ON ORDERS SOLELY OF ABELIAN GROUPS

by S. SRINIVASAN

(Received 6 November, 1985)

1. Introduction. Let $n=\prod_{i=1}^{r} p_{i}^{a_{i}}$ be the factorization of an integer $n(>1)$ into prime powers, and set $\Phi(n):=\prod_{i=1}^{r}\left(p_{i}^{a_{i}}-1\right)$. In particular, for squarefree $n, \Phi(n)=\phi(n)$. Consider the set

$$
A:=\left\{n: 1 \leqslant a_{i} \leqslant 2,1 \leqslant i \leqslant r ;(n, \Phi(n))=1\right\} .
$$

It is known (from [5]) that A consists precisely of those integers n for which there is no non-abelian group of order n. It is also known (from [7]) that the set

$$
C:=\{n: n \in A, n \text { squarefree }\}
$$

consists solely of integers n with the property that every group of order n is cyclic. We set $C^{\prime}=A-C$.

For a sequence B of integers, let $B(x)$ denote the number of $m \in B$ with $m \leqslant x$. In [1], Erdös proved that

$$
\begin{equation*}
C(x) \sim e^{-\gamma_{x}} L_{3}^{-1}, \quad(x \rightarrow \infty) \tag{1}
\end{equation*}
$$

in the notation $L_{1}:=\log x, L_{r+1}:=\log L_{r}(r \geqslant 1)$, where γ is Euler's constant. Recently, in [8], Warlimont considered $C^{\prime}(x)$ and showed that

$$
\begin{equation*}
x L_{2}^{-1} L_{3}^{-2} \ll C^{\prime}(x) \ll_{\epsilon} x L_{2}^{-1} L_{3}^{\epsilon-1 / 2}, \quad(x \rightarrow \infty) \tag{2}
\end{equation*}
$$

for every $\varepsilon>0$. In the present paper we show that here one can also have the lower estimate as the upper bound. Thus we obtain the following theorem.

Theorem. We have

$$
\begin{equation*}
C^{\prime}(x) \cup x L_{2}^{-1} L_{3}^{-2}, \tag{3}
\end{equation*}
$$

as $x \rightarrow \infty$.
Remark. The proof here uses a result from the large sieve instead of the result from [2] which was employed in [8] in obtaining the upper bound in (2).
2. Some lemmas. The following lemma, derived from the large sieve, is basic in the proof.

Lemma 1. Let $q(m)$ denote the least prime divisor of m and write

$$
S(x, y, p):=\sum_{\substack{m \leqslant x \\(p, \phi(m))=1 \\ q(m) \geqslant y}} 1
$$

Glasgow Math. J. 29 (1987) 105-108.

Then, for $(2 \leqslant) y \leqslant p \leqslant(\log x)^{1 / 4}$, we have

$$
S(x, y, p) \leqslant c_{0} \frac{x}{\log y} \exp \left(-\frac{\log \log x}{10 p}\right), \quad x \rightarrow \infty
$$

where c_{0} is an absolute constant.
Proof. In Theorem 7.1 of [6] (which is practically the Corollary in [4]), take $N=x$, $z=x^{1 / 2}$ (say) and, for primes $q, \omega(q)=1$ if either $q \leqslant y$ or $q \equiv 1(\bmod p)$ and $\omega(q)=0$ otherwise. This gives

$$
S(x, y, p) \leqslant \frac{2 x}{L(z)}
$$

where

$$
L(z):=\sum_{m \leqslant z} \mu^{2}(m) \prod_{q \mid m} \frac{\omega(q)}{q-\omega(q)}
$$

Now from (9.38) of [6], since $\omega(q)=0$ or 1 , it follows that

$$
L(z) \geqslant \prod_{\substack{q \leqslant z \\ \omega(q)=0}}\left(1-\frac{1}{q}\right) \log z
$$

On using $\log z \geqslant \frac{2}{3} \prod_{q \leqslant z}\left(1-\frac{1}{q}\right)^{-1}$ (say, for large z), we obtain, from the above estimates,

$$
S(x, y, p) \leqslant 3 x \prod_{q \leqslant x^{1 / 2}}\left(1-\frac{\omega(q)}{q}\right) .
$$

This bound yields the result of Lemma 1 , in view of the definition of $\omega(q)$ and the prime number theorem for the arithmetic progression of integers congruent to $1 \bmod p$.

Remark. Here the condition $p \leqslant(\log x)^{1 / 4}$ is imposed only for making c_{0} effective.
For convenience of reference we state the next simple lemma. However, for our present purpose, we only need the upper bound given by this lemma.

Lemma 2. We have

$$
\sum_{p>Y} \frac{\log p}{p^{2}} \exp (-X / p) \sim X^{-1}
$$

as $X / Y \rightarrow \infty$.
Proof. Writing $\theta(u):=\sum_{p \leqslant u} \log p$ and $b(u)=u^{-2} \exp (-X / u)$, we have

$$
\sum_{p>Y} \frac{\log p}{p^{2}} \exp (-X / p)=\sum_{m>Y} \theta(m)(b(m)-b(m+1))+O(\theta(Y+1) b(Y+1))
$$

Using $\theta(u) \sim u, u \rightarrow \infty$ (cf. for example [3, Theorem 434, p. 362]) we see that the above
quantity equals

$$
\sum_{m>Y} m(b(m)-b(m+1))+O\left(Y^{-1} \exp (-X / Y)\right)+o\left(X^{-1}\right)
$$

since $b(u)$ is monotonic in $\left(Y, \frac{1}{2} X\right)$ and $\left(\frac{1}{2} X, \infty\right)$. Now, as $X / Y \rightarrow \infty$, the last expression equals $\sum_{m>Y} b(m)+o\left(X^{-1}\right) \sim X^{-1}$. This proves the lemma.
3. Proof of the theorem. To start with, we have

$$
\begin{equation*}
C^{\prime}(x) \leqslant \sum_{1<k \leqslant x} \sum_{\substack{m \leqslant x k^{-2} \\ m k \in C}} 1 \leqslant \sum_{1<k \leqslant Z} \sum_{\substack{m \leqslant x k^{-2} \\ m k \in C}} 1+O\left(x Z^{-1}\right) \tag{4}
\end{equation*}
$$

for any $Z \leqslant x$. Now let $Y \leqslant Z$ be another parameter to be chosen later. In the last double summation of (4) we consider those $m k$ having a prime divisor $q \leqslant Y$. For each prime $q \leqslant Y$, the number of such $m k(\leqslant x)$ having q for the least prime divisor does not exceed, by Lemma 1 (with $p=q, y=2$, say),

$$
c_{0}(\log 2)^{-1} x \exp \left(-L_{2} / 10 q\right)
$$

since $m k \in C$. Hence the number of $m k^{2}$ under consideration in (4) is

$$
O\left(x Z \sum_{q \leqslant Y} \exp \left(-L_{2} / 10 q\right)\right)=O\left(x Z^{2} \exp \left(-L_{2} / 10 Y\right)\right)
$$

Choosing here $Y=L_{2}^{3 / 4}=Z^{1 / 2}$, say, it follows from (4) that

$$
C^{\prime}(x) \leqslant \sum_{Y<k \leqslant Y^{2}} \sum_{m}^{*} 1+O\left(x L_{2}^{-3 / 2}\right)
$$

with * signifying the restrictions (i) $m \leqslant x k^{-2}$, (ii) $m k \in C$ and (iii) the least prime divisor of $m k$ exceeds Y. Now, these conditions imply that k is a prime (p, say). Again, by Lemma 1 (with $y=Y$ and $x p^{-2}$ for x) we obtain

$$
\begin{aligned}
\sum_{Y<p \leqslant Y^{2}} \sum_{m}^{*} 1 & =\sum_{Y<p \leqslant Y^{2}} S\left(x / p^{2}, Y, p\right) \\
& \ll \sum_{Y<p \leqslant Y^{2}} \frac{x \log p}{p^{2}(\log Y)^{2}} \exp \left(-\frac{\log \log x}{10 p}\right) \\
& \ll \frac{x}{(\log Y)^{2}} \sum_{p>Y} \frac{\log p}{p^{2}} \exp \left(-\frac{\log \log x}{10 p}\right) .
\end{aligned}
$$

Therefore, by our choice of Y and Lemma 2 (with $X=L_{2} / 10$, noting that $X / Y \rightarrow \infty$), we conclude from (4') that

$$
\begin{equation*}
C^{\prime}(x)=O\left(x L_{3}^{-2} L_{2}^{-1}+x L_{2}^{-3 / 2}\right) \tag{5}
\end{equation*}
$$

Combining the lower estimate in (2) with (5) completes the proof of the theorem.

S. SRINIVASAN

Acknowledgement. The author wishes to thank the referee for some helpful suggestions.

REFERENCES

1. P. Erdös, Some asymptotic formulas in number theory, J. Indian Math. Soc. (N.S.) 12 (1948), 75-78.
2. R. R. Hall, Halving an estimate obtained from Selberg's upper bound method, Acta Arith. 25 (1973/4), 347-351.
3. G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, 4th edn. (Oxford University Press, 1964).
4. H. L. Montgomery, A note on the large sieve, J. London Math. Soc. 43 (1968), 93-98.
5. L. Rédei, Das "schiefe Produkt" in der Gruppen theorie, Comment. Math. Helv. 20 (1947), 225-264.
6. H.-E. Richert, Sieve methods (Tata Institute Lecture Notes, Bombay, 1976).
7. T. Szele, Uber die endlichen Ordnungszahlen, zu denen nur eine Gruppe gehört, Comment. Math. Helv. 20 (1947), 265-267.
8. R. Warlimont, On the set of natural numbers which only yield orders of abelian groups, J. Number Theory 20 (1985), 354-362.

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400005
India

