IMPRIMITIVE, IRREDUCIBLE COMPLEX CHARACTERS OF THE ALTERNATING GROUP

DRAGOMIR Ž. DJOKOVIĆ AND JERRY MALZAN

The purpose of this paper is to list all of the characters of A_{n}, the alternating group, mentioned in the title. The same problem for the symmetric group, S_{n}, was dealt with by the authors in [1]. We show here that, apart from a few exceptions, the imprimitive, irreducible complex characters of A_{n} fall naturally into two infinite families. (Throughout this paper characters are taken over the complex numbers.)

We recall that a character of a group G is said to be imprimitive if it is induced from a character of a proper subgroup of G, and monomial if it is induced from a character of degree 1 of any subgroup of G. We denote by T_{n} the set of all triples $\left(A_{n}, G, \sigma\right)$, where G is a proper subgroup of A_{n}, σ an irreducible character of G such that the induced character $\sigma \uparrow A_{n}$ is also irreducible. We will determine all such triples in this paper. For a subgroup $G \subset S_{n}$ we shall denote by G^{0} the group $G \cap A_{n}$, and point out that $G=G^{0}$ or else $\left[G: G^{0}\right]=2$. We shall refer to G^{0} as the even subgroup of G.

A major tool we employ is Mackey's criterion for irreducibility, [9, p. II-11], which is as follows:

Mackey's Criterion. Let G be a finite group, H a subgroup of G, and σ an irreducible character of H. Then the induced character $\sigma \uparrow G$ is irreducible if, and only if, for each $t \in G-H$ the restrictions $\sigma \downarrow H \cap H^{t}$ and $\sigma^{t} \downarrow H \cap H^{t}$ are disjoint.

Here and throughout the paper, $H^{t}=t H t^{-1}$, and σ^{t} is the character of H^{t} defined by $\sigma^{t}(x)=\sigma\left(t^{-1} x t\right)$.

We say that two triples $\left(A_{n}, G, \sigma\right)$ and $\left(A_{n}, G^{\prime}, \sigma^{\prime}\right)$ of T_{n} are equivalent if there exists $t \in A_{n}$ such that $G^{\prime}=G^{t}$ and $\sigma^{\prime}=\sigma^{t}$. If they are equivalent then $\sigma \uparrow A_{n}=\sigma^{\prime} \uparrow A_{n}$. It suffices to determine the triples of T_{n} up to equivalence.

For each Young diagram Y we shall denote by Y^{\prime} the conjugate of Y, and by [Y] the associated irreducible character of S_{n}. It is well known [3] that the restriction $[Y] \downarrow A_{n}=(Y)$ is irreducible if $Y \neq Y^{\prime}$, and splits into two components $(Y)=(Y)^{+}+(Y)^{-}$if $Y=Y^{\prime}$ and $n>1$. In the latter case we have also $\left((Y)^{+}\right)^{t}=(Y)^{-}$where t is any odd permutation, and $(Y)^{+} \neq(Y)^{-}$. All irreducible characters of A_{n} are obtained in this way.

For every divisor m of n such that $1<m<n$ we denote by $H_{n, m}$ a maximal
imprimitive subgroup of S_{n} which has blocks of size m. Thus $H_{n, m}=S_{m}$ خ S_{k} (the wreath product of S_{m} and S_{k}) where $n=m k$ and the order of $H_{n, m}$ is $k!(m!)^{k}$. We note that as a permutation group, $H_{2 m, m}$ has a unique subgroup $S_{m} \times S_{m}$.

We are now in a position to describe the two infinite families of imprimitive irreducible characters of the alternating groups mentioned above.

Family 1. $\left(A_{n}, A_{n-1}, \sigma\right)$ where $n=m^{2}+1, m \geqq 2$, and $\sigma=(Y)^{+}$or $(Y)^{-}$, with Y the square diagram $\left(m^{m}\right)$. We have $\sigma \uparrow A_{n}=(W)$ where W is the diagram $\left(m+1, m^{m-1}\right)$.

Family 2. $\left(A_{2_{m}}, H_{2_{m}, m^{0}}, \sigma\right)$ where, according to our notation, $H_{2 m, m}{ }^{0}=$ $H_{2 m, m} \cap A_{2 m}$. Here σ is either of the two characters of $H_{2 m, m}{ }^{0}$ of degree 1 in which $\sigma(x)=1$ for $x \in A_{m} \times A_{m}$ and $\sigma(x)=-1$ for $x \in\left(S_{m} \times S_{m}\right)^{0}-$ $A_{m} \times A_{m}$. In this case $\sigma \uparrow A_{2 m}=(Y)$ where Y is the diagram $\left(m+1,1^{m-1}\right)$ (or its conjugate).

In the statement of the theorem below we shall refer to the triples in these two families as standard triples, and shall refer to all others as exceptional.

Theorem. For the alternating groups A_{n} the triples $\left(A_{n}, G, \sigma\right) \in T_{n}$ are the standard triples described above or else are equivalent to one of the following exceptional triples:
(i) $\left(A_{8}, G, \sigma\right)$ where G is the holomorph of $C_{2} \times C_{2} \times C_{2}$, and σ is either of the two complex conjugate, irreducible characters of degree 3 of G. Here $\sigma \uparrow A_{8}=$ $(Y)^{+}$or $(Y)^{-}$where $Y=\left(4,2,1^{2}\right)$.
(ii) $\left(A_{8}, G, \sigma\right)$ where $G \subset H_{8,4}{ }^{0}$, is the semidirect product $C_{2} \cdot\left(A_{4} \times A_{4}\right)=$ $A_{4} 2 S_{2}$ with a generator for C_{2} of the form (15)(26)(37)(48), acting on blocks $\{1,2,3,4\}$ and $\{5,6,7,8\}$. Here σ is any of the two characters of degree 1 of G which when considered as characters of $G / G^{\prime}=C_{6}$ are faithful. We have $\sigma \uparrow A_{8}=$ (Y) where $Y=(4,3,1)$.
(iii) $\left(A_{8}, H_{8,4}{ }^{0}, \gamma\right)$ where $\gamma=\sigma \uparrow H_{8,4}{ }^{0}$ is the character induced from the characters σ in (ii). Again $\gamma \uparrow A_{8}=(Y)$ where $Y=(4,3,1)$.
(iv) $\left(A_{9}, G, \sigma\right)$ where G is the primitive group of order 1512 , and σ is one of the 2 complex conjugate non-real characters of degree 1 of G. Here $\sigma \uparrow A_{9}=(Y)$ where $Y=\left(5,2^{2}\right)$.

In the course of the proof we shall need the following results concerning some special types of primitive permutation groups. In the lemmas below we use some old terminology and say that a permutation group has class k if k is the minimal number of letters moved by a non-identity permutation in this group.

Lemma 1. There exist precisely 6 primitive permutation groups of class 4. These are:
(i) The subgroup of S_{5} of order 20 generated by $(1,2,3,4,5)$ and $(2,3,5,4)$, or its subgroup of order 10 .
(ii) $P G L_{2}(5)$, of order 120, and $P S L_{2}(5)$, of order 60 , as subgroups of S_{6}.
(iii) $P S L_{2}(7)$, of order 168, as a subgroup of S_{7}.
(iv) The holomorph of $C_{2} \times C_{2} \times C_{2}$ as a subgroup of S_{8}, of order 1344 .

This lemma was proved by G. A. Miller in [7].
Lemma 2. There is only one primitive permutation group of class 5. This is the cyclic group C_{5} in S_{5}.

Lemma 3. There are eight primitive permutation groups of class 6 containing a permutation of type (123) (456), five of them with even permutations only. These are:
(i) The holomorph of C_{7} of order 42 in S_{7}, and its even subgroup of order 21.
(ii) $P G L_{2}(7)$ and $P S L_{2}(7)$ as subgroups of S_{8}. These have orders 336 and 168, respectively.
(iii) The group of all permutations of the GF(8) of the form $x \rightarrow a x^{\alpha}+b$ where $a, b \in G F(8), a \neq 0$, and α is an automorphism of the $G F(8)$. This group has order 168.
(iv) The holomorph of $C_{3} \times C_{3}$, of order 432 , and its even subgroup of order 216.
(v) The group of all permutations of $G F(8) \cup\{\infty\}$ of the form

$$
x \rightarrow \frac{a x^{\alpha}+b}{c x^{\alpha}+d}
$$

with $a d-b c \neq 0$, and with α as in (iii). This group has order 1512.
This was proved in [6]. We may now proceed with the proof of the theorem.
Proof of theorem. Let $\left(A_{n}, G, \sigma\right) \in T_{n}$. We have to show that $\left(A_{n}, G, \sigma\right)$ is either standard or equivalent to one of the exceptional triples listed in the theorem. We consider three cases:

Case 1. G is intransitive. There exists a subgroup G_{1} of A_{n} containing G such that G_{1} has two orbits, and is maximal subject to these conditions. We let $\sigma_{1}=\sigma \uparrow G_{1}$. We have again $\left(A_{n}, G_{1}, \sigma_{1}\right) \in T_{n}$.

Suppose first that each of the orbits of G_{1} has at least 2 letters. We may assume that 1,2 are in the first orbit, and 3,4 in the second. Let $t=(13)(24)$, and take $H=G_{1} \cap G_{1}{ }^{t}$. We claim that H is the subgroup of G_{1} which stabilizes the sets $\{1,2\}$ and $\{3,4\}$. For if $s \in H$, then $\left(s^{-1} t s\right) t \in G_{1}$, and $s^{-1} t s$ has the form $(i, j)(r, k)$ where i, r are in the first orbit, j, k are in the second. Since $(i, j)(r, k)(13)(24) \in G_{1}$ we must have $\{i, r\}=\{1,2\}$ and $\{j, k\}=\{3,4\}$, and this implies that s stabilizes $\{1,2\}$ and $\{3,4\}$. It is clear that $z=$ $(12)(34) \in Z(H)$, the centre of H. Let τ be an irreducible component of $\sigma_{1} \downarrow H$. Because $z \in Z(H)$, and τ is irreducible, it follows that z must be represented by $\pm I$ in the representation ρ corresponding to τ. We claim that this must, in fact, be $-I$. Assume not. Since $s^{-1} t s t=1$ or z for every $s \in H$ we would have $\rho\left(s^{-1} t s t\right)=I$ and $\rho(t s t)=\rho(s)$ for all $s \in H$. But then, however, $\tau^{t}=\tau$, and $\sigma_{1} \downarrow H$ and $\sigma_{1}{ }^{t} \downarrow H$ have components in common, contrary
to Mackey's criterion. We conclude that $\rho(z)=-I$ in each irreducible component of $\sigma_{1} \downarrow H$ and hence that z is represented by $-I$ in the representation corresponding to the character σ_{1}. But these remarks hold for any permutation $(i, r)(j, s)$ with i and r in the first orbit, j and s in the second. Since these generate G_{1}, and are all represented by $-I, \sigma_{1}$, to be irreducible, must have degree 1. $\sigma_{1}(x)=1$ whenever the restriction of x to an orbit is even, and equals -1 otherwise.

Now let $t_{1}=(134)$. By a computation similar to that above we see that $H_{1}=G_{1} \cap G_{1}{ }^{t_{1}}$ is the subgroup of G_{1} which fixes the letters 1 and 3 since, for $s \in H_{1}$, the commutator $s^{-1} t_{1}^{-1} s t_{1}$ is either the identity or a three-cycle in the second orbit. To see this, observe that $s^{-1} t_{1}{ }^{-1} s$ must be of the form $(1, i, 3)$, where i is in the second orbit. But now $\sigma_{1} \downarrow H_{1}=\sigma_{1}{ }^{t_{1}} \downarrow H_{1}$ because $\sigma_{1}\left(s^{-1} t_{1}{ }^{-1} s t_{1}\right)=1$ for all $s \in H_{1}$ and so $\sigma_{1}\left(t_{1}^{-1} s t_{1}\right)=\sigma_{1}(s)$ for all $s \in H_{1}$. This again contradicts Mackey's criterion, and it remains to consider the case when, say, the second orbit has only one letter. In this event $G_{1}=A_{n-1}$.

Consider the diagram

The Littlewood-Richardson rule [8, p. 61] enables one to compute the irreducible components of any $\lambda \uparrow S_{n}$ where λ is an irreducible character of $S_{k} \times S_{n-k}$. In particular, $\lambda \uparrow S_{n}$ is never irreducible. Hence, if a character λ of S_{n-1} is not irreducible, $\lambda \uparrow S_{n}$ has at least four irreducible components. Now since $\sigma_{1} \uparrow A_{n}$ is irreducible, $\sigma_{1} \uparrow S_{n-1}$ is irreducible, and σ_{1} corresponds to a symmetric Young diagram, Y. We have $\sigma_{1} \uparrow S_{n-1}=[Y]$ and $[Y] \uparrow S_{n}$ has one or two irreducible components. It cannot have one, and so has exactly two. Using, again, the Littlewood-Richardson rule, we see that Y must be rectangular. The requirement $Y=Y^{\prime}$ forces Y square, and we see that our first family of standard triples is the only possibility in this case. It is easy to check that the induced representations $(Y)^{+} \uparrow A_{n}$ and $(Y)^{-} \uparrow A_{n}$ are, in fact, irreducible.

Suppose now that $\left(A_{n}, G, \sigma\right) \in T_{n}$, with $G \subset A_{n-1}$. By a previous paper [1], the character (Y) of A_{n-1} is not imprimitive, and $G=A_{n-1}$. This completes this case.

Case 2. G is transitive, but imprimitive. Let G_{1} be a maximal imprimitive subgroup of A_{n} containing G, and let $\sigma_{1}=\sigma \uparrow G_{1}$. Again, $\left(A_{n}, G_{1}, \sigma_{1}\right) \in T_{n}$. Using our previous notation $G_{1}=H_{n, m^{0}}{ }^{0}$, where $m \mid n$. We assume first that $n \geqq 3 m$; i.e. there are at least three blocks. Assume, too, that $m \geqq 3$. Take $1,2,3$ to be in different blocks and let $t=(123)$. In this case, using arguments similar to those used before, we see that t centralizes $H=G_{1} \cap G_{1}{ }^{t}$, and so $\sigma_{1} \downarrow H=\sigma_{1}{ }^{'} \downarrow H$, contradicting Mackey's criterion.

Suppose now that $m=2$, and suppose further that $\{1,2\},\{3,4\},\{5,6\}$ are three of the blocks. Let $t=(135)(264)$. As before we have $s^{-1} t^{-1} s t \in G_{1}$ for each $s \in H=G_{1} \cap G_{1}{ }^{t}$. Now $t_{1}=s^{-1} t^{-1} s$ is of the form $(i, j, k)(u, v, w)$ where $\{i, u\},\{j, w\},\{k, v\}$ are blocks. Then $t_{1} t \in G_{1}$ implies that these blocks are, in fact, $\{1,2\},\{3,4\},\{5,6\}$ in some order. Moreover, we must have $t_{1} t=1$; i.e. t commutes with s and consequently t centralizes H. We reach a contradiction as before.

Suppose, finally, that $n=2 m$; i.e. there are only two blocks. Let, first, $m \geqq 5$. Let 1,2 be in the first block, 3,4 in the second, and let $t=(13)(24)$. In this case $H=G_{1} \cap G_{1}{ }^{t}$ is the subgroup of G_{1} stabilizing $\{1,2,3,4\}$. Indeed, if $s \in H$ then $s^{-1} t s t \in G_{1}$ and $s^{-1} t s=(i j)(u v)$ with i, u in the first and j, v in the second block. This implies that $\{i, j, u, v\}=\{1,2,3,4\}$ because $m \geqq 5$. Hence, s stabilizes $\{1,2,3,4\}$. Conversely, if $s \in G_{1}$ stabilizes $\{1,2,3,4\}$ then it is immediate that $s \in H$.

Moreover we see that for $s \in H$ we have $s^{-1} t s t=1$ or z where $z=(12)(34)$. Again z is in the centre of H and in the same way as in Case 1 we infer that $\operatorname{deg} \sigma_{1}=1$ and $\sigma_{1}(x)=1$ for $x \in A_{m} \times A_{m}, \sigma_{1}(x)=-1$ for $x \in\left(S_{m} \times S_{m}\right)^{0}-$ $\left(A_{m} \times A_{m}\right)$. Note that $A_{m} \times A_{m} \triangleleft G_{1}=H_{2 m, m}{ }^{0}$ and $G_{1} /\left(A_{m} \times A_{m}\right)$ is the four-group. Therefore there are precisely two characters σ_{1} of G_{1} of degree 1 having the properties established above. Since $\operatorname{deg} \sigma_{1}=1$ we must have $G=G_{1}$ and $\sigma=\sigma_{1}$. In other words, $\left(A_{n}, G, \sigma\right)$ is a standard triple from the second family. It remains to verify that $\sigma \uparrow A_{n}$ is indeed irreducible. For this we do not need the hypothesis that $m \geqq 5$.

We must show that $\sigma_{1} \uparrow A_{n}$ is irreducible. Consider the diagram

Let $\tau=\sigma \downarrow\left(S_{m} \times S_{m}\right)^{0}$. We find

$$
\tau \uparrow S_{m} \times S_{m}=\alpha \otimes 1+1 \otimes \alpha
$$

where α is the alternating character of S_{m}. By applying the LittlewoodRichardson rule we get

$$
\tau \uparrow S_{2 m}=2\left(\rho+\rho^{\prime}\right)
$$

where $\rho=[Y], \rho^{\prime}=\left[Y^{\prime}\right]$ and $Y=\left(m+1,1^{m-1}\right)$. Since $\left(\tau \uparrow A_{2 m}\right) \uparrow S_{2 m}=$ $2\left(\rho+\rho^{\prime}\right)$ we must have

$$
\tau \uparrow A_{2 m}=2(Y)
$$

and consequently $\sigma \uparrow A_{2 m}=(Y)$ is irreducible.

Now we have to look at the cases $m=2,3,4$. One can easily verify, by using published character tables of $H_{2 m, m}$ and $S_{2 m}[\mathbf{3}, \mathbf{4}]$, that the only exceptional triples that arise are (ii) and (iii) in the theorem.

Case 3. G is primitive. If the class of G is $\geqq 7$ then taking $t=$ (123) we get $s^{-1} t^{-1} s t \in G$ for every $s \in H=G \cap G^{t}$ and hence $s t=t s$. This contradicts Mackey's criterion. Hence the class of G must be 4,5 or 6 and if it is 6 then G contains a permutation of the type (123)(456). Thus G is one of the groups listed in Lemmas 1, 2, 3. It is a matter of straightforward computation to check that again the triples that arise from these groups are the exceptional triples (i) and (iv) in the theorem. The character table for the group of order 1512 is given in [5].

The following corollaries are immediate.
Corollary 1. The only imprimitive irreducible characters of the alternating groups are those associated with the Young diagrams $\left(m+1, m^{m-1}\right), m \geqq 2$; $\left(m+1,1^{m-1}\right), m \geqq 2 ;(4,3,1),\left(4,2,1^{2}\right)$ and $\left(5,2^{2}\right)$.

Corollary 2. The monomial irreducible characters of the alternating groups are those associated with the diagrams $\left(m+1,1^{m-1}\right), m \geqq 2 ;(m), m \geqq 2$; $(2,1)^{ \pm} ;\left(2^{2}\right)^{ \pm} ;(4,3,1)$ and $\left(5,2^{2}\right)$.

References

1. D. Ž. Djoković and J. Malzan, Imprimitive, irreducible complex characters of the symmetric group, Math. Z. 138 (1974), 219-224.
2. C. Jordan, Recherches sur les substitutions, J. Math. Pures et Appliquées, ser. 2, 17 (1872), 351-367.
3. A. Kerber, Representations of permutation groups I, Springer-Verlag, Lecture Notes in Mathematics 240 (New York 1971).
4. D. E. Littlewood, The characters and representations of imprimitive groups, Proc. London Math. Soc. (3) 6 (1956), 251-266.
5. Group characters and the structure of groups, Proc. London Math. Soc. 39 (1935), 150-199.
6. W. A. Manning, The primitive groups of class $2 p$ which contain a substitution of order p and degree $2 p$, Trans. Amer. Math. Soc. 4 (1903), 351-357.
7. G. A. Miller, On the primitive groups of class four, Amer. Math. Monthly 9 (1902), 63-66.
8. G. de B. Robinson, Representation theory of the symmetric group (University of Toronto Press, 1961).
9. J.-P. Serre, Representations lineaires des groupes finis (Hermann, Paris 1967).

University of Waterloo, Waterloo, Ontario

