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1. Introduction. Let n = II pT be the factorization of an integer «(>1) into
r

prime powers, and set 3>(n) := Ft (p?1 — 1). In particular, for squarefree n, O(n) = 4>(n).
Consider the set I=1

i4 :={n: ls£a ,«2, l « i * s r ; (n, *(n)) = 1}.

It is known (from [5]) that A consists precisely of those integers n for which there is no
non-abelian group of order n. It is also known (from [7]) that the set

C := {n : n e A, n squarefree}

consists solely of integers n with the property that every group of order n is cyclic. We set
C'=A-C.

For a sequence B of integers, let B{x) denote the number of m e B with m^x. In
[1], Erdos proved that

C(x)~e-YxLil, (*^°°) (1)

in the notation L, : = log x, Lr+1 : = log Lr (r s= 1), where y is Euler's constant. Recently, in
[8], Warlimont considered C'(x) and showed that

xL^L?«C'(x) «exL2XLrm, (x -> oo) (2)

for every £>0. In the present paper we show that here one can also have the lower
estimate as the upper bound. Thus we obtain the following theorem.

THEOREM. We have
C\x)XxL2lLJ2, (3)

as x^> oo.

REMARK. The proof here uses a result from the large sieve instead of the result from
[2] which was employed in [8] in obtaining the upper bound in (2).

2. Some lemmas. The following lemma, derived from the large sieve, is basic in the
proof.

LEMMA 1. Let q(m) denote the least prime divisor of m and write

S(x,y,p):= 2 1-
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Then, for (2=s) y =£/? s= (log*)1'4, we have

where c0 is an absolute constant.

Proof. In Theorem 7.1 of [6] (which is practically the Corollary in [4]), take N = x,
z=xm (say) and, for primes q, (o(q) = 1 if either q =£y or q = 1 (modp) and co(q) = 0
otherwise. This gives

2x

where /

W.\ ._ V ..2, x r r ^fa) .

Now from (9.38) of [6], since co(q) = 0 or 1, it follows that

««)» n fi-i]
w(q)=0

On using log z ^ § IT 1 - - I (say, for large z), we obtain, from the above estimates,
?«i\ ql

This bound yields the result of Lemma 1, in view of the definition of a>{q) and the prime
number theorem for the arithmetic progression of integers congruent to 1 mod p.

REMARK. Here the condition p «£ (log x)114 is imposed only for making c0 effective.

For convenience of reference we state the next simple lemma. However, for our
present purpose, we only need the upper bound given by this lemma.

LEMMA 2. We have

2 ^
P>Y P

Proof. Writing 6(u):= £ logp and b(u) = u 2exp(-X/u), we have

9(m)(b(m) - b{m +1)) + O(6(Y + l)b(Y + 1)).

Using 6{u) ~u, u -* °° (cf. for example [3, Theorem 434, p. 362]) we see that the above
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quantity equals

2 m(b(m) - b{m + 1)) + 0{Y~x exp(-X/Y)) + o(X-1),
m>Y

since b(u) is monotonic in (Y, \X) and (|X, °°). Now, as X/Y—> <», the last expression

equals E b{m) + ©(A'"1) ~ A'"1. This proves the lemma.
m>Y

3. Proof of the theorem. To start with, we have

c(*)« 2 E i ^ I 2 I + O^Z- 1 ) (4)
miteC mkeC

for any Z =sx. Now let Y =£ Z be another parameter to be chosen later. In the last double
summation of (4) we consider those mk having a prime divisor q =£ Y. For each prime
q « Y, the number of such mk (=s*) having q for the least prime divisor does not exceed,
by Lemma 1 (with p = q, y = 2, say),

c0(log2)-1xexp(-L2/109),

since mfc e C. Hence the number of mk2 under consideration in (4) is

o(xZ

Choosing here Y = L^ = Zm, say, it follows from (4) that

2 /2) (4')
Y<k*SY2 m

with * signifying the restrictions (i) m ^xk~2, (ii) mkeC and (iii) the least prime divisor
of mk exceeds Y. Now, these conditions imply that k is a prime (p, say). Again, by
Lemma 1 (with y = Y and xp"2 for x) we obtain

2 2*1= 2 5(x/p2, Y,p)
2 2

Therefore, by our choice of Y and Lemma 2 (with ^ = L2/10, noting that A7Y —> °°), we
conclude from (4') that

C'(x) = O(XL;2L^1 + xL2
3/2). (5)

Combining the lower estimate in (2) with (5) completes the proof of the theorem.
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