Line 
there wiLL be at least two solutions to Equation (25). One of 
these two solutions corresponds to a local maximum if the hor
izontaL veLocities above the peak if the sinusoidaL bed and is 
caLLed umax The other solution is situated above umax and rr/ 2 7r/2 
corres/Jonds to a saddle /Joint qfthe horizontal veLocities, where 
Vx has a Local maximum with respect to X but a Local mini
mum with respect to Z and is caLLed u sadd\e. 

rr/ 2 

The cha nges in the vertica l coordina tes of both U~/~x 

and U!i~d\C as c increases fr om zero a re inte resting. For 
c = 0 Umax is a t Z = 1 a nd usadd\e at Z = 1/8. As c in-, 7r/2 rr/2 
creases from zero toward s c = ccnt Ulllax m oves upward s ,,/2' 11/2 
away from the bed, while usa/~c1\C moves downward towards rr _ 

t he bed line. Both station ary poin ts t hen unite at Z = 
Zcrit ~ 1. 98 for c = c~;~, a nd di sa pp ea r (Gudmund sso n, 
1994b). T hese changes in the vertical coordinates of U~/~x and 
U!i~d\e a re illustrated in Figure 8. 
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0.05 0.10 
£ 

0.15 

Fig. 8. The vertical /70silions or umax and u""ddle asfimc-u ,,/2 .1'/ 2 
tions if e Jar 6 = 0 and D = 0.1. Zcrit and e~';~ are the /)oi11ts 
where the the sloj)es if the two lines are verticaL. The branches 
above and below Z crit give the verlieal posilions if u~/~d le 
and umax respective" l. For e = eCfl.t there are no U lJlax and ,,/2 ' "Y ,,/2 ,,/2 
u sadd lr poinls. ,,/2 

The stationar )1 points umax and u :addle a re not the only ,,/2 ,, /2 
poss ible sta tiona ry points above th e peak of th e sinuso id 
whi ch th e hor izonta l ve locity fi eld ca n have. Fi g urc 6 
shows that the curvaturc of' R(7r/2. Z. e) cun'es (dotted 
lines) ca n cha nge, in which ca e th e L ( 7r / 2, Z, 6) curves 
(so lid lines) can cross the dotted ones not onl y twice but 
three times. In this case, a third stat ionary POilll, U~i, will 
be found a long the line X = 7r/2 together with U~)~X and 
U~/~dlc. It ca n be shown (Gudmundsson, 1994b ) that th c 
vert ica l positi on of U~;; wi II a lways bc above Z = 3 and 
th at it wi ll in general be found close to th e surface. Thi s sta
tionary point may appear because of the assumption, m ade 
in the derivation of th e fl ow solutions, that the surface r e
mains flat a t a ll times. Thi s assumption wi ll on ly be ap
proximately truc when th e bedroc k is undul ated . Th e 
properti es of thi s sta tionary point wil l, hence, not be dis
cussed furth er. 

SlatiOIlO1Y /)oints siluated above Ihe lrough if a sinusoid 
The other poss ibl e X value, beside X = 7r / 2, for a station
ary point of VdX, Z) is X = 37r/ 2. In se rting X = 37r/ 2 
into Equa ti on (24) lead s to 

-Z (1 -z) 1 - 6Z = e (1 - Z) ~ - c . (27) 

The lefth a nd side will a lways be greate r than or equa l to 
zero, b eca use Z must a lwa ys b e within th e r ange 
0 ::::; Z ::::; kh . Th e l ie - e-z term o n th e ri g hth a nd s id e 
will a lways be positive. There is therefore no solution poss i
ble for Z > 1, but for Z ::::; 1 there will a lways be a solu tion 
to Equation (27) as long as e ::::;~ . This limiting va lue for e 

'11 b II d (Tit I nit - 1 r s: 1 r. 0 
WI e ca e c3,,/2' so t 1at e3,,/2 = "2 tor u« . t or e ----> , 

th e vert ica l coordina te of thi s stationa r y point will be at 
Z = 1, and for e = ~ the poilll wi ll be situ ated at Z = 0 in
dependent ly of the v; lue of 6. By looking a t the determ ina l1l 
of the H ess ian matrix, o ne find s that this sta tiona ry point is 
a point of relat ive minimum , and it will be referred to as 
umin 

J,,/ 2' 
Equation (27) can be solved for e, g iving 

Cudmundsson: BasaljLow (haracteristics if a linear medium 

1 - Z 
e = -:----:---:--=---,------,---=:-

(1 - 6Z)eZ + (1 - Z)e- Z (28) 

As 6 varies, the position of U~r;:)~ changes somewhat. This is 
depicted in Fig ure 9, wh ich shows the position of U1'~'/~ as a 
function of e for two different 6 values. For a g iven e value 
a nd 6> 0, there will be two soluti ons for Z of Equation 
(28). Only one of these so lution points will be situated be
low Z = l iD ( the other one is abO\'e the surface, and is a 
mathematical a rtifact ) a nd it is thi s soluti o n that is de
picted in Figure 9. 

1.0 
~ 

0.8 ...... 
...... 

"-

0 .6 "-

0=0 "- 0=0.2 N ...... 

0.4 "-

"-
...... 

0.2 :--.. 

~ 

0.0 
0.00 0.10 0 .20 0.30 0.40 0.50 

£ 

Fig. 9. Tlte vertical posil iOIl if U31;)~ as a Junction of e Jor 
6 = 0 and 6 = 0.2. U3:1)~ is the local minimum if the hori
zOlltal velocilies above th e Irough oJ the sinusoidal curve 
(where x = 37r / 2). For e = 0, U3:i;b is situated at Z = 1. 
As e increases, it a/)/)roaches Ihe bed and disappears at e = ~. 
.!Iole that 6has al1l10s1l10 ~ffecl on the /)osiliol1 ifUl:%. 

Note th a t the perturbatio n approach is on ly valid as long 

as e « 1. A va lue or c~~/2 = ~ is, in thi s respec t, rather la rge. 
It is therefore not clear whether the prediction that the ta
tionary point above the troug h of the sinuso id ex ists as long 

as e < e~~/2 = ! can be trusted. Numerica l a pproach seems 
to be the o nly possibi lity o f getting a definitive a nswer. 

The ex istence of the sta tionary points U~/~x, U~/~dlc and 
U31~';b shows that there wi ll be two regions of extrusion fl ow. 
One is a t X = 7r/2, which ex tends over the region that lies 
between the saddle poilll ( U~~dlC ) a nd the maximum point 
( U~;~X ) , and another one a t X = 37r / 2 that extends from the 
bedLOwards the point of local \'e1ocit y minimum ( U3r;:;~ ) . 

The region of ex trusion now a long the line X = 7r/ 2 wi ll 
on ly ex ist if e < eCl/'i~ (see Fig. 7) a nd the extrus ion fl ow at 7r _ 

X = 37r/2 on ly if e <~. 

DISCUSSION 

Comparison of the fir s t- and the second-order 
velocity solutions 

The so lution of Nye and of Kamb predicts, a sa id ea rli er, 
regions of extrusion flow. In thi s solu tion, the vertica l posi
ti ons of th e loca l maximum of the horizontal velocity fi eld 
above th e p ea k of the sinusoid , U~?~X, and the loca l mini
mum above the trough, U~:'?2' a re always a t Z = 1 indepell
del1l of the value of e. The soluti ons ofNye and of K amb have 
no sadd le poi nl. These findings of the first-order solution are 
reproduced by the second-o rder olution in the li mit e -> 0, 
as is to be expected. As e increases somewhat, there are, how-
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ever, profound differences between these two solutions. The 
inclusion of the effects of g ravity on the flow fi eld limits the 
occurrence of extrusion fl ow to a certain range of E values, 
a nd causes the vertica l positions of the sta ti onary points of 
the horizontal yelocity fi eld to depend on the amplitude-to
wavelength rat io of the bedrock undulations. 

Implications for borehole deformation 

The influence of the wavy naLUre of the bed on the fl ow is 
no t la rges t at the bed but at some dista nce above it. l y pi
ca ll y, thi s di stance wi ll be about 1 (or z = I l k ). Often the 
deformation of a borehole is used to get informa ti on on the 
rheo logical behaviour of the ice. One must interpret care
fu lly the data from the lowest pa rt of a borehole, since the 
exact form of the bedrock, which is usually not known, can 
have a large effect on the flow. Figure 3, for example, shows 
th at th e perturbed fl ow (the second and the third terms of 
Equa tion (2Ia )) dom i na tes the g ravity-driven plane flow 
(the first term of Equation (2Ia )) in the region kz < 3. 

The effect of ex trusion fl ow on the deformation profile 
with depth wi ll be to reve rse it with resp ect to what one 
wou ld expect from a simple p lane-slab flow. Although the 
di scussion here has been limited to one pa rt icu lar type of 
boundary condition (fr ee-slip), ex trusion flow can be ex
pec ted to occur under other types of bounda ry cond itions 
as well. It wi ll , in general, be the lowes t sec tion of the bore
hole, within the vertica l di stance A/ 27r, where A is the wave
leng th of a typi cal bedro ck undu lat ion , whi ch will b e 
affected by ext rusion flow. 

A phy sical explanation for extrusion flow 

U pon refl ect ion, it becomes evident tha t the vertical con
trac tion and expansion of the ice close to the bed is respon
sible for the extrusion fl ow. At some distance sufficientl y far 
above the bed, let us say a t z = Z1, the ice moves para ll el to 
the mean bed slope. For kx = 7r 12, a high-pressure zone de
ve lops above the bed, which causes a Poiseuille flow, super
imposed on the gravit y-driven plane flow (GDPF) solution. 
Th e maximum of the Poise uille veloc ity profile i s a t 
(ZI - zo)/2 and , if its d ec rease above tha t point is fas ter 
than the increase of the GDPF velocit y profile, a ve locity 
maximum will be found. Since the influence of the bed pro
fi le on the \·elocity field is (because of the factor c- kz ) lim
ited to a zone of heig ht proportiona l to I lk, Zl wi ll b e 
proportional to I l k a nd one wi ll expect the position of thi s 
maximum also to be proportional to I l k. As a a matter of 
fa c t Equ a tion (3a ) has a maximum a t z = I l k for kx = 

7r 12. At kx = 37r 12, the ice is expanded vertically and the 
Poise u ille fl ow profi le reverses, causing a velocity mini
mum, again at z = I lk. 

The Nye and K a mb soluti on ignores GDPFand actu ally 
expresses nothing but this contraction a nd expansion due to 
the wavy nature of the bed. The ve locity minimum a nd 
maximum therefore never disappears no m at ter how c is 
\·a ri ed . If, on the othe r hand , the GDPF is present , it in
duces a subtle interpl ay between the Poi seuille fl ow and the 
GDPF. T herefore, only ce rtain E values give rise to thi s in
teresting fl ow behaviour. 

Higher harmonics 

An interesting feature of Equations (l la ) a nd (lIb ) is the 
presence of the first ha rmonic of the fundamental period . 
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A simple physical a rgument shows that one must expect fre
quencie o th er than sin kx to appear in the solut ion, unless 
E « 1, a nd tha t they will become more prono unced as E 

becomes la rger. 
Let us suppose that there were no higher ha rmonics in 

the expressions for v.,. and vz , for all values of c, so that 

V.c = lib + Co sin kx and V z = Cl eos kx , on Z = Zo , 

(29) 

where Co and Cl a re some unknown constants. It fo llows that 

lib Co 
---+-tankx. 

V= Cl eos kx Cl 

V.r 
(30) 

On the other hand, using th e exact boundary condition (I) 
and Zo = a sin kx one obtains 

V.r I 

V z akcos kx 
(31) 

a t the base. Comparing Equ a tion (30) to Equ a tion (31) 
shows tha t Cl must be equa l to 'lJ,bak and that Co has to be 
ze ro if expression (29) is to be true. But, this m ust be true 
for all E values, because Equ a tion (31) is always valid. On 
phys ica l g round s, Co = 0 can , howe\·er, b e rej ec ted; for 
high E va lues V J: will certainl y not be a constanL on Z = Zo, 
which means that the starti ng-point of Equation (29) must 
be incorrect. The velocity will therefore, in general, not be 
a single ha rmonic, although thi s may be approxim ately true 
for small I-oughness values. 

The s tress field 

Using results from Morl a nd (1976a), the two-d imensiona l 
st ress fi eld can be ca lcu lated. D etailed resu lts have been 
given in Gudmundsson (1994b). It turns out th at, in con
trast to Equation (31), the T does depend on x if second-or
der corrections a re considered , as can in fact also been seen 
from Equat ion (13). Another interesting fact is th at T attains 
its largest value at kz = I independently of c. 

CONCLUSIONS 

Basal Oow has been analysed using analytical solutions for a 
two-dimensional fl ow over bedrock undu lations and criteri a 
for extrusion flow have been given. Except for some second
order effec ts, the horizontal velocity fi eld can have at most 
three different stati onary points close to a sinusoida l bed lin e: 

If 0 < c < ~, there is a minimum point ( U;~% ) situ
ated above the trough of the sinusoid (at X = 3 7r 12). As 
E increases from ze ro towards E = ~, the vertical position 
of U~'~i;~ m oves from Z = 1 tow~ rd s the bed line. As 
E = ~ is reached, U~~l;~ hits the bed line a nd disappears. 
Since V,,,( X , Z) increases with depth below U~~/2' a zone 
of local ex trusion Oow is found close to the bed line as 

long as U~~iJ2 ex ists. 

Above the peak of the sinusoid (at X = 7r 12 ), there is 
a point of maximum surface-parallel velocity ( U~/~'- ) , at 
which vertical position Z is a lways within the bounds of 
1 < Z < Zrrii. It is found th a t lim,~o Zcrit ~ 1.98 for 
8 = O. U~?~X moves upward s away from the bed line with 
increasing E. 

Also, above the peak of the sinusoid (a t X = 7i 12), a 
sadd le point ( u~/~dle ) of lIy(X , Z) develops, which ex
ists for exac t ly the sa m e range of E va lue. as U~/~x . 

U~/gd I 0 is characterized by a maximum with respect to 
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X a nd a minimum with respect to Z of Vx (X , Z). Be
tween the ve rtica l positions of u saddle and Ull1ax V , in-rr/2 rr/2' X. 
creases with depth. 

lL must be stressed that the extr usio n flow di sc ussed 
he re, which is caused by bedrock undul at ions, is of local 
cha racter. It should therefore possibly be call ed local extru
sion fl ow, in order to distingui sh it from ex trusion fl ow en
countered earli er in the g laciological literature, which was 
of global nature in the sense that it ex tended o\"Cr a large 
a rea. The loca l ex trusion (low does not add to the ice flu x 
as global ex trusion (low was thought to do. Local extrusion 
(l ow c lose to bedrock undulation s is understandable in 
simple physical term s and must be expected to be a general 
feature of basal fl ow. 
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