
5

Spontaneous breaking of symmetries

If my view is correct, the universe may have a kind of domain structure.
In one part of the universe you may have one preferred direction of the
axis; in another part the direction of the axis may be different.

(Y. Nambu)

In the gauge theory of the previous chapter, all gauge bosons and fermions are
massless. In the real world the only massless vector particle is the photon. Evidently
we must devise a procedure for giving masses to gauge bosons and other particles.
During the past few decades, substantial progress has been made in understanding
the connection between particle masses and symmetries. In theories with global
symmetries, it is possible for the states to have the same symmetry as the operators
of the theory, as is, for instance, the case with strong isospin. This, however, is not the
only mode in which a symmetry manifests itself. In field theories the symmetry can
be broken by giving a non-vanishing vacuum expectation value to some field, i.e.

〈�|φ|�〉 �= 0.

We say now that the symmetry is spontaneously broken.1 In this case the operators
of the theory exhibit the symmetry, but the physical states do not. In other words,
for a symmetry which is spontaneously broken, remnants of the symmetry occur
explicitly in the commutation relations of the operators, but are realized in the
particle spectrum in a subtle way. In this chapter we study two such cases: the
Goldstone mode and the Higgs phenomenon.

In many cases a symmetry does not allow the introduction of a mass term.
The breaking of the symmetry generates a mass term. This is demonstrated in
Section 5.1, where the Lagrangian is invariant under a discrete symmetry. The

1 The word spontaneous is used to communicate the idea that the phenomenon happens without any evident
external cause, for example spontaneous combustion, spontaneous emission, . . .
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42 Spontaneous breaking of symmetries

selection of the vacuum state breaks the symmetry and at the same time generates
a mass.

For theories with continuous global symmetries the situation is different. The
selection of a non-trivial vacuum generates masses, but at least one of the scalar
particles must remain massless. This is the Goldstone phenomenon described in
Section 5.2. Finally, in gauge theories, the particles that would become Goldstone
mesons are eliminated by a gauge transformation and produce masses for gauge
bosons (the Higgs mechanism).

5.1 Spontaneous breaking of global symmetries: discrete symmetry

Before we describe the general case, it is instructive to discuss a few simple examples
in which the main ideas are transparent. Consider a real scalar field φ(x) and the
classical Lagrange function

L = 1

2

∂φ

∂xµ

∂φ

∂xµ

− U (φ(x)), (5.1)

with U (φ) a potential depending on φ. We are interested in finding the ground state.
To this end we construct the Hamiltonian

H = 1

2
(∂0φ)2 + 1

2
( �∇φ)2 + U (φ). (5.2)

The field with lowest energy is a constant field, whose value minimizes the poten-
tial U (φ). All this is classical. In the quantum theory φ(x) is an operator with a
conjugate momentum. The field and its conjugate momentum satisfy commutation
relations. The fields operate on the eigenstates of the Hamiltonian. For simple field
theories it is possible to construct the eigenstates explicitly. The lowest energy is the
ground state, also called the “vacuum.” The word vacuum is somewhat misleading,
because the vacuum state is not empty but, rather, is a complicated superposition
of many particles. The term vacuum is appropriate in free-field theory, where it
corresponds to the state with no particles, but for interacting fields the vacuum is
a complicated state with many particles present. The vacuum and other states for
simple Hamiltonians are constructed explicitly in Problems 1–3 at the end of this
chapter. In this book, by vacuum we mean the lowest energy state, which will be
denoted by |�〉 or simply | 〉.

In the class of theories of Eq. (5.1) we discuss two cases:

U (φ) = λ

4!
φ4 ± µ2

2
φ2 with λ > 0. (5.3)
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5.1 Spontaneous breaking of global symmetries: discrete symmetry 43

Figure 5.1. The Higgs potential U (φ).

(I) Case 1. We select

U (φ) = λ

4!
φ4 + µ2

2
φ2. (5.4)

This is the familiar theory for a field φ with mass µ2 and an interaction term (λ/4!)φ4.

The Feynman rules and other properties of this theory occur in many textbooks. The
symmetry is explicit, with the Lagrangian being invariant under the transformation

φ → −φ.

All solutions are also invariant under this transformation.
(II) Case 2. Now select

U (φ) = λ

4!
φ4 − µ2

2
φ2. (5.5)

In this case there is no mass term and U (φ) must be considered as a potential. The
shape and the minima of the potential at

φ = ±
√

3!µ2

λ
= ±v

are shown in Fig. 5.1. We can select one of the minima as the ground state and study small
oscillations around the minimum. This choice of the ground state breaks the symmetry,
since the vacuum is no longer symmetric under the transformation φ → −φ. We look
for a solution in the neighborhood of v, and make the substitution

φ = v + φ′ with v = 〈�|φ|�〉. (5.6)

This describes small oscillations. In terms of the new field,

U (φ′) = λ

4!
φ′4 + λv

3!
φ′3 + 1

2

λv2

3
φ′2 − λv4

4!
.

We note that the term linear in φ′ does not appear, but instead the new field acquired
the mass

√
λv2/3. Another result of the shift is the appearance of a cubic self-coupling,

which spoils the symmetry of the original Lagrangian. In this case the original symmetry
is not present in the solution that we have chosen.

https://doi.org/10.1017/9781009402378.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402378.006


44 Spontaneous breaking of symmetries

Figure 5.2. The Higgs potential U (φ1, φ2).

This simple example demonstrates explicitly the breaking of the symmetry. It is
based on a discreet symmetry, i.e. the reflection of the potential. New phenomena
occur when the Lagrangian possesses either a continuous global symmetry or a
local symmetry. In the following we discuss both cases.

5.2 Continuous global symmetries

The SO(2) model Next we consider a theory based on a continuous symmetry
and then we break it spontaneously. Let us consider a theory with two real scalar
fields, φ1(x) and φ2(x), and with the potential

U (φ) = λ

4!

(
φ2

1 + φ2
2 − v2

)2
; (5.7)

φ1 and φ2 are massless. This theory is invariant under rotation of φ1 and φ2, i.e.
invariant under the group SO(2). The rotations are described by the angle θ ,(

φ′
1

φ′
2

)
=

[
cos θ sin θ

−sin θ cos θ

](
φ1

φ2

)
. (5.8)

The potential is shown in Fig. 5.2 and has the shape of a Mexican hat. The minima
of the potential lie on the circle

φ2
1 + φ2

2 = v2. (5.9)

We show in Fig. 5.3 the locus of minima at the bottom of the hat. The lowest energy
state is any vector �φ in the φ1–φ2 plane which ends at the circumference C.

We consider next the quantum-mechanical case and select a minimum in a spe-
cific direction. Without loss of generality, we select a coordinate system with the
φ1-axis parallel to the vacuum state, then

〈φ1〉 = v and 〈φ2〉 = 0.
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5.2 Continuous global symmetries 45

φ1

φ2

C

Figure 5.3. The locus of the minima of the Higgs potential.

Next we shift the fields,

φ1 = φ′
1 + v, φ2 = φ′

2, (5.10)

and find

U (φ′) = λ

4!

(
φ′2

1 + φ′2
2 + 2vφ′

1

)2
. (5.11)

On expanding this, we see that the φ1 field has mass, but the φ2 field is mass-
less. There again appear cubic terms in the fields, which break the original SO(2)
symmetry.

This is a transparent example of a more general phenomenon and it is worthwhile
to elaborate on the general case. One starts with a Lagrangian invariant under global
transformations of a group G. The minima of the potential have the same symmetry.
Then we break the symmetry by selecting one of the minima to be the vacuum,
which is invariant under the subgroup H of G. In this analysis there are generators
{gi } of G that do not belong to H. They are broken by the selection of the vacuum.
To each broken generator {gi } there corresponds a massless field. These fields are
called the Goldstone bosons. The Goldstone bosons transform under G like the
coset or factor space of K = (G/H). We demonstrate this general phenomenon
with several examples.

Example 1 In the SO(2) model, that we discussed, there is one generator

I (θ ) = eiθσy =
[

cos θ sin θ

−sin θ cos θ

]
. (5.12)

After breaking of the symmetry, the potential term in (5.11) is not invariant under
the transformation (

φ̃1

φ̃2

)
= I (θ )

(
φ′

1

φ′
2

)
. (5.13)
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46 Spontaneous breaking of symmetries

The generator is broken and there exists one massless particle φ2. When we change
the orientation of the vacuum, there is still a massless particle, which is a linear
superposition of φ1 and φ2.

Example 2 We consider the model with three real fields (φ1, φ2, φ3) invariant
under the group SO(3), that is, invariant under rotations in a three-dimensional
space. We represent the state by a column matrix

ϕ =
⎛
⎝φ1

φ2

φ3

⎞
⎠ (5.14)

and the Lagrangian by

L = 1

2
∂µϕ+∂µϕ − U (ϕ+ϕ), (5.15)

with

U (ϕ+ϕ) = λ

4!

(
ϕ+ϕ − v2

)2
. (5.16)

We next break the symmetry by giving a vacuum expectation value to 〈φ3〉 �= 0.

After shifting of the fields we obtain the potential

U (φ′) = λ

4!

(
φ′2

1 + φ′2
2 + φ′2

3 + 2vφ′
3

)2
. (5.17)

This expression is still invariant under rotations around the 3-axis, but U (φ) and
the Lagrangian change when we rotate around the first and second axes. We can
represent a general rotation through the Euler angles (α, β, γ ), which consists of
the following three successive rotations:

(i) a rotation through an angle α about the 3-axis with the transformation matrix

R(0, 0, α) =
⎡
⎣ cos α sin α 0
−sin α cos α 0

0 0 1

⎤
⎦, (5.18)

(ii) a rotation through β about the 2-axis with R(0, β, 0), and
(iii) a rotation through γ about the 1-axis with R(γ, 0, 0).

The product of the three matrices gives the complete rotation

R(α, β, γ ) = R(γ, 0, 0)R(0, β, 0)R(0, 0, α). (5.19)

The model is invariant under the rotations R(0, 0, α), but the R(γ, 0, 0) and
R(0, β, 0) generators are broken. To the last two generators there correspond two
massless particles, as follows from the form of the potential in (5.17).
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5.2 Continuous global symmetries 47

Example 3 The last example is a scalar theory invariant under global SU(2). For
the field we consider a complex scalar doublet

φ(x) =
[
φ+
φ0

]
=

[
φ1 + iφ2

φ3 + iφ4

]
. (5.20)

Each of the fields has a real and an imaginary part. The Lagrangian is given by

L = ∂µφ†∂µφ − λ
(
φ†φ − v2

)2
. (5.21)

Again we break the symmetry by giving a vacuum expectation value to the real part
of φ0,

〈Re φ0〉 = 〈φ3〉 = v. (5.22)

When we shift the field φ0 as before, the potential in terms of the components φ+
and φ′

0 becomes

U (φ′) = λ
[|φ+|2 + |φ′

0|2 + 2(Re φ′
0)v

]2
. (5.23)

The new potential is not invariant under transformations of SU(2) with the two
fields in φ+(x) as well as Im φ0 remaining massless, as is verified by expanding
Eq. (5.23).

To sum up, we found that in field theories with continuous global symmetries the
breaking of the symmetry requires the existence of scalar particles of zero mass.
In fact, to every broken generator, there corresponds a massless particle. These
are representative examples of Goldstone’s theorem, which follows from general
properties of field theory.

Goldstone’s theorem If there is a continuous global symmetry transformation
under which the Lagrangian is invariant, then either the vacuum state is invariant
under the transformation, or there must exist spinless particles of zero mass.

We demonstrate the content of the theorem by studying the symmetry properties
of a general potential.

(i) We assume that the potential V (φi ) contains a set of real fields that transform according
to a representation T a of the group G

φ′
i (x) = φi (x) + iεa T a

i jφ j (x). (5.24)

When the fields belong to the adjoint representation, the number of fields equals the
number of generators.

(ii) We assume that the potential is invariant under the group G. Then

δV (φi ) = ∂V

∂φi
δφi = i

∂V

∂φi
εa T a

i jφ j (x) = 0. (5.25)
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48 Spontaneous breaking of symmetries

Since the εa are arbitrary and continuous variables, it follows that

∂V

∂φi
T a

i jφ j (x) = 0. (5.26)

(iii) At the minimum of the potential

∂V

∂φi

∣∣∣∣∣
φi =vi

= 0 (5.27)

for each φi . Differentiating Eq. (5.26) again gives

∂2V

∂φi∂φk
T a

i jφ j + ∂V

∂φi
T a

ik = 0. (5.28)

(iv) At the minimum of the potential, the second term vanishes and

∂2V

∂φi∂φk

∣∣∣∣∣
φi =vi

T a
i jv j = 0. (5.29)

The mass matrix is

M2
ik = ∂2V

∂φi∂φk

∣∣∣∣∣
φi =vi .

(5.30)

Equation (5.29) is an eigenvalue equation with T a
i jv j being the eigen-vectors. There

are two important possibilities now. The first is

(α) T a
i jv j = 0, (5.31)

which means that the generator T a annihilates the vacuum. The states corresponding
to the generators T a have the symmetry of the group. In the second possibility there
are generators T b for which

(β) T b
i jv j �= 0, (5.32)

in which case the symmetry generated by the T b is not a symmetry of the vacuum. In
this case T b

i jv j is an eigenvector with eigenvalue zero, i.e. the states T b
i jφ j have zero

mass. In Lagrangian theories this is a proof of the theorem, which at the same time
demonstrates which particles remain massless.

Physical examples of the phenomenon occur in non-relativistic many-body sys-
tems. The Heisenberg ferromagnet is an example that consists of an infinite array of
spin- 1

2 magnetic dipoles. The Hamiltonian is rotationally invariant but the magnets
in the ground state are aligned with all spins parallel, thus breaking the rotational
symmetry. In this case the frequency of the spin waves goes to zero with the wave-
number.

In particle physics the phenomenon is relevant to understanding the connection
of symmetries of the hadronic currents. In Section 2.2 we showed that, in the limit
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5.3 Spontaneous breaking of local symmetries 49

of zero pion mass (mπ = 0), the axial current is conserved. The conserved vector
and axial currents generate an SU(2)L × SU(2)R algebra. Therefore, the symmetry
is present in the currents and leads to many important predictions. It is absent
from the particle spectrum, since there are no parity-degenerate multiplets. Think
of the (ρ+, ρ0, ρ−) and (A+, A0, A−) isospin multiplets. The ρs transform into
each other with SU(2)vector and the As with SU(2)axial, but there is no connection
between the two multiplets through SU(2)L × SU(2)R transformations. In other
words, the operators are SU(2)L × SU(2)R-symmetric but the particle states are not
(mρ �= mA). This physical situation can be understood in SU(2)L × SU(2)R theory
with spontaneously broken symmetry. The SU(2)A generators are broken by non-
zero vacuum expectation values and must be accompanied by zero-mass Goldstone
bosons. This is in agreement with the fact that the pions have masses much smaller
(nearly zero) than those of all other hadrons. Strictly speaking, the pions should be
massless, but corrections to the potential or radiative corrections can produce small
masses.

5.3 Spontaneous breaking of local symmetries

A new phenomenon occurs in local gauge theories, which is crucial for constructing
theories with massive gauge bosons. The simplest example is scalar electrodynam-
ics, which was introduced in Section 4.2. We consider the Lagrangian of Eq. (4.36)
with the potential

V (φ∗φ) = −µ2φ∗φ + λ(φ∗φ)2. (5.33)

The theory is invariant under the gauge transformation defined in Eq. (4.39). In
addition, the Lagrangian is invariant under a global rotation of the scalar field

φ → eiαφ, (5.34)

with α independent of space and time. We first demonstrate properties of the theory
under global transformations and then indicate the changes introduced in a gauge
theory.

For the vacuum state we select one of the minima of the potential. By a global
rotation we can transform 〈φ〉 to a real value. We represent the field and its vacuum
state by

φ = 1√
2

(φ1 + iφ2), 〈φ1〉 = v =
(

µ2

2λ

)1
2

and 〈φ2〉 = 0. (5.35)

As in the previous cases, we translate φ,

φ1(x) = φ′
1(x) + v, (5.36)
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50 Spontaneous breaking of symmetries

and leave φ2 unchanged. In terms of the new field, the potential becomes

V (φ) = −µ4

4λ
+ λ

[(
φ′2

1 + φ2
2

)2 + 4v2φ′2
1 + 4vφ′

1

(
φ′2

1 + φ2
2

)]
. (5.37)

The φ′
1 field acquired a mass and there are also trilinear interaction terms. In addition

there are changes in the kinetic terms, which we describe in Problem 5.4; important
among them is the property that Aµ acquires a mass.

Alternatively, we can study this theory as a gauge theory. We define two real
fields θ (x) and ρ(x) by the relation

φ(x) = eiθ (x)/v ρ(x) + v√
2

(5.38)

and give ρ(x) a vacuum expectation value.
Then we observe that the local gauge transformation

φ′ = e−iθ (x)/vφ(x) = ρ(x) + v√
2

,

(5.39)
A′

µ(x) = Aµ(x) + 1

ev
∂µθ (x)

eliminates θ (x) completely. This transformation is unusual, because the field itself
occurs in the gauge transformation; but it is legitimate in all respects. After the gauge
transformation, the first two terms of Eq. (4.36) retain their form, with primed fields
replacing the old ones. The net effect is

L = −1

4
F ′

µν F ′µν + (D′µφ′)∗(D′
µφ′) + µ2

2
[ρ(x) + v]2 − λ

4
[ρ(x) + v]4,

(5.40)

with D′
µ = ∂µ + ieA′

µ. The second term,

(D′µφ′)∗(D′
µφ′) = 1

2
∂µρ∂µρ + 1

2
e2 A′

µ A′µ(
ρ2 + 2ρv + v2

)
, (5.41)

generates a mass for the A′
µ field. The Goldstone field disappeared and the vector

field became massive.
We have described a second important case of spontaneous symmetry breaking.

We started with a locally invariant theory describing a charged scalar field (two
degrees of freedom) and a massless gauge field with two polarizations. After spon-
taneous symmetry breaking there is one real scalar field and a massive gauge field
with three polarizations. The spontaneous breaking of the symmetry redistributed
the degrees of freedom: one of the two real fields forming the complex scalar field
was transformed into the longitudinal polarization of the vector field. This exam-
ple illustrates that the spontaneous breaking of local symmetry does not produce
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Goldstone mesons, but gives masses to the gauge bosons. It will be used later on
in order to create masses for the intermediate gauge bosons.

The spontaneous breaking of scalar electrodynamics is physically unrealistic,
because electric charge is not conserved. This is evident from the presence of the
A2ρ term in (5.33). It is a consequence of the fact that we introduced a non-zero
vacuum expectation value for a charged field,

〈�|φ(x)|�〉 �= 0, (5.42)

which in itself violates charge conservation. In realistic theories we can preserve
the conservation laws by giving non-zero expectation values to fields that carry the
vacuum quantum numbers.

This phenomenon was introduced in the sixties in order to evade the Goldstone
theorem and maintain gauge invariance, despite the fact that the vector meson
acquires a mass. At that time it was thought to be relevant for the strong interactions.
Later it was extended to non-Abelian gauge theories. It is now used in order to
break the gauge symmetry of the electroweak theory and produce masses for the
intermediate gauge bosons. It is referred to as the Higgs mechanism and we describe
it in Chapter 7.

Problems for Chapter 5

1. Consider a one-dimensional harmonic oscillator. Its Hamiltonian

H = 1

2

(
p2 + ω2

0x2
)

can easily be rewritten in terms of the classical variables

a =
√

1

2ω0
(ω0x + ip) and a+ =

√
1

2ω0
(ω0x − ip).

In quantum mechanics a and a+ are operators satisfying the commutation relations[
a, a+] = 1 and [a, a] = [

a+, a
] = 0.

Compute
(i) the eigenstates of this Hamiltonian,

(ii) the time development of the operators a and a+, and
(iii) the matrix elements of a and a+ between arbitrary states.
When you have done all this, then you have solved this quantum field theory completely.

2. The Hamiltonian for an asymmetric oscillator is

H = 1

2

(
p2 + ω2

0x2
) + kx .

Replace again the position and momentum variables with the operators a and a+. The
Hamiltonian reads

H = 1

2
ω0(a+a + aa+) + k(a + a+).
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52 Spontaneous breaking of symmetries

The problem now is to find a unitary transformation such that

UaU+ = a − k/ω0,

Ua+U+ = a+ − k/ω0.

With the help of U it is possible to eliminate the linear term kx and reduce this problem
to the previous one.

3. The vacuum state, |�〉, is not always the empty state, |0〉. This is demonstrated with the
Hamiltonian

H = 5

3
a+a + 2

3
(a+)2 + 2

3
a2.

The number operator N = a+a does not commute with the Hamiltonian. Consequently
the eigenstates of N are not eigenstates of H .

Find the lowest-energy state of H . To this end, construct two operators with the
properties

[
H, Q±] = ±Q±.

These operators raise and lower the energy by one unit. The lowest-energy state is defined
as usually by the condition

Q−|�〉 = 0 .

You can represent the vacuum as
∑

n cn(a+)n|0〉, and then use the above condition to
give an explicit formula for |�〉. It is possible to write the normalized vacuum state in
closed form. Finally, construct all higher-energy states.

4. Work out the kinetic term for scalar electrodynamics using the new fields of Eq. (5.36).
Show that the field Aµ acquired a mass and demonstrate the appearance of trilinear
interaction terms.
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