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Three-dimensional, rotational flamelet closure
model with two-way coupling
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A new flamelet model is developed to be used for subgrid modelling and coupled
with the resolved flow description for turbulent combustion. The model differs from
current models in several critical ways. (i) Non-premixed flames, premixed flames or
multi-branched flame structures are determined rather than prescribed. (ii) The effects
of shear strain and vorticity on the flames are determined. (iii) The strain rates and
vorticity applied at the subgrid level are directly determined from the resolved-scale
strain rates and vorticity without the use of a contrived progress variable. (iv) The
flamelet model is three-dimensional without need for assuming axisymmetry or planar
geometry. (v) The effect of variable density is addressed in the flamelet model. Solutions
to the Navier–Stokes equations and the associated scalar equations governing the flamelet
model are obtained without the boundary-layer approximation. By appropriate coordinate
transformation, a similar solution is found for the rotational flamelet model, reducing it to
a system of ordinary differential equations. Vorticity is shown to create a centrifugal force
on the subgrid counterflow that modifies the molecular transport rates and burning rate.
Sample computations of the rotational flamelet model without coupling to the resolved
flow are presented first to demonstrate the importance of the new features of the model.
Scaling laws are presented for relating strain rates and vorticity at the subgrid level to
those quantities at the resolved-flow level for coupling with large-eddy simulations or the
time-averaged mean-flow level for Reynolds-averaged flows. The time-averaged behaviour
of a simple turbulent flow is resolved with coupling to the rotational flamelet model.
Specifically, a two-dimensional, multicomponent, time-averaged planar shear layer with
variable density and energy release is employed using a mixing-length description for the
eddy viscosity. Needs for future study are identified.
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1. Introduction

Combustion in high-mass-flux chambers is the practical and major method for energy
conversion for mechanical power and heating. Inherently, the high mass-flow rate leads to
turbulent flow. Thereby, many length and time scales appear in the physics, making serious
challenges for both computational and experimental analyses. For computations where the
smallest scales typically cannot be resolved, the method of large-eddy simulation (LES)
is employed wherein the smaller scales are filtered via integration over a window size
commensurate with the computational mesh size that allows affordable computations.
Consequently, the essential, rate-controlling, physical and chemical processes that occur
on shorter scales than the filter size must be modelled. Those subgrid models must be
properly coupled to the resolved LES flow field.

Current flamelet models that are used for LES or Reynolds-averaged Navier–Stokes
(RANS) methods have some advantages. Typically, the flamelet equations are a system of
ordinary differential equations (ODEs) that can be solved offline with solutions available
in tabular form or through neural networks. The flamelet models can handle multi-species,
multi-step oxidation kinetics without requiring small time steps during the solution of
the resolved-scale fluid dynamics. Thus, for several reasons, savings of computational
resources can be huge compared with direct numerical simulation. We aim here to retain
these very attractive features while removing some less desirable features. Already, some
progress has been made in extending the fundamental flamelet theory beyond its long-term
limitation of a single-flame structure, two-dimensional (or axisymmetric) configuration
and use of the uniform-density assumption. However, those advances still must be applied
to LES or RANS. In addition, the flamelet theory must be advanced to consider shear
strain and vorticity at the small scale of the flamelet; these are the vital forgotten physics
in current flamelet modelling. Furthermore, the strain rates in the flamelet model are far
from properly connected to the strain rates at the resolved scale. Attempts at corrections of
these weaknesses are made here.

The focus here is on the types of turbulent flames found in the shear-driven flows of
practical combustors. Thereby, we address flamelets as originally described by Williams
(1975), namely ‘highly sheared small diffusion flamelets’ and ‘forming a turbulent flame
brush which appears on the average to fill’ the flow domain. Our discussion will not
cover some interesting work on corrugated or wrinkled flames. The goals in this paper
are to improve the flamelet model by including several important physical effects that are
commonly neglected in present models and to identify other issues, related to the coupling
between the subgrid-scale physics and the resolved-scale (or time-averaged) physics, that
require further study.

1.1. Existing flamelet theory
There is need to understand the laminar mixing and combustion that commonly occur
within the smallest turbulent eddies. These laminar flamelet subdomains experience
significant strain of all types: shear, tensile and compressive. Some important works
exist here but typically for either counterflows with only normal strain or simple
vortex structures in two dimensions or axisymmetry and often with a constant-density
approximation; see Linan (1974), Marble (1985), Karagozian & Marble (1986), Cetegen
& Sirignano (1988), Cetegen & Sirignano (1990), Peters (2000) and Pierce & Moin
(2004). Linan and Peters focused on the counterflow configuration. Williams (1975) first
established the concept of laminar flamelets in a turbulent diffusion flame structure.
Karagozian and Marble examined a three-dimensional flow with radial inward velocity,
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Three-dimensional rotational flamelet closure model

axial jetting and a vortex centred on the axis. The flame sheet wrapped around the axis due
to the vorticity. An interesting review of the early flamelet theory is given by Williams
(2000). Generally, flamelet studies have focused on either premixed or non-premixed
flames; a unifying approach to premixed, non-premixed and multi-branched flames has
not been developed. That unifying approach is taken here.

Most flamelet studies have not directly considered vorticity interaction with the flamelet;
see, for example, Linan (1974), Peters (2000), Williams (2000) and Pierce & Moin
(2004). Mueller (2020) presented the flamelet model in a somewhat different mathematical
framework but without the addition of new physical description. Williams (1975) first
recognized the advantage of separating rotation (due to vorticity) and stretching by
transformation to a rotating, non-Newtonian reference frame. He did not, however,
examine the momentum consequences in the new reference frame which will be examined
later here. The other works that have examined vortex–flame interaction have not
separated the effects of stretching and rotation; see Marble (1985), Karagozian & Marble
(1986), Cetegen & Sirignano (1988), Cetegen & Sirignano (1990) and Meneveau &
Poinsot (1991).

Again, with the above-mentioned emphasis on turbulent flames in shear-driven flows as
defined by Williams (1975), some interesting work on corrugated or wrinkled premixed
laminar flames is not detailed here. The reader is guided to Swaminathan & Grout (2006),
Steinberg & Driscoll (2009), Chakraborty & Swaminathan (2007) and Mura & Champion
(2009) for examples of those studies.

The two-dimensional planar or axisymmetric counterflow configuration has become
a foundation for the flamelet model. Local conversion to a coordinate system based on
the principal strain-rate directions can provide the counterflow configuration in a general
flow. Furthermore, the quasi-steady counterflow can be analysed by ODEs because the
dependence on the transverse coordinate is either constant or linear, depending on the
variable. Pierce and Moin modified the non-premixed flamelet counterflow configuration
by fixing domain size and forcing flux to zero at the boundaries. Flamelet theory as a
closure model for turbulent combustion is typically based on the tracking of two variables:
a normalized conserved scalar and the strain rate. The latter is generally given indirectly
through a progress variable. Mixture fraction is traditionally used for the conserved scalar.

The flamelet model has become a popular subgrid model for gas-fuelled combustors.
Some development is also underway for the use of flamelets in spray combustion, but
here we focus on the former type. The flamelet model for LES developed by Pierce
& Moin (2004) was a substantial advancement through the introduction of the flamelet
progress variable (FPV). Their approach has also been used by Ihme, Schmitt & Pitsch
(2009), Nguyen, Popov & Sirignano (2018), Nguyen & Sirignano (2018, 2019) and others.
Other works are based on the use of the original form developed by Peters (2000).
Pierce and Moin extended that work in two ways. Firstly, the inclusion of both the upper
and middle branches of the curve of flame temperature versus scalar dissipation rate
allowed better representation of the unsteady details in turbulent combustion such as
extinction and reignition. Secondly, they created a progress variable as a function (of
the scalar dissipation rate) which is governed by a partial differential equation (added
to the LES equations) with a chemical-rate source term determined through the flamelet
model. Nguyen & Sirignano (2018) found that the inclusion of both branches for flame
stability resulted in better agreement with experiment. Note that Nguyen & Sirignano
(2018) addressed rocket combustion instability which places a greater demand on the
flamelet model than most other applications. In addition to the velocity fluctuations due
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to turbulence, it becomes necessary to address very large fluctuations in velocity, pressure
and temperature due to the nonlinear acoustics.

There are concerns with the existing model. While there is clear utility for the FPV
approach, there are concurrently clear signs of incompleteness in the flamelet model and
contradiction between the tenets of the model and the LES results produced with the
model. A few examples of problems that require resolution are provided here. Firstly, the
design of the flamelet model uses a counterflow configuration where only normal strain is
imposed on the flame region by the ambient flow. Yet, the LES results show that the flame
is embedded in a flow field with substantial shear strain rate, i.e. a flow with vorticity.
Secondly, the current models assume that the inflowing streams in the counterflow are
irrotational; yet, we know that the smaller scales in turbulent combustion are highly
rotational. Thirdly, the classical flamelet model is two-dimensional (or axisymmetric)
whereas it has been used in flows that are clearly three-dimensional. The model considers
only a single-branched diffusion flame while its coupled use in LES commonly predicts
multi-branched flames in qualitative agreement with experimental evidence. A fourth
issue involves the quasi-steady assumption for the flamelet model that is used in a highly
unsteady LES flow with a broadband noise.

These models are built around the postulate that the flamelets are always non-premixed
(i.e. diffusion) flames or premixed flames. However, evidence of both non-premixed and
premixed flames has been found in LES and experimental results. In fact, they can
coexist in a multi-branched structure. Nguyen et al. (2018) and Nguyen & Sirignano
(2018, 2019) employed the Pierce & Moin (2004) flamelet approach in the simulation
of a single-injector rocket engine. They showed the importance of flamelets subject to
high strain rates. However, contradictions occurred in that both premixed flames and
non-premixed flames appeared in the predictions. In fact, they report multi-branched
flames; in particular, the combination is often seen of a fuel-lean premixed flame branch
with a branch consisting of a merged diffusion flame and fuel-rich premixed flame.

Note that the mixture fraction has been used widely as an independent variable to
display non-premixed flamelet scalar variations; this cannot be useful for premixed flames.
Sirignano (2021a) has shown that any conserved scalar can serve well as an independent
variable to present scalar results for non-premixed and multi-branched flamelets.

Experiments and asymptotic analysis by Hamins, Thridandam & Seshadri (1985)
showed that a partially premixed fuel-lean flame and a diffusion flame can coexist in
a counterflow with opposing streams of heptane vapour and methane–oxygen–nitrogen
mixture. Thus, a need exists for flamelet theory to address both premixed and
non-premixed flames. Recently, Rajamanickam et al. (2019) provided an interesting
three-dimensional triple-flame analysis, describing the effect of imposed normal strain
on a multi-branched flame. While it did not consider shear strain, it was a helpful step
followed by the work of Sirignano (2021c) where both shear strain and normal strain were
considered.

The classical counterflow treatment by Linan (1974) and Peters (2000) has two opposing
streams, fuel or fuel plus a chemically inert gas and oxidizer or oxidizer plus an inert
gas. They considered uniform density. That critical assumption was relaxed by Sirignano
(2019) for reacting flows and heated flows. Sirignano (2021a,c) with one-step kinetics
and López-Cámara, Jordà Juanós & Sirignano (2020) with detailed kinetics address that
single diffusion flame case. In addition, situations are addressed where the inflowing
streams from y∞ and y−∞ may consist of a combustible mixture of fuel and oxidizer,
thereby allowing another flame or two besides the simple diffusion flame to coexist.
Sirignano (2021a) provides a counterflow analysis with three-dimensional strain and
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shows the possibility for a variety of flame configurations to exist depending on the
compositions of the inflowing streams: (i) three flames including fuel-lean partially
premixed, non-premixed (i.e. diffusion-controlled) and fuel-rich partially premixed;
(ii) non-premixed and fuel-rich partially premixed; (iii) fuel-lean partially premixed and
non-premixed; (iv) non-premixed; and (v) premixed. López-Cámara et al. (2020) extended
the counterflow analysis to consider detailed kinetics for methane–oxygen detailed
chemical kinetics and confirmed that combinations of premixed and non-premixed flames
could exist in a multi-flame counterflow.

1.2. Relative orientations of principal strain axes, vorticity and scalar gradients
Both normal strain rate and shear strain rate are important. There is a strong need to
study mixing and combustion in three-dimensional flows with both imposed normal
strain and shear strain and therein imposed vorticity with global circulation. Shear
strain can, in general, be decomposed into a normal strain and a rotation (whose rate
is half of the vorticity magnitude). For example, a rectangular shape that is changed
by shear strain can be viewed as a combination of deformation to a parallelogram
caused by normal strain perpendicular to the diagonal and rotation of the diagonal
caused by vorticity. The behaviour due to the strain and rotation becomes especially
important on the smallest scales of turbulence where mixing and chemical reaction occur.
The magnitudes of strain rate and vorticity increase as the eddy size (or wavelength)
decreases in the turbulence energy cascade process. The Kolmogorov scale size is
determined by the dissipation rate of turbulence kinetic energy and dynamic viscosity
and is the smallest turbulence length scale. The final molecular mixing and chemical
reaction in the combustion process occur on a still smaller scale, where there will be
an axis (or direction) of principal compressive normal strain and an orthogonal axis for
principal tensile strain; the third orthogonal axis could be either tensile or compressive.
These axes would rotate under shear strain (or equivalently vorticity). Similarly, the
direction of the scalar gradient rotates under shear. A useful flamelet model must have
a statistically accurate representation of the relative orientations on this smallest scale
of the vorticity vector, scalar gradients and the directions of the three principal axes for
strain rate. Several studies exist that are helpful in understanding this important alignment
issue.

Generally and always for incompressible flow, one principal strain rate γ locally will be
compressive (corresponding to inflow in a counterflow configuration), another principal
strain rate α will be tensile (also named extensional and corresponding to outflow) and the
third can be either extensional or compressive and will have an intermediate strain rate β

of lower magnitude than the other like strain rate. Specifically, α > β > γ, α > 0, γ < 0
and, for incompressible flow, α + β + γ = 0. If the intermediate strain rate β < 0, there
is inflow from two directions with outflow in one direction; a contracting jet flow occurs
locally. Conversely, with β > 0, there is outflow in two directions and inflow in one
direction; a counterflow or, in other words, the head-on collision of two opposed jets
occurs. Betchov (1956) has shown that, for homogeneous, isotropic turbulence in an
incompressible flow, the situation with β > 0 and resulting counterflow is the most
important for production of vorticity and the turbulence energy cascade to smaller scales.

Several interesting findings result from direct numerical simulations for incompressible
flows. Both Ashurst et al. (1987) and Nomura & Elghobashi (1992) compared a case of
homogeneous sheared turbulence with a case of isotropic turbulence. They report that the
vorticity alignment with the intermediate strain direction is most probable in both cases but
especially in the case with shear. Furthermore, the intermediate strain rate is most likely to
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be extensive (positive) implying a counterflow configuration. Dresselhaus & Tabor (1991)
use a kinematic approach to study the stretching of material and vorticity in a fluid flow
and predict the tendency towards alignment of the intermediate strain direction with the
vorticity. If the vorticity had strong alignment with the major compressive or major tensile
strain direction, the magnitude of helicity, the dot product of velocity u and vorticity
ω, would be large. Kerr (1987) reports that large values of helicity are not found in the
turbulence cascade process. Ashurst et al. (1987) note further that the positive intermediate
strain rate has a significantly smaller magnitude than either of the other two principal strain
rates. Furthermore, the time for alignment of the vorticity with that intermediate direction
is short compared to the eddy-turnover time.

Nomura & Elghobashi (1993) studied reacting flow and show that in regions of
exothermic reaction and variable density, alignment of the vorticity with the most tensile
strain direction can occur. Still though as the strain rates increase, the intermediate
direction becomes more favoured for alignment with vorticity; that direction is also
preferred in regions where mixing occurs without substantial divergence of the velocity
due to chemical reaction.

We may also expect that a material interface most probably aligns to be normal to the
direction of the compressive normal strain. That is, the scalar gradient and the direction
of compressive strain are aligned; see Ashurst et al. (1987), Nomura & Elghobashi (1992),
Nomura & Elghobashi (1993) and Boratav, Elghobashi & Zhong (1996, 1998). Authors
agree that the most common intermittent vortex structures in regions of high strain rate are
sheets or ribbons rather than tubes.

An important issue for flamelet modelling is the relative magnitudes of the vorticity
and the rates of principal normal strain. For homogeneous, incompressible turbulence,
Betchov (1956) showed that, for the average across all length scales, these quantities are
of the same order of magnitude. Of course, the smallest scales contribute more to the
average since the velocity derivatives are larger on those scales. Also, for shear flows, we
expect that the turbulence at the smaller scales will be isotropic and behave more like the
homogeneous flow. In our analysis for variable-density, reacting shear flows, we assume
the same order-of-magnitude similarity between vorticity and the rates of principal normal
strain applies for the smallest scales.

Based on those understandings concerning vector orientations, Sirignano (2021c)
extended flamelet theory in a second significant aspect beyond the inclusion of both
premixed and non-premixed flame structures; namely, a model was created of a
three-dimensional field with both shear and normal strains. The three-dimensional
problem is reduced to a two-dimensional form and then, for the counterflow or
mixing-layer flow, to a one-dimensional similar form. The system of ODEs is presented
for the thermochemical variables and the velocity components. Conserved scalars are
determined and can become the independent variable if they behave in a monotonic
fashion. Sirignano (2021c) also was able to use a velocity component as the independent
variable for the flamelet model with shear strain and vorticity. The validity of the similar
solution form for mixing layers with certain thin reaction zones was discussed using
concepts from singular perturbation theory. The chemical-kinetic model appears as a
source term for an ODE. These new findings are very helpful in improving the foundations
for flamelet theory and its use in subgrid modelling for turbulent combustion. Still,
however, there has not been a flamelet model that connects well the scales on the resolved
LES level to the subgrid scales at the level of the flame structure.

Based on the observations of the needed improvements, the aim here is to develop a
flamelet model that (i) determines rather than prescribes the existence of non-premixed
flames, premixed flames or multi-branched flame structures; (ii) determines directly the
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effect of shear strain and vorticity on the flames; (iii) applies directly the resolved-scale
strain rates and vorticity to the subgrid level without the use of a contrived progress
variable; (iv) employs a three-dimensional flamelet model; and (v) considers the effect
of variable density. Furthermore, some discussion and primitive analysis of the in situ
function of the flamelet model in a turbulent shear flow is presented. The analysis uses
one-step kinetics to avoid complications in this initial study; however, a clear template will
exist for the employment of multi-step kinetics. The choice for the in situ study will be
a mixing layer with the use of mixing-length theory. Here, the goal is not to advance the
portion of the analysis for the resolved scale; rather, the coupling with the subgrid closure
model will be made clear.

In § 2, the scaling and connections between the resolved shear flow and the flamelet
behaviour on the subgrid scale are discussed. Section 3 has the description of a new
subgrid flame model that better handles connection with strain and vorticity on the
resolved scale, three-dimensional character and multi-branched flame structure. The
application of the subgrid flamelet with a resolved shear flow is addressed in § 4.
Concluding comments are made in § 5.

2. Scaling between flamelet scale and resolved scale

Current flamelet theory for use in LES or RANS makes no substantial attempt to scale
properly between the small scale of the flamelet and the larger flow scales which pertain
to the computational fluid dynamics analysis. A theoretical basis is needed to prescribe
how to determine vorticity, strain rates and scalar gradients on the flamelet scale given
those properties on the resolved scale. Certainly, as mentioned in § 1.2, a body of helpful
literature exists on this subject; it is considered here. Specifically, we avoid the creation
of arbitrary variables such as the FPV used in many publications. The FPV is actually not
a good measure of progress. In order to relate increasing temperature during combustion
to the flamelet theory, scalar dissipation rate is obliged to increase as the FPV increases.
Instead, scalar dissipation rate on the flamelet scale should be related to temporally varying
and spatially varying scalar and velocity gradients and not to temperature magnitude. The
existing theory will not allow a hot gas to experience reductions in dissipation rates related
to reductions in the values of velocity and scalar gradients which surely is not consistent
with general flow patterns in turbulent combustors. Here, a new method is developed for
determining burning rate from the flamelet theory and applying it to the resolved scale
for LES or to the averaged flow field for RANS. During the burning process, temperature
is able to increase even if strain rate and the associated scalar dissipation rate might be
decreasing.

2.1. Scaling of velocity, strain rate and vorticity
Here, at first, we use approximate concepts which perhaps are reasonably well suited for a
use of mixing-length theory to describe the time-averaged turbulent flow in a shear layer.
The aim is to provide a simple framework for the first application and test of a new flamelet
theory. More sophisticated and modern statistical approaches can be found (e.g. Pope
2000), and can be used in the future for examination of turbulent flows using RANS or
LES.

The shear-driven flow on the larger scale can be characterized by a length δ and a
time-averaged velocity difference �U across that particular length that ultimately relate
to the magnitudes of the largest eddy size and the turbulence kinetic energy. Then, the
velocity, length and time scales for the resolved scales are �U, δ and δ/�U, respectively.
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The root-mean-square velocity fluctuation u′, the turbulence kinetic energy k and the
rate of dissipation of turbulence kinetic energy ε will have magnitudes of the order of
�U, �U2 and �U3/δ, respectively. The Kolmogorov scale is the smallest scale in the
turbulence energy cascade where the inertial and viscous effects balance each other (Pope
2000; White 2005). On that smallest scale, the characteristic velocity, length and time
scales become uκ = (νε)1/4, κ = (ν3/ε)1/4 and tκ = (ν/ε)1/2, respectively, where ν is
the kinematic viscosity of the fluid. One can use these Kolmogorov scales to be the scales
for flamelet analysis; a more refined approach might be to use the rate of dissipation for
scalar quantities εc discussed by Elghobashi & Launder (1983) instead of ε.

We estimate a Reynolds number for the resolved flow using Re ≡ �Uδ/ν. Vorticity, rate
of normal strain and rate of shear strain will be O(�U/δ). We estimate the magnitudes of
rate of strain and vorticity on the flamelet scale to be given as

S∗ ≡ ∂uκ

∂κ
= O

(uκ

κ

)
; uκ

κ
=
( ε

ν

)1/2 = �U
δ

Re1/2. (2.1a,b)

Clearly, for high Re values, we may expect vorticity and rate of strain on the flamelet scale
to be orders higher than found on the resolved scale. This scaling and the connection of
the strain rates and vorticity on different scales have not been addressed in prior flamelet
modelling.

Note that different estimates of a relevant resolved-scale or averaged-flow Reynolds
number are used at later points in this discussion. The intention, however, is to maintain
the same order of magnitude.

If we examine a time-averaged shear flow, the quantity �U/δ can be replaced by the
magnitude of a velocity gradient for the averaged flow treated through RANS simulations
following a mixing-length concept. For LES, that quantity can be related to a velocity
gradient on the smallest resolved scale, following an approach similar to the Smagorinsky
model for Reynolds stress. Specifically,

�U
δ

≡
∣∣∣∣∂u
∂x

∣∣∣∣ ; Re ≡
∣∣∣∣∂u
∂x

∣∣∣∣ δ2

ν
;∣∣∣∣∂uκ

∂κ

∣∣∣∣ =
∣∣∣∣∂u
∂x

∣∣∣∣Re1/2 =
∣∣∣∣∂u
∂x

∣∣∣∣3/2
δ

ν1/2 = S∗3/2
rs δ

ν1/2 . (2.2a–c)

Here, one can make a choice about the interpretation of the resolved scale strain rate
S∗

rs ≡ |∂u/∂x|. The largest component of shear strain rate on the resolved scale or for
the time-averaged flow is recommended for use. Strain rate S∗

rs can vary with location
in the flow and, for unsteady RANS and LES, can vary with time as well. The quantity
∂uκ/∂κ will be imposed as the compressive normal strain rate in the flamelet model; it
will be a negative number −(S∗

1 + S∗
2). Thus, (2.2a–c) can relate the normal strain rate

on the flamelet scale to the strain rate on the resolved scale or for the time-averaged
flow. In the case with the two-equation RANS model using k, ε theory, (2.1a,b) will yield
S∗ = (ε/δ2)1/3.

A relation must be created between the dimensional vorticity ω∗ on the resolved
scale and the dimensional vorticity ω∗

κ on the flamelet subgrid scale. (Note that,
in the development of the flamelet model, the subgrid ωκ is dimensionless.) A
reasonable relationship, mimicking the strain rate relation, is given as ω∗

κ = ω∗3/2δ/ν1/2 =
O(ω∗Re1/2) � ω∗.
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Three-dimensional rotational flamelet closure model

2.2. Scaling of the scalar properties
The inflow boundary conditions for the scalar quantities in the flamelet calculation must
be determined from the resolved scale behaviour. The scalar gradients are much larger
on the flamelet scale due to the dynamics of the turbulent flow. As a first approximation,
consider that the scalar gradients scale in proportion to the strain rates. For example, using
the mass fraction of species m, we state the rough approximation:

∂Ym,κ

∂κ
∂Ym

∂x

=
∂uκ

∂κ
∂u
∂x

= Re1/2, (2.3)

where the subscript κ designates the flamelet scale. The domain sizes between the
Kolmogorov scale and the resolved scale as κ = δRe−3/4. Setting the change in scalar
value across the given domain as the product of domain size and its gradient, the result
is �Ym,κ = �YmRe−1/4. So, the variation in scalar properties across the smallest eddy is
smaller than the variation across the larger eddies. Although the gradient of the scalar
property is much greater on the flamelet scale due to turbulent mixing, the variation
across the flamelet domain is smaller due to the greatly reduced domain size. Changes
in enthalpy h and density ρ can be determined following the same pattern. The important
implication is that, in general, the partial premixing on the smaller scales should be greater
than experienced on the largest scales.

If, on the resolved scale at a particular point x, t, the scalar property is Ym, the
bounding values for the inflow of the flamelet counterflow will be taken as Ym,κ,∞ =
Ym(x, t) + �Ym,κ and Ym,κ,−∞ = Ym(x, t) − �Ym,κ . Again, the boundary values for other
scalars can be handled identically. A consequence here will be that the incoming streams
of the flamelet counterflow are more likely to be fuel-rich or fuel-lean than pure fuel or
pure oxidizer. Multi-branched flame structures of the type found by Hamins et al. (1985),
Rajamanickam et al. (2019), Sirignano (2019, 2021c) and López-Cámara et al. (2020) can
be expected.

2.3. Scaling of energy release rate and species consumption and production rates
The resolved scale will require input from the flamelet model for the quantities giving
consumption (or production) rates per unit volume for the chemical species and energy
release rate per unit volume due to chemical reaction and perhaps also viscous dissipation
rate. The production and consumption rates within the flame are substantially higher than
the average values over the counterflow volume. It is the average over the counterflow
volume that should be used in the resolved-scale calculations. The same approach should
be used for the viscous dissipation rate in high-speed flows where that is considered to be
important. These quantities to be used on the resolved scale are given as integrals over the
flamelet scale by (3.24).

The dimensional form of the rates indicates that the integrated chemical rates are
proportional to the magnitude of the compressive strain rate S∗ ≡ S∗

1 + S∗
2 for the

counterflow. The portion of the dimensional energy release rate due to viscous dissipation
is proportional to S∗2. That subgrid strain rate is much larger than the strain rate on the
resolved scale as indicated by (2.3). The scalar gradients have similar scaling relation
between the subgrid and the resolved scale. They impact diffusion and therefore, in
diffusion-controlled combustion, they determine burning rates.
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θ

θ

ξ

x′

z′

y′

dθ/dt = ωκ/2

χ

Figure 1. Transformation to ξ, χ, z′ rotating coordinate system from x′, y′, z′ Newtonian system. Angle θ

increases in the counterclockwise direction.

3. Subgrid flamelet analysis

We formulate the problem in a quasi-steady three-dimensional form. The following
alignments are assumed. The direction of major compressive principal strain is orthogonal
to the vorticity vector direction. Specifically, the intermediate principal strain direction is
aligned with the vorticity while the scalar gradient aligns with the principal compressive
strain direction. These assumptions are consistent with the statistical findings of Nomura
& Elghobashi (1993).

3.1. Coordinate transformation
A transformation displayed in figure 1 is made from the Newtonian frame with rotating
material (due to vorticity) to a rotating, non-Newtonian frame. Let the vorticity direction
be the z′ direction in an orthogonal framework. Any x′, y′ plane contains the directions of
scalar gradients, major principal axis for compressive strain and major principal axis for
tensile strain. Note that the x′, y′, z′ directions are not correlated with coordinates on the
resolved scale. Here, ωκ is the vorticity magnitude on this subgrid (Kolmogorov) scale.
Directions x′, y′, z′ are transformed to ξ, χ, z′ wherein the material rotation is removed
from the ξ, χ plane by having it rotate at angular velocity dθ/dt = ωκ/2 relative to x′, y′.
Here, θ is the angle between the x′ and ξ axes and simultaneously the angle between the
y′ and χ axes. Clearly, we take the subgrid domain to be sufficiently small to consider a
uniform value of ω across it.

The following relations apply:

ξ = x′ cos θ + y′ sin θ; χ = y′ cos θ − x′ sin θ;
∂ξ

∂x′ = cos θ; ∂ξ

∂y′ = sin θ; ∂χ

∂x′ = − sin θ; ∂χ

∂y′ = cos θ;

uξ = u cos θ + v sin θ + χ
ωκ

2
; uχ = v cos θ − u sin θ − ξ

ωκ

2
;

∂u
∂x′ = ∂u

∂ξ
cos θ − ∂u

∂χ
sin θ; ∂u

∂y′ = ∂u
∂ξ

sin θ + ∂u
∂χ

cos θ;
∂v

∂x′ = ∂v

∂ξ
cos θ − ∂v

∂χ
sin θ; ∂v

∂y′ = ∂v

∂ξ
sin θ + ∂v

∂χ
cos θ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)
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Three-dimensional rotational flamelet closure model

Since
∂v

∂x′ − ∂u
∂y′ = ωκ, (3.2)

it follows that
∂uχ

∂ξ
− ∂uξ

∂χ
= 0. (3.3)

Namely, the flow in the rotating frame of reference does not have the vorticity imposed
on it. However, two points must be understood. Firstly, the frame is not Newtonian and
a reversed (centrifugal) force is imposed. Secondly, the expansions due to combustion
and energy release can produce new vorticity but it will integrate to zero globally. The
inflowing free-stream vorticity in the transformed coordinates is zero. Thus, in similar
fashion to classical counterflow, the vorticity develops as an odd function so that the
circulation on a contour surrounding the flow domain remains with zero value. This
creation of vorticity is related to gas expansion with density variation; however, that
expansion has a symmetry that yields an antisymmetry in the vorticity.

3.2. Governing equations
The governing equations for unsteady three-dimensional flow in the non-Newtonian
frame can be written with ui = uξ , uχ , w; xi = ξ, χ, z. The centrifugal acceleration ai =
ξω2

κ/4, χω2
κ/4, 0. The quantities p, ρ, h, hm, Ym, ω̇, μ, λ, D and cp are pressure, density,

specific enthalpy, heat of formation of species m, mass fraction of species m, chemical
reaction rate of species m, dynamic viscosity, thermal conductivity, mass diffusivity and
specific heat, respectively. Furthermore, τij is the viscous stress tensor and the Lewis
number Le ≡ λ/(ρDcp).

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 0, (3.4)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
+ ∂p

∂xi
= ∂τij

∂xj
+ ρai, (3.5)

where, following the Stokes hypothesis for a Newtonian fluid,

τij = μ

[
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij

∂uk

∂xk

]
, (3.6)

ρ
∂h
∂t

+ ρuj
∂h
∂xj

− ∂p
∂t

− uj
∂p
∂xj

= ∂

∂xj

(
λ

cp

∂h
∂xj

)
+ ∂

∂xj

(
ρD(1 − Le)ΣN

m=1hm
∂Ym

∂xj

)
− ρΣN

m=1hf ,mω̇m + τij
∂ui

∂xj
, (3.7)

ρ
∂Ym

∂t
+ ρuj

∂Ym

∂xj
= ∂

∂xj

(
ρD

∂Ym

∂xj

)
+ ρω̇m; m = 1, 2, . . . , N. (3.8)

Equations (3.4)–(3.8) together with the equation of state and the relations describing
fluid physicochemical properties give a complete description of behaviour in the
non-Newtonian reference frame. These equations are used in the remainder of this section.

Equation (3.7) is a thermodynamic statement wherein, following a material element,
we are stating the differential relation ρ dh − dp = ρT ds. The terms on the right-hand
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W.A. Sirignano

side of (3.7) are entropy-producing terms. An alternative form of the energy equation can
be developed to govern the total H of the specific enthalpy, specific chemical energy and
kinetic energy per unit mass. That is, H ≡ h + ΣN

m=1Ymhf ,m + ukuk/2. Specifically, the
vector dot product of ui with (3.5) is used to substitute for uj∂p/∂xj in (3.7) and (3.8) is
used to substitute for ω̇m there. The Lewis number Le = 1 is considered. It follows that

ρ
∂H
∂t

+ ρuj
∂H
∂xj

− ∂p
∂t

= ∂

∂xj

(
λ

cp

∂(h + ΣN
m=1Ymhf ,m)

∂xj

)
+ ∂(uiτij)

∂xj
+ ρujaj. (3.9)

The energy source term ρujaj = ρ(ωκ/2)2(ξuξ + χuχ ). If we neglect terms of the
order of the kinetic energy per mass, this effect disappears. We might still retain the
viscous dissipation rate τij∂ui/∂xj for special cases where large strain rates are expected
on the subgrid scale, as suggested by Drozda, Quinlan & Drummond (2020). The viscous
dissipation rate will have exactly the same value whether it is calculated in the Newtonian
frame or the rotating frame; this result is expected because it relates to the thermodynamics
where the laws are independent of the reference frame. The resulting equation becomes

ρ
∂h
∂t

+ ρuj
∂h
∂xj

− ∂p
∂t

≈ ∂

∂xj

(
λ

cp

∂h
∂xj

)
+ ∂

∂xj

(
ρD(1 − Le)ΣN

m=1hm
∂Ym

∂xj

)
−ρΣN

m=1hf ,mω̇m + τij
∂ui

∂xj
. (3.10)

Here, we define the non-dimensional Prandtl, Schmidt and Lewis numbers: Pr ≡ cpμ/λ;
Sc ≡ μ/(ρD); and Le ≡ Sc/Pr.

The non-dimensional forms of the above equations remain identical to the above
forms if we choose certain reference values for normalization. In the remainder
of this article, the non-dimensional forms of the above equations are considered.
The superscript ∗ is used to designate a dimensional property. The variables
u∗

i , t∗, x∗
i , ρ

∗, h∗, p∗ and ω̇∗
m, and properties μ∗, λ∗/c∗

p and D∗ are normalized respectively
by [(S∗

1 + S∗
2)μ

∗∞/ρ∗∞]1/2, (S∗
1 + S∗

2)
−1, [μ∗∞/(ρ∗∞(S∗

1 + S∗
2))]

1/2, ρ∗∞, (S∗
1 + S∗

2)μ
∗∞/ρ∗∞,

(S∗
1 + S∗

2)μ
∗∞, (S∗

1 + S∗
2), μ

∗∞, μ∗∞ and μ∗∞/ρ∗∞. The dimensional strain rates S∗
1 and

S∗
2 and vorticity ω∗

κ are normalized by S∗
1 + S∗

2. It is understood that, for unsteady
flow, the reference values for strain rates and far-stream variables and properties used
for normalization are constants; for example, averages might be taken for fluctuating
conditions. Note that the reference length [μ∗∞/(ρ∗∞(S∗

1 + S∗
2))]

1/2 is the estimate for the
magnitude of the viscous-layer thickness. In the following flamelet analysis, the vorticity
ωκ and the velocity derivatives ∂ui/∂xj are non-dimensional quantities; their dimensional
values can be obtained through multiplication by S∗

1 + S∗
2. In § 2, the algorithms are

given that relate dimensional vorticity and velocity derivatives on the resolved scale to
dimensional vorticity and velocity derivatives on the subgrid scale.

3.3. Similar form for the velocity and pressure
The stagnation point in the steady counterflow is taken as the origin ξ = χ = z = 0.
Along the line ξ = z = 0 normal to the interface, we can expect the first derivatives of
uχ , ρ, h, T and Ym with respect to either ξ or z to be zero-valued. For unsteady cases, only
symmetric situations are considered so that the stagnation point remains at the origin and
the interface remains at χ = 0. The velocity components uξ and w are odd functions of ξ

and z, respectively, going through zero and changing sign at that line. Consequently, upon
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Three-dimensional rotational flamelet closure model

neglect of terms of O(ξ2) and O(z2), the variables uχ , ρ, h, T and Ym can be considered to
be functions only of t and χ . For steady flow, the density-weighted Illingworth (1949)
transformation of χ can be used to replace χ with η ≡ ∫ χ

0 ρ(χ ′) dχ ′. Neglect of the
same order of terms implies that uξ = S1ξ(df1/dη) and w = S2z(df2/dη). Note that uξ

is independent of z and w is independent of ξ in this case where no shear strain is
imposed on the incoming stream(s). At the edge of the viscous layer at large positive η,
df1/dη → 1, df2/dη → 1, f1 → η and f2 → η. Ordinary differential equations are created
here through the variable η and the convenient definition is made that ()′ ≡ d()/dη. Note
that other transformations of the χ coordinate can be made, e.g. weighting by transport
properties (Linan et al. 2017; Weiss et al. 2018) rather than density.

In the non-dimensional form given by (3.4)–(3.10), the dimensional strain rates S∗
1

and S∗
2 are each normalized by the dimensional sum S∗

1 + S∗
2. Thus, the non-dimensional

relation is S2 = 1 − S1 and only one independent non-dimensional strain-rate parameter
is needed. Nevertheless, two strain rates are presented above and in the following analysis
with the understanding that one depends on the other such that S1 + S2 = 1. Values of
S1 + S2 are explicitly stated in our analysis without substitution of the unity value. This
choice clarifies whether a particular term when converted to a dimensional form depends
on S∗

1, S∗
2 or the sum of the two strain rates.

For steady state, the continuity equation (3.4) is readily integrated to give

ρuχ = −S1f1(η) − S2f2(η). (3.11)

For derivatives of variables that are functions of η only, the prime is used to indicate
differentiation with respect to η. Then,

u′
χ = S1f1(η) + S2f2(η)

ρ2 ρ′ − S1f ′
1(η) + S2f ′

2(η)

ρ
. (3.12)

Thus, the incoming inviscid flow outside the boundary layer is described by uχ = −(S1 +
S2)η for positive η and uχ = −(S1 + S2)η/ρ−∞ for negative η. Note that the same result
is found for the unsteady or steady incompressible state where there is no need to use η in
place of χ since ρ = 1 everywhere. Then, uχ = −(S1 + S2)χ for the external incoming
flow.

Equations (3.11) and (3.12) may be substituted into (3.5) to determine the pressure
gradient:

∂p
∂ξ

= ρ[ρμS1f ′′′
1 + S1f ′′

1 (ρμ)′ + (S1f1 + S2f2)S1f ′′
1 +

(ωκ

2

)2 − (S1f ′
1)

2]ξ,

∂p
∂η

= 4
3
(ρμu′

χ )′− 2
3
(S1f ′

1+S2f ′
2)μ

′+ μ

3
(S1f ′′

1 +S2f ′′
2 ) +

(ωκ

2

)2
χ + (S1f1 + S2f2)u′

χ ,

∂p
∂z

= ρ[ρμS2f ′′′
2 + S2f ′′

2 (ρμ)′ + (S1f1 + S2f2)S2f ′′
2 − (S2f ′

2)
2]z.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.13)

It follows from the η pressure gradient in (3.13) that ∂p/∂η is a function only of η.
Therefore, ∂2p/∂ξ∂η = 0 and ∂2p/∂z∂η = 0. Now, the coefficient of ξ on the right-hand
side of the ξ pressure gradient in (3.13) must be constant. The same conclusion is made for
the coefficient of z on the right-hand side of the z pressure gradient in (3.13). At η = ∞,
f ′
1 = f ′

2 = 1 and f ′′
1 = f ′′

2 = f ′′′
1 = f ′′′

2 = 0 which allows the two constants to be determined.
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Specifically, we obtain

ρμf ′′′
1 + f ′′

1 (ρμ)′ + (S1f1 + S2f2)f ′′
1 + S1

(
1
ρ

− ( f ′
1)

2
)

+ ω2
κ

4S1

(
1 − 1

ρ

)
= 0,

ρμf ′′′
2 + f ′′

2 (ρμ)′ + (S1f1 + S2f2)f ′′
2 + S2

(
1
ρ

− ( f ′
2)

2
)

= 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.14)

The boundary conditions will use the assumption that two velocity components asymptote
to the constant values uξ (∞), uξ (−∞), w(∞) and w(−∞) at large magnitudes of η. The
stream function bounding the two incoming streams is arbitrarily given a zero value and
placed at η = 0.

f ′
1(∞) = 1; f ′

1(−∞) =
√

1
ρ(−∞)

+
(

ωκ

2S1

)2 (
1 − 1

ρ(−∞)

)
; f1(0) = 0;

f ′
2(∞) = 1; f ′

2(−∞) = 1√
ρ(−∞)

; f2(0) = 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.15)

In the incompressible case where density is uniform throughout the flow, i.e. ρ = 1,
the solutions become simply that f ′

1(η) = 1 and f ′
2(η) = 1 everywhere. When density

varies through the flow because of heating or variation of composition, uξ and w vary
with χ , thereby creating a shear stress and vorticity albeit that the frame transformation
removed vorticity and shear from the incoming flow. The vorticity will be created in an
antisymmetric manner since the two velocity components are odd functions of ξ and z,
respectively. Thereby, the circulation remains zero for the transformed counterflow.

For steady flows, S1 + S2 = 1. The dependence of uχ on f ≡ S1f1 + S2f2 is shown by
(3.11). Thus, the function f will be important in determining both the field for uχ and the
scalar fields. From (3.14), an equation for f can be formed:

ρμf ′′′ + f ′′(ρμ)′ + ff ′′ + 1
ρ

− ( f ′)2 + ω2
κ

4

(
1 − 1

ρ

)
= 2S1S2

(
1
ρ

− f ′
1f ′

2

)
. (3.16)

Consequently, f as well as f1 and f2 depend on both S1 and S2, not merely on S1 + S2.
That is, the particular distribution of the normal strain rate between the two transverse
direction matters. Functions f and f1 also depend directly on ωκ (unless S1 = 0). Function
f2 depends on ωκ through its coupling with f1. In our calculations, we consider a planar
case (S1 = 1.0, S2 = 0) where the product S1S2 is minimized and the vorticity vector is
normal to the plane with strain. The case where S1 = S2 = 0.5 has the maximum value
for the product S1S2 would be axisymmetric if ω = 0. However, symmetry is lost if the
rotation exists.

In the outer flow where variability of viscosity and density may be neglected and uχ →
η/ρ∞ as η → ∞, the χ -momentum equation from (3.13) becomes

∂

∂η

[
p − 4ρμ

3
u′
χ

]
→ (S1f1 + S2f2)u′

χ +
(ωκ

2

)2
χ → (S1 + S2)ηu′

χ +
(ωκ

2

)2 η

ρ∞
,

∂p
∂η

→
[(ωκ

2

)2 − (S1 + S2)
2
]

η

ρ∞
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.17)

The negative pressure gradient will be reduced by the centrifugal effect. Essentially, the
pressure gradient serves to decelerate the incoming stream in a counterflow; here, it is
helped by the imposed acceleration.
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Three-dimensional rotational flamelet closure model

The variable-density-and-viscosity case requires some couplings with (3.7) and (3.8)
and with an equation of state and fluid-property laws which affect ρ and μ.

The pressure derivative can be determined by substituting from (3.11) and (3.12) into
(3.13):

∂p
∂η

= 4
3

(
ρμ

[
S1f1(η) + S2f2(η)

ρ2 ρ′ − S1f ′
1(η) + S2f ′

2(η)

ρ

])′
+
(ωκ

2

)2
χ

+ μ

3
(S1f ′′

1 + S2f ′′
2 ) − 2

3
(S1f ′

1 + S2f ′
2)μ

′

+ (S1f1 + S2f2)
[

S1f1(η) + S2f2(η)

ρ2 ρ′ − S1f ′
1(η) + S2f ′

2(η)

ρ

]
,

p(x, η, z) = pref + 4μ(η)

3ρ(η)

[
(S1f1(η) + S2f2(η))ρ′ − ρ(η)(S1f ′

1(η) + S2f ′
2(η))

]
+ 4μ(0)

3
(S1f ′

1(0) + S2f ′
2(0))

+
∫ η

0

[
μ(ζ )

3
(S1f ′′

1 (ζ ) + S2f ′′
2 (ζ )) − 2

3
(S1f ′

1(ζ ) + S2f ′
2(ζ ))μ′

]
dζ

+
∫ η

0
(S1f1(ζ ) + S2f2(ζ ))

[
S1f1(ζ ) + S2f2(ζ )

ρ(ζ )2 ρ′ − S1f ′
1(ζ ) + S2f ′

2(ζ )

ρ(ζ )

]
dζ

− S2
1x2

2
− S2

2z2

2
+
(ωκ

2

)2
∫ η

0
χ(ζ ) dζ. (3.18)

The viscous dissipation Φ can be determined as follows:

Φ ≡ τij
∂ui

∂xj
=μ

[
4
3

((
∂uξ

∂ξ

)2

+
(

∂uχ

∂χ

)2

+
(

∂w
∂z

)2

− ∂uξ

∂ξ

∂uχ

∂χ
− ∂w

∂z
∂uχ

∂χ
− ∂w

∂z
∂uξ

∂ξ

)

+
(

∂uξ

∂χ

)2

+
(

∂w
∂χ

)2
]

= μ

(
4(S1f ′

1)
2 + 4(S2f ′

2)
2 + 8

3
S1S2f ′

1f ′
2 − 4

(S1f1 + S2f2)(S1f ′
1 + S2f ′

2)

ρ
ρ′

+4
3

(
S1f1 + S2f2

ρ
ρ′
)2
)

. (3.19)

Here, neglect is made of the quantities μ(∂uξ /∂χ)2 and μ(∂w/∂χ)2 because they are of
O(ξ2) and O(z2), respectively.

An exact solution of the variable-density Navier–Stokes equation has been obtained
subject to determination of ρ and μ through solutions of the energy and species equations
as discussed below. There has been no need for use of a boundary-layer approximation.
Thus, the solution here is the natural solution, subject to neglect of terms of O(ξ2) and
O(z2). Unlike the incompressible counterflow, a viscous layer exists with the three normal
strains and normal viscous stresses varying through the layer due to varying density and
viscosity. Shear strain does not appear explicitly in the incoming flow because it has been
removed through the coordinate transformation to the rotating frame. Nevertheless, its
effect appears through the rotational term.
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3.4. Similar form for the scalar fields
Consider the reacting, steady case keeping viscous dissipation. Assume Prandtl number
Pr is constant. Substitution from (3.7) and (3.8) yields the following ODEs:

(ρμh′)′ + Prfh′ + (ρ2D(Pr − Sc)ΣN
m=1hmY ′

m)′ = PrΣN
m=1hf ,mω̇m − Pr

Φ

ρ
,

(ρ2DY ′
m)′ + fY ′

m = −ω̇m; m = 1, 2, . . . , N. (3.20)

If Le = 1, i.e. Pr = Sc, the new scalar h̃ ≡ h + ΣN
m=1hf ,mYm is governed by

(ρμh̃′)′ + Prf h̃′ = −Pr
Φ

ρ
. (3.21)

When the viscous dissipation is negligible, h̃ is a conserved scalar indicating that the sum
of thermal energy plus chemical energy is in an advective–diffusive balance. It remains to
use thermodynamic relations to substitute for ρ and μ in terms of h and p.

Now, we address the special case where ρμ = 1. The perfect gas law and the assumption
of constant specific heat cp will give the relation that 1/ρ = h. Then, (3.14), (3.15), (3.20)
and (3.21) yield

f ′′′
1 + ff ′′

1 + S1[h − ( f ′
1)

2] + ω2
κ

4S1
(1 − h) = 0,

f ′′′
2 + ff ′′

2 + S2[h − ( f ′
2)

2] = 0,

Y ′′
m + PrfY ′

m = −Prω̇m; m = 1, 2, . . . , N,

h′′ + Prfh′ +
(

1
Le

− 1
)

ΣN
m=1hmY ′′

m = PrΣN
m=1hf ,mω̇m − Pr

Φ

ρ
,

h̃′′ + Prf h̃′ = −Pr
Φ

ρ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.22)

The boundary conditions are

f ′
1(∞) = 1; f ′

1(−∞) =
√

h−∞ +
(

ωκ

2S1

)2

(1 − h−∞); f1(0) = 0;

f ′
2(∞) = 1; f ′

2(−∞) =
√

h−∞; f2(0) = 0;

h(∞) = 1; h(−∞) = 1
ρ−∞

;

Ym(∞) = Ym,∞; Ym(−∞) = Ym,−∞;
h̃(∞) = 1 + ΣN

m=1hf ,mYm,∞; h̃(−∞) = h−∞ + ΣN
m=1hf ,mYm,−∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.23)

Equations (3.14) indicate a dependence of the heat and mass transport on f ≡ S1f1 +
S2f2. Manipulation of the first two equations of (3.22) leads to an ODE for f with S1S2 and
S1S2f ′

1f ′
2 as parameters, clearly indicating that generally f will have a dependence on S1S2.

Thus, the behaviour for the counterflow can vary from the planar value of S1 = 1, S2 = 0
(or vice versa) or from the case S1 = S2 = 1/2. This clearly shows that distinctions must be
made amongst the various possibilities for three-dimensional strain fields as S1S2 varies
between large negative numbers and 1/4. An exception will be the incompressible case
with constant properties where the S1S2 terms cancel in the equation for f .
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Three-dimensional rotational flamelet closure model

The vorticity ωκ impacts directly f1 and f ; thereby, it is affecting the velocity field.
Then, through the advection of the scalar properties, there is impact on mass fractions
and enthalpy. If the vorticity ωκ = 0, a simple inspection of the governing ODEs leads to
the conclusion that the values for f1, f ′

1, f2, f ′
2, u/x and w/z can be interchanged with the

values for f2, f ′
2, f1, f ′

1, w/z and u/x, respectively, when S1 and S2 are replaced by 1 − S1
and 1 − S2, respectively.

Note that, for S1 > 1 or S2 > 1 (which imply S2 < 0 or S1 < 0, respectively), there
would be incoming streams from two directions. One incoming stream would have a
prescribed velocity profile in the viscous layer determined as a local exact solution to the
Navier–Stokes conditional on its matching the profile determined by upstream conditions
for the flow in that direction; this situation is too highly contrived and is not considered
here. Thus, S1 and S2 are always each non-negative and bounded above by unity value
in our considerations here. The figures show results for three strain rates: S1 = 0 (planar
case); S1 = 0.25 (three-dimensional strain); and S1 = 0.5 (axisymmetric case).

If the viscous dissipation is negligible, h̃ becomes a conserved scalar. Other conserved
scalars can be created. Mixture fraction is a popular choice. For the case of one-step
kinetics with Le = 1 and negligible viscous dissipation, the Shvab–Zel’dovich variables,
α ≡ YF − νSYO and β ≡ h + νSYOQ, become conserved scalars. Parameters YF, YO, νS
and Q are fuel mass fraction, oxygen mass fraction, stoichiometric mass ratio and chemical
energy per unit mass of fuel, respectively. For steady-state and time-averaged flows, these
conserved scalars vary monotonically across a flow field and can be used to replace one
of the spatial coordinates. This coordinate transformation in the counterflow configuration
results in a new form of the scalar equations where the advective term is not present;
a reactive–diffusive balance results. This result has classically been used (Peters 2000;
Pierce & Moin 2004) together with an incompressible-flow assumption which gives an
overly simplistic solution for the velocity field. Sirignano (2019, 2021a,c) has shown
the transformation gains little when the variable density is considered; furthermore, the
variable density significantly affects the reacting counterflow.

Consider the production or consumption rate of a particular species over the counterflow
volume. We can integrate over a volume either using the original form in (3.8) or,
more conveniently, using (3.22) to get exactly the same result. Consider the volume
−a < ξ < a, −b < y < b, −c < z < c. The choices of lengths a and c will not matter
on a per-unit-volume basis since mass fraction Ym and reaction rate ω̇m do not vary with x
or z. Length c is chosen to be of the order of the Kolmogorov scale. Volume V = 8abc, Φ̃

is the volume-averaged viscous dissipation rate and ρ̃ω̇m is the average mass production
rate over the volume. It follows from integration of (3.20) after multiplication by density
ρ and division by PrV that

∫ a

−a

∫ b

−b

∫ c

−c

ρ

PrV
[Y ′′

m + PrfY ′
m + Prω̇m] dx dy dz = 0; m = 1, 2, . . . , N,

ρ̃ω̇m ≡ 1
V

∫
V

ρω̇m dV = − 1
2b

∫ η(b)

η(−b)

fY ′
m dη; m = 1, 2, . . . , N,∫ a

−a

∫ b

−b

∫ c

−c

ρ

PrV

[
h′′ + Prfh′ − PrΣN

m=1hf ,mω̇m + Pr
Φ

ρ

]
dx dy dz = 0,

ΣN
m=1hf ,mρ̃ω̇m − Φ̃ = 1

2b

∫ η(b)

η(−b)

fh′ dη.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.24)
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The quantity ρ̃ω̇m is the only value that need be transferred from the subgrid flamelet
analysis to the resolved-scale simulation. Note that the reaction rate is invariant under
the change of reference frame. Here, b has been considered large enough so that Y ′

m = 0
and h′ = 0 at those boundaries are good approximations. However, the value for ρ̃ω̇m
depends on the chosen domain size 2b, which has a value of O(10) typically in our analysis.
Future studies should examine the optimization of the domain size b. Also, Le = 1 has
been considered. The volume-averaged viscous dissipation rate Φ̃ may be obtained by
integration of (3.19).

Consider a species m that is flowing inward away from η = ∞ towards η = 0. If it
is being produced (consumed), the derivative Y ′

m in (3.24) will be negative (positive) for
η > 0 where velocity v < 0 and f > 0. The signs are opposite for a species flowing inward
away from η = −∞ and towards η = 0. The equation provides two ways to evaluate the
average production (consumption) rate for species m. The volume integral of the reaction
rate has highly nonuniform integrand values over the space while the outflow integral over
η has a smoother variation of the integrand.

The flamelet model requires inputs that are scaled from the resolved flow. Specifically,
rate of strain and vorticity, pressure and the inflowing scalar values for the counterflow are
needed. The magnitude of the resolved-scale velocity is not relevant because the subgrid
velocities are measured relative to a frame moving with a Galilean transformation. The
flamelet can give back to the resolved flow the instantaneous value for energy release rate.

3.5. Chemical kinetics model
The above equations can be readily applied for diffusion flame counterflows and partially
premixed flame counterflows, as explained in the following sections. They can also
describe situations where multi-branched flames exist. For the case of zero vorticity,
i.e. ω = 0, the generality has been shown by Sirignano (2019, 2021a). Although the
analysis allows for the use of detailed chemical kinetics in the future, we focus here
on propane–oxygen flows with one-step kinetics. However, results are expected to
be qualitatively more general, applying to situations with more detailed kinetics and
to other hydrocarbon–oxygen or hydrocarbon–air combinations. Westbrook & Dryer
(1984) kinetics are used; they were developed for premixed flames but any error for
non-premixed flames is viewed as tolerable often here because diffusion would generally
be rate-controlling. Using asterisks to denote dimensional quantities, one may deduce that

ω∗
F = −A∗ρ∗0.75Y0.1

F Y1.65
O e−50.237/h̃, (3.25)

where the ambient temperature is set at 300 K and density ρ∗ is given in units of
kilograms per cubic metre. Here, A∗ = 4.79 × 108 (kg m−3)−0.75 s−1. The dimensional
strain rate S∗

1 + S∗
2 (at the subgrid scale) is used to normalize time and reaction rate. In

non-dimensional terms,

ω̇F = −A∗ρ∗∞
0.75

S∗
1 + S∗

2
h̃−0.75Y0.1

F Y1.65
O e−50.237/h̃,

ω̇F = − Da

h̃0.75
Y0.1

F Y1.65
O e−50.237/h̃.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.26)
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Three-dimensional rotational flamelet closure model

The above equation defines the Damköhler number Da. Furthermore, we set Da ≡ KDaref ,
where

Daref ≡ Ã(10 kg m−3)0.75

(104 s−1)
= 2.693 × 105; K ≡

[
ρ∗∞

10 kg m−3

]0.75 104 s−1

S∗
1 + S∗

2
. (3.27a,b)

Values of 10 kg m−3 and 10 000 s−1 are conveniently chosen as reference values for density
and strain rate, respectively. The reference value for density implies an elevated pressure.
The strain-rate reference value is in the middle of an interesting range for this chemical
reaction. Suppose the resolved scale has a velocity, a mixing length and kinematic viscosity
with the following orders of magnitude, respectively: 10 m s−1, 0.1 m and 10−4 m2 s−1.
Then, we may estimate Re = 104 and resolved-scale strain rate ∂u/∂x = 100 s−1. Thereby,
(2.3) yields that ∂uκ/∂κ = Re1/2∂u/∂x = S∗

1 + S∗
2 = 104 s−1.

Clearly, there is no need to set pressure (or its proxy, density) and the strain rate
separately for a one-step reaction. For propane and oxygen, the mass stoichiometric ratio
ν = 0.275.

The non-dimensional parameter K increases (decreases) as the strain rate decreases
(increases) and/or the pressure increases (decreases). Our reference case is K = 1 and the
range covered includes O(10−1) ≤ K ≤ O(102), allowing for the needed variation in strain
rate and pressure to sustain premixed flamelets, diffusion flamelets and multi-branched
flamelets.

The system of ODEs is solved numerically using a relaxation method and central
differences. Solution over the range −5 ≤ η ≤ 5 provides adequate fittings to the
asymptotic behaviours. The parameters that are varied are K, Pr and S1 (and thereby
S2 = 1 − S1). Most calculations have Pr = 1 with emphasis on the effect of variation in
K, i.e. pressure and strain rate.

3.6. Uncoupled diffusion flamelet calculations
Now, we treat a situation with a three-dimensional diffusion flame structure at the subgrid
level. Figures 2 and 3 show the influence of vorticity on the flamelet stability near the
extinction limit. The rotation of the flamelet due to vorticity causes a centrifugal effect
on the counterflow velocity and thereby on the residence time in the vicinity of the
reaction zone. The dashed red and solid red curves represent K values of 0.195 and 0.196,
respectively, both without vorticity. Despite the very modest difference in K, one survives
as a strong flame and the other is basically extinguished. By applying K = 0.195 and
ωκ = 1.0 and therefore rotational speed of value dθ/dt = 0.5, the solid blue curve is
obtained, indicating a strong flame with regard to both reaction rate and peak temperature
or enthalpy is induced by the rotation. Actually, the K = 0.196, ωκ = 1.0 curve falls right
on the solid blue curve as well, except in figure 2(d) where it appears as a dashed purple
curve. The rotation causes a lower mass flux f than was obtained without rotation. The
inflow rate is diminished because the centrifugal effect creates a more adverse pressure
gradient. However, the slower flow rate allows a longer residence time and modifies the
extinction limit. As K is lowered to values of 0.180 or 0.185, the flame is essentially
extinguished in spite of the increased residence time due to the rotational effects.

The rotation also causes a decrease in f ′
1 and therefore in the ξ component of velocity

as shown in figure 3. There is an associated increase in f ′
2 and therefore an increase in

the z component of velocity. Basically, the low-density products of combustion more
easily flow in the z direction wherein no centrifugal effect is applied. This gives some
physical explanation to the findings of Nomura & Elghobashi (1993) where, for reacting
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Figure 2. Diffusion flame with varying vorticity and Damköhler number, for S1 = 0.75; S2 = 0.25. Dashed
red, K = 0.195, ωκ = 0; solid red, K = 0.196, ωκ = 0; solid blue, K = 0.196, ωκ = 1.0; solid purple,
K = 0.185, ωκ = 1.0; dashed blue, K = 0.180, ωκ = 1.0. The K = 0.195, ωκ = 1.0 case is covered by the
solid blue curve, except in (d) where it is given by the dashed purple curve. (a) Enthalpy, h/h∞. (b) Fuel mass
fraction, YF . (c) Product of mass ratio and oxygen mass fraction, νYO. (d) Integral of reaction rate,

∫
ω̇F dη.

(e) Reaction rate, ω̇F .

flows but not for non-reacting flows, the major extensional axis tends to align parallel
with the vorticity vector. Specifically, when reaction and energy release occur, the
outflow for the counterflow configuration will have the greater extensional strain rate in
the principal direction aligned with the vorticity. The outflow velocity in the principal
direction orthogonal to the vorticity might still experience a higher magnitude than the
inflow velocity in the compressive-strain direction due to the density decrease in the flow.
However, its increase will be less profound than for the velocity component aligned with
the vorticity.

The asymptotic value as η → ∞ in figure 2(d) gives the integrated burning rate in the
subgrid volume. It should be realized that the factor 2b from (3.24) has not yet been
factored into the integral result in the figures; it will reduce the values by an order of
magnitude in order to give the average over the volume. It is seen that rotation affects
burning and burning rate is negligible in several cases. The decrease in mass flux rate
with increasing rotation rate (i.e. vorticity) results in a decreased burning rate through the
subgrid volume.
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Figure 3. Diffusion flame with varying vorticity and Damköhler number, for S1 = 0.75; S2 = 0.25. Dashed
red, K = 0.195, ωκ = 0; solid red, K = 0.196, ωκ = 0; solid blue, K = 0.196, ωκ = 1.0; solid purple,
K = 0.185, ωκ = 1.0; dashed blue, K = 0.180, ωκ = 1.0. The K = 0.195, ωκ = 1.0 case is covered by the
solid blue curve. (a) Mass flux per area, f = −ρuχ . (b) Velocity component, f ′

1 = uξ /(S1ξ). (c) Velocity
component, f ′

2 = w/(S2z). (d) Velocity component, uχ .

The values of S1 and S2 do have some consequence on the behaviour. In figures 4 and 5,
S1 varies between 0.750 and 0.333; S2 = 1 − S1 and varies accordingly. As S1 decreases
and S2 increases, the flame zone moves slightly, the integrated burning rate decreases and
the normalized mass flux f through the counterflow decreases. Very interestingly, as S1
decreases, both the uξ velocity component and f ′

1 decrease while the w velocity component
and f ′

2 increase. Velocity component uχ also decreases. As the S1 value moves from 0.500
to 0.333, some reversal of the uξ velocity occurs in the region of highest temperature
and lowest density. In that region, there is inflow (compressive strain) in two directions
with outflow (tensile strain) only in the z direction. This implies that, for S1 = 0.333, an
inflowing particle of material enters at first with decreasing magnitude of χ and increasing
values of ξ and z in Lagrangian time. Then, it changes to decreasing values of both χ

and ξ in that time but remaining with an increasing value for z. Note that a case with
K = 0.195, ωκ = 1.0 and S1 = 0.250 is not plotted here. It resulted in extinction of the
flame.

As seen from figures 3 and 5, because of density gradients, velocity gradients exist in
the new rotating coordinate system such that vorticity components result in the z and ξ

direction from f ′′
1 and f ′′

2 , respectively. However, those velocity components and thereby
the associated vorticity components have an antisymmetry. Thus, the induced circulation
around the flamelet due to density gradients is zero. Only the circulation due to the
imposed vorticity ωκ will exist. These findings are consistent with the results of Sirignano
(2019, 2021a).

Clearly, the combination of fluid rotation, variable density and three-dimensional
structure has major consequences for flamelet behaviour.
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Figure 4. Diffusion flame with varying strain rate, for K = 0.195, ωκ = 1.0. Blue, S1 = 0.750, S2 = 0.250;
red, S1 = 0.500, S2 = 0.500; purple, S1 = 0.333, S2 = 0.667. (a) Enthalpy, h/h∞. (b) Fuel mass fraction, YF .
(c) Product of mass ratio and oxygen mass fraction, νYO. (d) Integral of reaction rate,

∫
ω̇F dη. (e) Reaction

rate, ω̇F .

3.7. Uncoupled premixed flame calculations
The premixed flame is treated with consideration of a mixture that is 12 % propane by mass
and 43.5 % oxygen by mass (stoichiometric proportion), with the remainder an inert gas.
This flame structure requires a much larger Damköhler number to exist when compared
with the diffusion flame. It extinguishes under high strain rate (i.e. low residence time in
the counterflow). In figures 6 and 7, the rate of strain values are held constant at S1 = 0.750
and S2 = 0.250 while Da and/or ωκ are varied. The value of K varies between 15 and 40
while ωκ varies between 0 and 1. At lower values of the imposed vorticity, the flame
extinguishes. Increased vorticity strengthens the centrifugal effect, increasing the efflux of
the counterflow in the z direction aligned with the vorticity vector.

Figure 6 shows that modest changes for the Damköhler number Da can result in
differences in burning rate while figure 7 shows modification in the flame velocity. As
Da increases, the flame shifts to a position in the counterflow with higher incoming
velocity and mass flux. All three components of the velocity generally increase as Da
increases. There is an increase in the chemical reaction rate leading to an increase in the
premixed flame speed and a flame position farther from the counterflow interface where
the incoming velocity is larger in magnitude. At the lowest value of Da shown in the

945 A21-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.562


Three-dimensional rotational flamelet closure model

–2 –1 0 1 2
–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

–3 –2 –1 0 1 2 3
1.0

1.5

2.0

2.5

3.0

–3 –2 –1 0 1 2 3
–5

0

5

10

15

(a)

(c)

f

f2
′

(b)

(d )

f1
′

uχ

η η

Figure 5. Diffusion flame with varying strain rate, for K = 0.195, ωκ = 1.0. Blue, S1 = 0.750, S2 = 0.250;
red, S1 = 0.500, S2 = 0.500; purple, S1 = 0.333, S2 = 0.667. (a) Mass flux per area, f = −ρuχ . (b) Velocity
component, f ′

1 = uξ /(S1ξ). (c) Velocity component, f ′
2 = w/(S2z). (d) Velocity component, uχ .

plots, the flame extinguishes as the reaction rate decreases because, in the spatially varying
velocity field, it cannot obtain the needed residence time. The higher velocities result from
the combination of an increase in mass burning rate and a decrease in density.

Vorticity produces the centrifugal effect that decreases outflow rate in the χ direction
while increasing the outflow rate in the z direction. It also causes the flame to stabilize at
a larger distance from the interface at η = 0. The inflow mass flux, reflected through f ,
decreases as ωκ increases, implying an increase in the residence time.

It is noteworthy that the premixed flames require Da values that are orders of magnitude
larger than required for diffusion flames. We can expect that they therefore are less likely
to appear in highly strained turbulent flows.

3.8. Uncoupled multi-branched flamelet calculations
In figures 8 and 9, results are shown for a multi-flame configuration with K = 0.200 where
a fuel-rich mixture with YF = 2/3 and YO = 1/3 exists on one side of the counterflow
flame and a fuel-lean mixture with YF = 1/12 and YO = 11/12 exists on the other side.
This allows for the possibility of multi-flame structures as found by Sirignano (2021a), in
contrast to the FPV approach which disallows multi-branched or premixed flame behaviour
by using a mixture fraction Z domain that extends for 0 ≤ Z ≤ 1. The figures show that
three flame structures appear based on this new theory: a fuel-lean premixed flame on the
left, a diffusion flame in the centre and a fuel-rich premixed flame on the right. As noted
by Sirignano (2021b), the two premixed flames are not independent structures but rather
depend substantially on heat flux from the diffusion flame. The figures also show that, as
vorticity and rotation rate increase, the burning rate for each of the three flame branches
and mass flux through the counterflow decrease. The location of each of the flames shifts
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Figure 6. Premixed flame: influence of Damköhler number and vorticity, for S1 = 0.750, S2 = 0.250.

Blue, ωκ = 1.0, K = 40; red, ωκ = 1.0, K = 30; dashed blue, ωκ = 1.0, K = 15; purple, ωκ = 0, K = 30.
(a) Enthalpy, h/h∞. (b) Fuel mass fraction, YF . (c) Product of mass ratio and oxygen mass fraction, νYO.
(d) Integral of reaction rate,

∫
ω̇F dη. (e) Reaction rate, ω̇F .

towards the fuel-lean side as rotation rate increases. Also, the fraction of the outflow in the
direction aligned with the vorticity increases substantially with increasing rate of rotation.

For the multi-branched flame as well as the simple diffusion flame, fluid rotation,
variable density and three-dimensional structure combine to have major consequences for
the behaviour.

For both the multi-branched flame and the single diffusion flame, values of S1 and
S2 have a consequence on the behaviour. In figures 10 and 11, S1 varies between 0.750
and 0.333. Also, S2 = 1 − S1 and varies accordingly. Again, as S1 decreases and S2
increases, the flame zone moves slightly, the integrated burning rate decreases and the
normalized mass flux f through the counterflow decreases. As S1 decreases, the uχ velocity
component increases while the uξ velocity component decreases and, below S1 = 0.500,
the uξ velocity reverses direction in the region of highest temperature and lowest density.
So, again in that low-density region, there is inflow (compressive strain) in two directions
with outflow (tensile strain) only in the z direction. The results show in figure 12 that for
S1 = 0.333, an inflowing particle of material enters at first with decreasing magnitude of
χ with Lagrangian time and increasing values of ξ and z in time. However, a reversal for
the ξ direction is seen with all the outflow going in the z direction. As noted earlier, the
behaviour is consistent with direct numerical simulation findings concerning alignment of
vorticity and principal strain axes for reacting flows by Nomura & Elghobashi (1993).
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Figure 7. Premixed flame: influence of Damköhler number and vorticity, for S1 = 0.750, S2 = 0.250. Blue,
ωκ = 1.0, K = 40; red, ωκ = 1.0, K = 30; dashed blue, ωκ = 1.0, K = 15; purple, ωκ = 0, K = 30. (a) Mass
flux per area, f = −ρuχ . (b) Velocity component, f ′

1 = uξ /(S1ξ). (c) Velocity component, f ′
2 = w/(S2z).

(d) Velocity component, uχ .

Interestingly, the partially premixed flames in the multi-branched structure are driven
by heat flux from the diffusion flame as shown by Sirignano (2021b). Thus, they survive
extinction at much lower Da values than independent premixed flames can.

4. Shear flow on the resolved scale: planar jet

The ultimate objective is to connect this new flamelet model with RANS, unsteady
RANS and LES computations. Thereby, a limit on dimensionality or time dependence
of the large-scale resolved flow would not be sought. The longer-term goal is to couple
the subgrid flamelet model to a multi-scale, fully unsteady LES. However, in this first
application which is aimed towards gathering understanding of the method and not
yet towards solving a new problem, a much simpler resolved scale is sought. So, we
seek a resolved scale that is time-averaged with minimal dimensionality. This drives the
consideration towards a simple mixing-length examination of two-dimensional mixing and
reacting flows. This simple example is only a demonstration of the use of the new flamelet
model; in the longer term, many of the simplifying assumptions in this section should
be abandoned for the model to achieve its full potential. In the following discussion, the
turbulent planar mixing layer is considered.

We desire a solution for the two-dimensional, time-averaged, turbulent shear layer
with variable density. The density can vary due to variations in temperature and/or
composition. Pressure gradients in the mixing layer are considered negligible and the
boundary-layer approximation is employed. Pope (2000) and White (2005) present useful
overviews on the topic. Görtler (1942) treated a non-reacting incompressible case, finding
a one-dimensional similar solution with y/x as the independent similarity variable.
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Figure 8. Multi-branched flame with K = 0.200 and varying vorticity, for S1 = 0.75; S2 = 0.25. Blue, ωκ = 0;
red, ωκ = 1.50; purple, ωκ = 1.0. (a) Enthalpy, h/h∞. (b) Fuel mass fraction, YF . (c) Product of mass ratio
and oxygen mass fraction, νYO. (d) Integral of reaction rate,

∫
ω̇F dη. (e) Reaction rate, ω̇F .

We have a long-standing Illingworth (1949) template with laminar flow to modify the
relations for the similar compressible flow. However, the reacting flow does not allow for
a similar solution in either a laminar or a turbulent case (except for infinite reaction rate
with diffusion flames). Here, we take a pathway using a time-averaged two-dimensional
turbulent planar mixing layer. We use a mixing-length concept for the eddy viscosity and
diffusivities.

4.1. Reacting shear-layer analysis
We consider the averaged turbulent flow, e.g. steady-state two-dimensional flow. The
density is variable. The pressure gradient is zero and the boundary-layer approximation
is used. The governing equations for the time-averaged velocity components u, v in x, y
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Figure 9. Multi-branched flame with K = 0.200 and varying vorticity, for S1 = 0.75; S2 = 0.25. Blue, ωκ = 0;
red, ωκ = 1.50; purple, ωκ = 1.0. (a) Mass flux per area, f = −ρuχ . (b) Velocity component, f ′

1 = uξ /(S1ξ).
(c) Velocity component, f ′

2 = w/(S2z). (d) Velocity component, uχ .
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Figure 10. Multi-branched flame with varying strain rate, for K = 0.200, ωκ = 1.0. Blue, S1 = 0.750,

S2 = 0.250; red, S1 = 0.500, S2 = 0.500; purple, S1 = 0.333, S2 = 0.667. (a) Enthalpy, h/h∞. (b) Fuel mass
fraction, YF . (c) Product of mass ratio and oxygen mass fraction, νYO. (d) Integral of reaction rate,
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(e) Reaction rate, ω̇F .
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Figure 11. Multi-branched flame with varying strain rate, for K = 0.200, ωκ = 1.0. Blue, S1 = 0.750,

S2 = 0.250; red, S1 = 0.500, S2 = 0.500; purple S1 = 0.333, S2 = 0.667. (a) Mass flux per area, f = −ρuχ .
(b) Velocity component, f ′
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Figure 12. Multi-branched flamelet with reversed flow, for K = 0.200, ωκ = 1.0; S1 = 0.333, S2 = 0.667.
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(4.1)
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Here, νt = μt/ρ and μt are the kinematic turbulent viscosity and dynamic turbulent
viscosity, respectively. It is assumed that the turbulent Prandtl number Prt and turbulent
Schmidt number Sct are uniform through the flow. The above equations are in a
non-dimensional form that uses the resolved scales as reference length and velocity. Thus,
quantities such as ω̇m,rs and Φ must be properly scaled before calculations (see § 2). Note
that we can replace νt in the equations by ν + νt, where ν is the molecular kinematic
viscosity. In most portions of the flow, νt >> ν. For low mean velocities, the dissipation
Φ can be neglected.

We transform in standard fashion from x, y to x̄ ≡ x, ȳ ≡ ∫ y
0 (ρ/ρ∞) dy′. The transverse

component of velocity, v, is transformed to the variable w to mimic incompressible flow:

w ≡ ρ

ρ∞
v + u

ρ∞

∫ y

yref

∂ρ

∂x
dy′,

∂u
∂ x̄

+ ∂w
∂ ȳ

= 0,

u
∂u
∂ x̄

+ w
∂u
∂ ȳ

= ∂

∂ ȳ

(
ρ2

ρ2∞
νt

∂u
∂ ȳ

)
,

u
∂h
∂ x̄

+ w
∂h
∂ ȳ

= 1
Prt

∂

∂ ȳ

(
ρ2

ρ2∞
νt

∂h
∂ ȳ

)
− ΣN

m=1hf ,mω̇m,rs + 1
ρ

Φ,

u
∂Ym

∂ x̄
+ w

∂Ym

∂ ȳ
= 1

Sct

∂

∂ ȳ

(
ρ2

ρ2∞
νt

∂Ym

∂ ȳ

)
+ ω̇m,rs; m = 1, 2, . . . , N.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

With the knowledge from (2.1a,b), (2.3) and (3.24) about the impact of the Kolmogorov
strain rate on the reaction rate and the relation between strain rates at different levels, we
may write

ρω̇m,rs = ρdimensionalω̇m,dimensional = ρ∞,dimensionalS∗ρ̃ω̇m

= ρ∞,dimensional
S∗3/2

rs δ

ν1/2 ρ̃ω̇m. (4.3)

Note that the resolved-scale reaction rate ωm,rs is dimensional while the subgrid averaged
term ρ̃ω̇m is non-dimensional in (4.3).

Here, the layer thickness is described by a constant value of the slope dδ/dx since a
linear growth rate is expected. The constant value can be estimated and adjusted based on
the results but is expected to be close to the value for the incompressible, non-reacting
mixing layer. Experiments have indicated the range of 0.06 to 0.11 according to Pope
(2000). Here, a constant σ is considered as the reciprocal of the slope so that δ(x) = x/σ.

S∗
rs ≡

∣∣∣∣du
dy

∣∣∣∣ = ρ

ρ∞

∣∣∣∣du
dȳ

∣∣∣∣ ,
νt = (δ(x))2

∣∣∣∣du
dy

∣∣∣∣ .
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.4)

Accordingly, the value of νt will vary with both x and y.
From (4.3) and (4.4), the dimensional resolved-scale reaction rate ω̇m,rs can be related

to the non-dimensional subgrid-scale reaction rate ρ̃ω̇m. Equation (3.24) indicates that
the non-dimensional reaction rate is proportional to an integral with f in the integrand.
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Thus, the dimensional reaction rate is proportional to the subgrid-scale strain rate S∗
1 + S∗

2.
That subgrid strain rate is larger than the resolved-scale strain rate by a factor Re1/2 as
shown by (2.1a,b).

The boundary conditions on each of the second-order partial differential equations are
given by prescribing the u component of velocity and the scalar properties in the two free
streams. In addition, there are the upstream inflow conditions.

The system of equations given as (4.2) can be made non-dimensional by using
u∞ to normalize velocity components, a downstream length x0 to normalize the x̄
and ȳ coordinates and ρ∞ and h∞ to normalize the corresponding scalar quantities.
The turbulent viscosity νt is non-dimensionalized using the kinematic viscosity ν. The
perfect-gas assumption and constant specific heat are assumed so the non-dimensional
relation ρ = 1/h holds through this shear layer where the pressure is approximately
uniform. We also define here a Reynolds number Re ≡ u∞δ0/ν = u∞x0/(σν). We
consider cases where the fractional difference between �U = u∞ − u−∞ and u∞ is not
major. The viscous dissipation is considered negligible because the Mach number is low.

∂u
∂ x̄

+ ∂w
∂ ȳ

= 0,

u
∂u
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+ w
∂u
∂ ȳ

= ∂

∂ ȳ
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)2 1
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∣∣∣∣∂u
∂ ȳ
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)
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∂h
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= 1
Prt

∂

∂ ȳ

(
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(
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)2 1
σ 2
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∂ ȳ

∣∣∣∣ ∂h
∂ ȳ

)

− ΣN
m=1hf ,m

Re1/2

(σh)1/2
x
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∣∣∣∣∂u
∂ ȳ

∣∣∣∣3/2

ρ̃ω̇m,

u
∂Ym

∂ x̄
+ w

∂Ym

∂ ȳ
= 1

Sct

∂

∂ ȳ

(
1
h2

(
x
x0

)2 1
σ 2

∣∣∣∣∂u
∂ ȳ

∣∣∣∣ ∂Ym

∂ ȳ

)

+ Re1/2

(σh)1/2
x
x0

∣∣∣∣∂u
∂ ȳ

∣∣∣∣3/2

ρ̃ω̇m; m = 1, 2, . . . , N.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

Here, in the non-dimensional processing, we have taken

(x0/u∞)ω̇m,rs = (x0/u∞)(1/ρ)
S∗3/2

rs δ

ν1/2 ρ̃ω̇m

= [(x0/u∞)
u3/2
∞

x3/2
0

δ

ν1/2 ]dimensional(ρ
3/2/ρ)

∣∣∣∣du
dȳ

∣∣∣∣3/2

ρ̃ω̇m

=
(u∞xo

ν

)1/2 x
x0

1
σh1/2

∣∣du
dȳ

∣∣3/2
ρ̃ω̇m

= Re1/2 x
x0

1
(σh)1/2

∣∣∣∣du
dȳ

∣∣∣∣3/2

ρ̃ω̇m. (4.6)

The resolved-scale calculation will provide certain information as inputs to the subgrid
flamelet computation. Specifically, some information is needed to determine through
reasonable scaling principles (i) constraints on the scalar properties (mass fractions of
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Figure 13. Flow-scale diffusion flame: blue, x = 20; red, x = 15; purple, x = 12.5. Fuel in higher-speed
stream, oxygen in lower-speed stream. (a) Enthalpy, h/h∞. (b) Fuel mass fraction, YF . (c) Product of mass
ratio and oxygen mass fraction, νYO. (d) Burning rate, (x0/u∞)ω̇m,rs.

the reactants and the temperature) and (ii) strain rates and vorticity. Then, the subgrid
calculation can give the burning rate and associated energy release rate to the resolved
scale. Since the subgrid calculations are quasi-steady, they may be performed in advance
with the input–output relation organized in the form of a look-up table or a neural network.
Then, the table or neural network may be coupled with the resolved-scale computation.

4.2. Shear-layer results and discussion
Computations are performed for a turbulent diffusion flame in the shear layer. One free
stream is pure propane gas while the other is pure oxygen. We assume that the flamelet
scale also displays a diffusion flame character. (Clearly, a need exists for further direct
numerical simulation studies to inform us about the degree of partial mixing in the
turbulence cascade.) At the flamelet scale, we take

∫
ω̇F dη = 0.4 which is consistent with

results shown in figures 2 and 4. Furthermore, considering 2b = O(10) in (3.24), we assign
ρ̃ω̇F = 0.04. The burning rate is determined by scaling the flamelet-scale burning rate
based upon the large-scale strain rate S∗

rs; thus, the averaged, large-scale burning rate will
vary with x and y. Implicitly, the dimensional subgrid-scale burning rate is thereby varying
with x and y. The burning rate is forced to zero value where YF = 0 and/or YO = 0. In the
regions where both mass fractions have positive values, the burning rate is prescribed by
(4.6). Thereby, discontinuities of the resolved-scale reaction rate can result. This can be
rectified in the future by relating boundary conditions for the subgrid flamelet calculation
to resolved-scale mass fractions.

The eddy diffusivity is estimated based on the assumption that the shear-layer
density-weighted width grows linearly as 0.11x. Solutions start at x0 = 10 and are marched
to x = 20. Hyperbolic tangents are used for the ȳ profiles at x0, except for the enthalpy
where a Gaussian profile is superimposed to serve as an igniter. Reynolds number
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Figure 14. Flow-scale diffusion flame: blue, x = 20; red, x = 15; purple, x = 12.5. Fuel in higher-speed
stream, oxygen in lower-speed stream. (a) Velocity, u/u∞. (b) Velocity gradient, |du/dy|.
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Figure 15. Flow-scale diffusion flame: blue, x = 20; red, x = 15; purple, x = 12.5. Oxygen in higher-speed
stream, fuel in lower-speed stream. (a) Enthalpy, h/h∞. (b) Fuel mass fraction, YF . (c) Product of mass ratio
and oxygen mass fraction, νYO. (d) Burning rate, (x0/u∞)ω̇m,rs.
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Figure 16. Flow-scale diffusion flame: blue, x = 20; red, x = 15; purple, x = 12.5. Oxygen in higher-speed
stream, fuel in lower-speed stream. (a) Velocity, u/u∞. (b) Velocity gradient, |du/dy|.
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Re = 1000 based on layer width at x0. One free stream, at positive Y values, is five times
faster than the other free stream at negative y values.

Figures 13 and 14 give results for a case where the fuel stream is the faster free
stream while the oxygen stream is the slower stream. The profiles widen with increasing
downstream distance for both velocity and scalar properties. The peak enthalpy and
temperature values remain approximately unchanged but the locations of the peak value
and of the centre of the reaction zone shift towards the oxygen-stream side. The sharp
cut-offs in burning rate at certain transverse positions occur because the rate is non-zero
only where both reactants exist on the large scale but that rate does not depend on the
precise mass-fraction values on that scale.

Figures 15 and 16 give results for a case where the oxygen stream is the faster free
stream while the fuel stream is the slower stream. Again, the profiles widen with increasing
downstream distance for both velocity and scalar properties. The peak enthalpy and
temperature values increase slightly as the locations of the peak value and of the centre of
the reaction zone shift towards the oxygen-stream side. Note that the burning zone moves
towards the oxygen-rich side with an increase of the downstream distance whether that
stream is the faster or slower stream. This presumably occurs because nearly four times
the mass of oxygen (compared to propane mass) is consumed in the reaction.

5. Concluding remarks

A new flamelet model is developed for use in subgrid modelling for analysis of turbulent
combustion by RANS and LES. This flamelet model presents certain key advances: (i)
non-premixed flames, premixed flames or multi-branched flame structures are allowed to
appear naturally without prescription; (ii) the impacts of shear strain and vorticity (and
associated centrifugal effects) on the flames are determined; (iii) the applied subgrid strain
rates and vorticity are directly related to the resolved-scale strain rates and vorticity without
the use of a contrived progress variable; (iv) the flamelet model is three-dimensional
without need for assuming axisymmetry or planar geometry, allowing the physically
correct counterflow under the vorticity constraint; and (v) variable density is addressed
in the flamelet model. The results indicate that each of these five features introduces
consequential, vital physics that is missed by current two-dimensional, irrotational,
constant-density flamelet models that assume a priori a non-premixed or premixed flame
structure and make no direct connection to shear strain or vorticity on the larger turbulence
scales.

Information from direct numerical simulations concerning the relative alignments of
the vorticity vector, scalar gradients and principal strain axes provides a basis for a set of
assumptions. The analytical framework allows for multi-step, detailed kinetics although
the calculations here are limited to one-step propane–oxygen kinetics. The quasi-steady
assumption used in previous flamelet models is maintained here.

A similar solution is found for the flamelet model. Sample computations of the flamelet
model without coupling to the resolved flow are presented first to demonstrate the
importance of the new features of the model. The rotation due to vorticity creates a
centrifugal force that generally decreases the mass flux through the flamelet counterflow.
Thereby, an increase in residence time and a decrease in burning rate occur. Rotation can
thereby allow flames, which would otherwise extinguish, to survive. Premixed flames can
only exist with orders-of-magnitude larger values of Da compared to diffusion flamelets
or multi-branched flames. Thereby, we can expect that premixed flames will be less likely
to survive extinction in a turbulent situation with high strain rates. The partially premixed

945 A21-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.562


W.A. Sirignano

flames in a multi-branched flame structure are driven by heat flux from the diffusion flame;
thereby, they survive at lower values of Da.

Scaling laws relate subgrid strain rates and vorticity to resolved-scale quantities for
coupling with LES or Reynolds-averaged flows. Given these relations, the burning rate
is determined by the rotational flamelet physics and the energy release rate and rate of
change of species mass fraction are given to the resolved scale by the rotational flamelet
algorithms. The theory does not introduce any new contrived variable such as a FPV.
Connection between the two scales is made using long-established variables.

For this initial study, a highly challenging turbulent flow is deliberately avoided.
Rather, a simple turbulent flow is resolved with coupling to the rotational flamelet
model in order to explore the interaction across the different scales. A two-dimensional,
multicomponent, time-averaged planar shear layer with variable density and energy release
uses a mixing-length description for the eddy viscosity and is coupled to the new
rotational flamelet model. The eddy diffusivity is proportional to the local magnitude
of the velocity gradient and grows with downstream distance. These simplifying
assumptions are only used in this first demonstration of the application of the subgrid
flamelet model. They should not be generalized to be an inherent component of the
approach.

The profiles for velocity and scalar properties are seen to broaden with downstream
distance in the shear layer, indicating the growing width of that layer. With increasing
downstream distance, the zone where burning occurs moves towards the oxygen-rich side
(for the chosen propane–oxygen kinetics) whether or not it is the faster stream. That
burning zone becomes more narrow with increasing downstream position.

In the future, multi-step kinetics should be utilized with the rotational flamelet model.
The model can be used to produce look-up tables or neural networks that can be employed
with LES or RANS calculations.

There are several important issues that should be addressed in future studies to allow
better matching between the closure model for the subgrid mixing and combustion with
the resolved-scale (or time-averaged) flow: (i) the lags, due to the turbulence cascade, in
spatial position and time for the coupling between the large-scale strain and the energy
release that it affects; (ii) the degree of partial mixing of reactants during the cascade;
(iii) the proper choice of the b parameter to represent the optimal subgrid volume size for
averaging; and (iv) relative magnitudes of the vorticity and normal principal strain rates
on the subgrid scale. These matters can be examined through carefully designed direct
numerical simulations and perhaps clever experiments. Attention is needed to improve our
knowledge of the statistical relations between resolved-scale quantities for vorticity, strain
rates and scalar gradients and those quantities on the flamelet scale. Of course, flamelets
can in principle exist across a range of the smaller scales, not just the smallest scales.
Perhaps more attention is needed for the details of the turbulence cascade; for example,
strain-rate self-amplification as well as vortex stretching could be relevant (Johnson 2021).
Also, better determination is needed of the range of scales where mixing and reaction are
prominent.
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