ON EXPLICIT DECOMPOSITION FOR POSITIVE POLYNOMIALS ON [-1, +1$]$ WITH APPLICATIONS TO EXTREMAL PROBLEMS

R. PIERRE

1. Introduction. The following well known inequality was first proved by Bernstein [2].

Theorem A. If $p_{n}(x)$ is a polynomial of degree n, such that $\left|p_{n}(x)\right| \leqq 1$ for $-1 \leqq x \leqq+1$, then

$$
\begin{equation*}
\left|p_{n}^{\prime}(x)\right| \leqq n\left(1-x^{2}\right)^{-1 / 2}, \quad-1<x<+1 . \tag{1}
\end{equation*}
$$

The dominant $n\left(1-x^{2}\right)^{-1 / 2}$ is best possible only at the zeros of the Tchebychev polynomial

$$
T_{n}(x)=\cos (n \operatorname{arc} \cos x),
$$

but the bound is precise at every interior point as far as the exponent of n is concerned.

Theorem A was extended to the case of higher derivatives by Duffin and Schaeffer in [4]. In that paper they make extensive use of the oscillation property of the polynomial $T_{n}(x)$ and of the related function

$$
S_{n}(x)=\sin (n \arccos x) .
$$

The relationship between these two functions and the majorant $q(x) \equiv 1$ appearing in the hypothesis of Theorem A is best illustrated by the following equation

$$
\begin{equation*}
1=\left(T_{n}(x)\right)^{2}+\left(S_{n}(x)\right)^{2}=\left(T_{n}(x)\right)^{2}+\left(1-x^{2}\right)\left(T_{n}^{\prime}(x) / n\right)^{2} . \tag{2}
\end{equation*}
$$

That such a decomposition plays an important role in Theorem A was recognized by Bernstein himself (see [3]). This observation lead him to the following generalisation of Theorem A.

Theorem B. If $p_{n}(x)$ is a polynomial of degree n, satisfying

$$
\left|p_{n}(x)\right| \leqq\left[M^{2}(x)+\left(1-x^{2}\right) N^{2}(x)\right]^{1 / 2} \text { for }-1 \leqq x \leqq+1
$$

where $M(x)$ and $N(x)$ are real polynomials of degree l and $l-1$ respectively $(l \leqq n)$ such that $M(x)>0$ and $N(x)>0$ for $x>1$ and their zeros in $[-1,+1]$ alternate, then, for $x \in(-1,+1)$

[^0]\[

$$
\begin{align*}
& \left|p_{n}^{\prime}(x)\right|\left(1-x^{2}\right)^{1 / 2} \leqq\{[(n-l) M(x)+x N(x) \tag{3}\\
& \left.\left.\quad+\left(x^{2}-1\right) N^{\prime}(x)\right]^{2}+\left(1-x^{2}\right)\left[(n-l) N(x)+M^{\prime}(x)\right]^{2}\right\}^{1 / 2} .
\end{align*}
$$
\]

In this paper, we would like to develop a method to obtain an explicit decomposition of the type (2) for a polynomial $q(x)$ positive on $[-1,+1]$. This will enable us not only to reformulate Theorem B for a majorant of the form $\sqrt{q(x)}$ but also to obtain informations on $\max _{[-1,+1]}\left|p_{n}^{\prime}(x)\right|$ in various cases.
2. An explicit decomposition for positive polynomials. Let $q(x)$ be a polynomial of degree k such that $q(x)>0$ for $x \in[-1,+1]$. For every n satisfying $2 n \geqq k$, there exist polynomials $\tau_{n}(x)$ and $v_{n-1}(x)$ of degree n and $n-1$ respectively for which

$$
\begin{equation*}
q(x)=\left(\tau_{n}(x)\right)^{2}+\left(1-x^{2}\right)\left(v_{n-1}(x)\right)^{2} . \tag{4}
\end{equation*}
$$

Moreover their zeros are all in $[-1,+1]$ and interlace. Results of that type have been obtained in various forms by Luckas (see [8]), Karlin and Shapley [5] and others, but the proofs are not constructive. Our proof will give an explicit formula for $\tau_{n}(x)$ in a form which will closely relate it to $T_{n}(x)$.

Let us first suppose that $q(x)$ is a perfect square, i.e., $q(x)=\left(q_{1}(x)\right)^{2}$ where $q_{1}(x)$ is a polynomial of degree $j=k / 2 \leqq n$ having all its roots in $\mathbf{C} \backslash[-1,+1]$.

We begin with a heuristic remark. If the polynomials $\tau_{n}(x)$ and $q_{1}(x)$ are related by (4), there exist $(n+1)$ points $-1=x_{0}<x_{1}<\ldots<x_{n}=+1$ such that

$$
\begin{equation*}
\left(q_{1}(x)\right)^{2}-\tau_{n}^{2}(x)=c \prod_{i=1}^{n-1}\left(x-x_{i}\right)^{2}\left(1-x^{2}\right) \tag{5}
\end{equation*}
$$

while
(6) $\quad \tau_{n}^{\prime}(x) q_{1}(x)-\tau_{n}(x) q_{1}^{\prime}(x)=\prod_{i=1}^{n-1}\left(x-x_{i}\right) r(x)$,
where $r(x)$ is of degree j if $j<n$ and of degree at $\operatorname{most}(j-1)$ if $j=n$. Using (5) and (6) putting $y=\tau_{n} / q_{1}$, we obtain

$$
\begin{equation*}
\frac{\left(y^{\prime}\right)^{2}}{1-y^{2}}=\frac{h_{1}^{2}(x)}{q_{1}^{2}(x)} \frac{1}{\left(1-x^{2}\right)} . \tag{7}
\end{equation*}
$$

Here $h_{1}^{2}(x)=r^{2}(x) c^{-1}$. Obviously, if one was able to properly choose $h_{1}(x)$ in (7), one would obtain $\tau_{n}(x)$ through integration, namely

$$
\tau_{n}(x)= \pm q_{1}(x) \cos \left(\int_{1}^{x} \frac{h_{1}(t)}{q_{1}(t)} \frac{d t}{\sqrt{1-t^{2}}}\right)
$$

From now on, for every $u \in \mathbf{C} \backslash[-1,+1]$, we will denote by $\left(u^{2}-1\right)^{1 / 2}$ the determination of $\sqrt{u^{2}-1}$ for which $\left|u+\sqrt{u^{2}-1}\right|>1$ and denote by \sqrt{x} the positive square root of a positive number.

Consideration of equation (5) for large x and of equation (6) at a zero of $q_{1}(x)$ will lead to the following choice of $h_{1}(x)$, at least up to the sign of the second term (which will be justified later).
(8) $\quad h_{1}(x)=\sum_{s=1}^{l} m_{s}\left(z_{s}^{2}-1\right)^{1 / 2} \frac{q_{1}(x)}{x-z_{s}}-(n-j) q_{1}(x)$
where z_{1}, \ldots, z_{l} are the zeros of $q_{1}(x)$ of multiplicity m_{1}, \ldots, m_{l} respectively.
To proceed more formally, we need the following.
Lemma 1. If

$$
q_{1}(x)=\prod_{s=1}^{l}\left(x-z_{s}\right)^{m_{s}}
$$

is a polynomial of degree $j=\sum_{s=1}^{l} m_{s}$, positive on $[-1,+1]$, if $h_{1}(x)$ is aefined by (8) and $H_{1}(x)$ is given by

$$
\begin{equation*}
H_{1}(x)=\int_{1}^{x} \frac{h_{1}(t)}{q_{1}(t)} \frac{d t}{\sqrt{1-t^{2}}} \tag{9}
\end{equation*}
$$

then, for $x \in(-1,+1)$
(i) $H_{1}(x)=\sum_{s=1}^{l} m_{s} \delta_{s}(x)+(n-j) \operatorname{arc} \cos x$
where

$$
\delta_{s}(x)=2 \operatorname{Arctan}\left[\frac{\omega_{s}+1}{\omega_{s}-1} \sqrt{\frac{1-x}{1+x}}\right], \quad \omega_{s}=z_{s}+\left(z_{s}^{2}-1\right)^{1 / 2}
$$

and $\operatorname{Arc} \tan (0)=0$.
(ii) $\cos \left(\sum_{s=1}^{l} m_{s} \delta_{s}(x)\right)=\frac{n_{j}(x)}{q_{1}(x)}$,

$$
\sin \left(\sum_{s=1}^{l} m_{s} \delta_{s}(x)\right)=\frac{\left(1-x^{2}\right)^{1 / 2} m_{j-1}(x)}{q_{1}(x)}
$$

where $n_{j}(x)$ and $m_{j-1}(x)$ are polynomials of degree j and $j-1$ respectively.

Proof. (i) From (8) and (9), one readily obtains

$$
H_{1}(x)=\sum_{s=1}^{l} m_{s} \delta_{s}(x)+(n-j) \operatorname{arc} \cos x
$$

where
$(\dagger) \quad \delta_{s}(x)=\left(z_{s}^{2}-1\right)^{1 / 2} \int_{1}^{x} \frac{d t}{\left(t-z_{s}\right) \sqrt{1-t^{2}}}$.
Under the changes of variables $t=\cos \theta$ and $u=\operatorname{tg} \frac{\theta}{2},(\dagger)$ is transformed into

$$
\delta_{s}(x)=-\left(z_{s}^{2}-1\right)^{1 / 2} \int_{0}^{\sqrt{\frac{1-x}{1+x}}} \frac{d u}{\left(1-z_{s}\right)-\left(1+z_{s}\right) u^{2}}
$$

Introducing

$$
z_{s}=\frac{1}{2}\left(\omega_{s}+\frac{1}{\omega_{s}}\right),\left|\omega_{s}\right|>1 \quad \text { and } \quad w_{s}=\frac{\omega_{s}+1}{\omega_{s}-1},
$$

we set

$$
u=\frac{1}{w_{s}} v,
$$

which, considering that $\operatorname{Re}\left(w_{s}\right)>0$ leads to

$$
\begin{aligned}
\delta_{s}(x) & =\int_{0}^{w_{s}} \sqrt{\frac{1-x}{1+x}} \frac{d v}{1+v^{2}} \\
& =2 \operatorname{Arctan}\left[\frac{\omega_{s}+1}{\omega_{s}-1} \sqrt{\frac{1-x}{1+x}}\right]
\end{aligned}
$$

with the proposed determination of arc $\tan z$.
(ii) Let us first compute $\cos \left(\delta_{1}(x)\right)$ and $\sin \left(\delta_{1}(x)\right)$. We get

$$
\cos \left(\delta_{1}(x)\right)=\frac{1-\operatorname{tg}^{2}\left(\frac{\delta_{1}(x)}{2}\right)}{1+\operatorname{tg}^{2}\left(\frac{\delta_{1}(x)}{2}\right)}=\frac{z_{1} x-1}{z_{1}-x}
$$

while

$$
\sin \left(\delta_{1}(x)\right)=\frac{2 \operatorname{tg}\left(\frac{\delta_{1}(x)}{2}\right)}{1+\operatorname{tg}^{2}\left(\frac{\delta_{1}(x)}{2}\right)}=\frac{\left(z_{1}^{2}-1\right)^{1 / 2} \sqrt{1-x^{2}}}{\left(z_{1}-x\right)}
$$

Assertion (ii) now follows by induction on the number j of zeros of $q_{1}(x)$.

We are now in position to state and prove the main result of this section.

Theorem 1. Let $q_{1}(x)$ be a polynomial positive on $[-1,+1]$. If $h_{1}(x)$ and $H_{1}(x)$ are defined by (8) and (9) respectively, then the functions

$$
\tau_{n}(x)=q_{1}(x) \cos (H(x)) \quad \text { and } \quad v_{n-1}(x)=\frac{q_{1}(x) \sin (H(x))}{\sqrt{1-x^{2}}}
$$

are real polynomials of degree n and $(n-1)$ respectively satisfying the following properties:
a) $\left(q_{1}(x)\right)^{2}=\tau_{n}^{2}(x)+\left(1-x^{2}\right) v_{n-1}^{2}(x)$,
b) there exist $(2 n+1)$ points $-1=x_{0}<y_{1}<x_{1}<y_{2}<\ldots<y_{n}<$ $x_{n}=+1$ such that

$$
\begin{cases}\tau_{n}\left(x_{s}\right)=(-1)^{n-s} q_{1}\left(x_{s}\right), & s=0, \ldots, n \\ v_{n-1}\left(x_{s}\right)=0, & s=1, \ldots, n-1\end{cases}
$$

whereas

$$
\begin{aligned}
& \tau_{n}\left(y_{s}\right)=0 \\
& v_{n-1}\left(y_{s}\right)=\frac{(-1)^{n-s} q_{1}\left(y_{s}\right)}{\sqrt{1-y_{s}^{2}}} \quad s=1, \ldots, n
\end{aligned}
$$

Proof. It follows from Lemma 1 that

$$
\tau_{n}(x)=n_{j}(x) T_{n-j}(x)-\left(1-x^{2}\right) m_{j-1}(x)\left(T_{n-j}^{\prime}(x) /(n-j)\right)
$$

and that

$$
v_{n-1}(x)=m_{j-1}(x) T_{n-j}(x)+n_{j}(x)\left(T_{n-j}^{\prime}(x) /(n-j)\right)
$$

which implies that $\tau_{n}(x)$ and $v_{n-1}(x)$ are polynomials. Now, since $q_{1}(x)$ is a real polynomial, its zeros are either real or conjugate. If $z_{l}=\bar{z}_{s}$ we will have

$$
\delta_{l}(x)=\overline{\delta_{s}(x)}
$$

hence $H_{1}(x)$ is real for $x \in[-1,+1]$ and so are $\tau_{n}(x)$ and $v_{n-1}(x)$.
Since $\tau_{n}(x)$ and $v_{n-1}(x)$ obviously verify a), it is enough to complete the
proof, to show that $H_{1}(x)$ is a strictly decreasing function on $[-1,+1]$, such that $H_{1}(-1)=n \pi$ and $H_{1}(1)=0$. Studying the sign of

$$
\sqrt{1-x^{2}} H_{1}^{\prime}(x)=\frac{h_{1}(x)}{q_{1}(x)}=\sum_{s=1}^{l} \frac{m_{s}\left(z_{s}^{2}-1\right)^{1 / 2}}{\left(x-z_{s}\right)}-(n-j)
$$

we first observe that, for real z_{s}, our choice of the determination of $\sqrt{z_{s}^{2}-1}$ implies that

$$
z_{s}\left(z_{s}^{2}-1\right)^{1 / 2}>0
$$

and thus, that

$$
\frac{\left(z_{s}^{2}-1\right)^{1 / 2}}{x-z_{s}}<0 \quad \text { for } x \in[-1,+1]
$$

On the other hand, if z_{s} is a complex zero, so is $\overline{\bar{z}}_{s}$; setting

$$
z_{s}=\frac{1}{2}\left(\omega+\frac{1}{\omega}\right) \quad \text { where } \omega=\mathrm{re}^{i \theta}, r>1
$$

we get

$$
\begin{aligned}
\frac{\left(z_{s}^{2}-1\right)^{1 / 2}}{x-z_{s}}+\frac{\left(\bar{z}_{s}^{2}-1\right)^{1 / 2}}{x-\bar{z}_{s}}= & \\
& \frac{\left(r-r^{-1}\right)\left[(\cos \theta) x-2^{-1}\left(r+r^{-1}\right)\right]}{|x-z|^{2}}
\end{aligned}
$$

which is strictly negative for $x \in[-1,+1]$. This implies that $H_{1}^{\prime}(x)<0$ on $[-1,+1]$, hence that $H_{1}(x)$ decreases on that segment. That $H_{1}(1)=0$ is obvious, whereas the fact $H_{1}(-1)=n \pi$ follows directly from Lemma 1 (i) since

$$
\delta_{s}(-1)=2 \lim _{x \rightarrow-1^{+}} \operatorname{Arctan}\left[\frac{\omega_{s}+1}{\omega_{s}-1} \sqrt{\frac{1-x}{1+x}}\right]=\pi
$$

To obtain the decomposition (4) in the case where $q(x)$ is not a perfect square, it is enough to prove the following corollary.

Corollary 1. Let

$$
q(x)=c \prod_{s=1}^{l}\left(z-z_{s}\right)^{m_{s}}
$$

be a polynomial of dègree $k=\sum_{s=1}^{l} m_{s}$ positive on $[-1,+1]$. Let $h(x)$ and $H(x)$ be defined by
(10) $h(x)=\sum_{s=1}^{l} m_{s}\left(z_{s}^{2}-1\right)^{1 / 2} \frac{q(x)}{x-z_{s}}-(2 n-k) q(x)$
and

$$
\begin{equation*}
H(x)=\int_{1}^{x} \frac{h(t)}{q(t)} \frac{d t}{\sqrt{1-t^{2}}} \tag{11}
\end{equation*}
$$

Then, for each n, such that, $2 n \geqq k$, the functions

$$
\begin{equation*}
\tau_{n}(x)=\sqrt{q(x)} \cos \left(\frac{1}{2} H(x)\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n-1}(x)=\sqrt{q(x)} \frac{\sin \left(\frac{1}{2} H(x)\right)}{\sqrt{1-x^{2}}} \tag{13}
\end{equation*}
$$

are real polynomials of degree n and $(n-1)$ respectively all of whose zeros lie in $[-1,+1]$ and separate one another.

Proof. Let

$$
t_{2 n}(x)=q(x) \cos (H(x))
$$

since $H(-1)=2 n \pi$, the polynomial $2^{-1}\left(t_{2 n}(x)+q(x)\right)$ has only double zeros in $(-1,+1)$. Theorem 1 implies that there are n such zeros hence this polynomial is a perfect square. This implies that there exists a polynomial $r_{n}(x)$ such that

$$
r_{n}^{2}(x)=2^{-1}\left(t_{2 n}(x)+q(x)\right)=\tau_{n}^{2}(x)
$$

If we choose $r_{n}(x)$ such that $r_{n}(-1)=\tau_{n}(-1)$, we will have

$$
r_{n}(x) \equiv \tau_{n}(x)
$$

Considering $2^{-1}\left(q(x)-t_{2 n}(x)\right)$ we argue similarly for $v_{n-1}(x)$.
The last statement follows directly from the fact that as x increases from -1 to $+1, H(x)$ decreases from $2 n \pi$ to 0 .
It should be clear that the same device will give an explicit decomposition for positive polynomials on $[-1,+1]$ as a sum of non-negative polynomials of odd degree. For example, if $q(x)$ is a positive polynomial of degree $2 n-1$ then

$$
q(x)=(1+x)\left(t_{n-1}(x)\right)^{2}+(1-x)\left(s_{n-1}(x)\right)^{2}
$$

where

$$
t_{n-1}(x)=\sqrt{q(x)} \cos \left(\frac{1_{2}^{2 n}}{2} \sum_{1}^{-1} \delta_{i}(x)\right)(\sqrt{1+x})^{-1} \text { and }
$$

$$
s_{n-1}(x)=\sqrt{q(x)} \sin \left(\frac{1}{2} \sum_{1}^{2 n-1} \delta_{i}(x)\right)(\sqrt{1-x})^{-1}
$$

We will content ourselves with this remark and use only the representation (4) in what follows.
3. Pointwise bound. Let $q(x), \tau_{n}(x)$ be as in Corollary 1 and $s_{n}(x)$ be defined by
(14) $\quad s_{n}(x)=\sqrt{q(x)} \sin \left(\frac{1}{2} H(x)\right)$.

If t is an arbitrary real number, we wish to estimate $\left|p_{n}^{\prime}(t)\right|$ where $p_{n}(x)$ is a polynomial of degree $n \geqq k / 2$ satisfying
(15) $\left|p_{n}(x)\right| \leqq \sqrt{q(x)}$ for $x \in[-1,+1]$.

Using the notation of Theorem 1, set

$$
\omega(x)=\prod_{s=0}^{n}\left(x-x_{s}\right)=c \sqrt{1-x^{2}} s_{n}(x)
$$

and

$$
\omega_{l}(x)=\frac{\omega(x)}{x-x_{l}} \quad \text { for } l=0, \ldots, n .
$$

If $\xi_{1} \leqq \xi_{2} \leqq \ldots \leqq \xi_{n-1}$ and $\eta_{1} \leqq \eta_{2} \leqq \ldots \leqq \eta_{n-1}$ denote the roots of

$$
\omega_{n}^{\prime}(x)=0, \omega_{0}^{\prime}(x)=0
$$

respectively, then, applying Theorem 1 of [7], we see that the inequality (16) $\left|p_{n}^{\prime}(t)\right| \leqq\left|\tau_{n}^{\prime}(t)\right|$
is valid for every t lying outside the interval $\left(\xi_{1}, \eta_{n-1}\right)$.
The case $t \in\left(\xi_{1}, \eta_{n-1}\right)$ is covered by Theorem B. Our proof will depend on the following

Lemma 2. Let $q(x), \tau_{n}(x)$ and $s_{n}(x)$ be as above, then, the trigonometric polynomial of order n

$$
\tau_{n}(\cos \theta)+i s_{n}(\cos \theta)=\sqrt{q(\cos \theta)} \exp \left(i\left(\frac{H(\cos \theta)}{2}\right)\right)
$$

has all its roots in $\operatorname{Im}(\theta) \geqq 0$.
Proof. If z_{1}, \ldots, z_{k} denote the k zeros of $q(x)$ and

$$
\omega_{s}=z_{s}+\left(z_{s}^{2}-1\right)^{1 / 2}, \quad s=1, \ldots, k,
$$

then

$$
e^{i \delta_{s}(\cos \theta)}=\frac{-e^{-i \theta}}{2 \omega_{s}\left(\cos \theta-z_{s}\right)}\left[e^{i \theta} \omega_{s}-1\right]^{2}
$$

from which one readily deduces that

$$
\tau_{n}(\cos \theta)+i s_{n}(\cos \theta)=c e^{i(n-k) \theta} \prod_{1}^{k}\left(e^{i \theta} \omega_{s}-1\right)
$$

where c is constant. The lemma now follows from the fact that $\left|\omega_{\mathrm{s}}\right|>1$ for $s=1, \ldots, k$.

We can now reformulate Theorem B.
Theorem 2. If $p_{n}(x)$ is a polynomial of degree $n \geqq k / 2$ satisfying (15), then, for each $t \in(-1,+1)$,

$$
\begin{equation*}
\left(p_{n}^{\prime}(t)\right)^{2} \leqq\left(\tau_{n}^{\prime}(t)\right)^{2}+\left(s_{n}^{\prime}(t)\right)^{2} \tag{17}
\end{equation*}
$$

where $\tau_{n}(x)$ and $s_{n}(x)$ are given by (12) and (14) respectively.
Proof. By definition of τ_{n} and s_{n}, setting $x=\cos \theta$, we can put (15) under the form

$$
\left|p_{n}(\cos \theta)\right| \leqq\left|\tau_{n}(\cos \theta)+i s_{n}(\cos \theta)\right|
$$

Using Lemma 2, we see that the hypotheses of Levin's theorem, (see [1], p. 226) are satisfied, so that, for every real θ, we have

$$
\left|\sin \theta p_{n}^{\prime}(\cos \theta)\right| \leqq\left|\sin \theta\left(\tau_{n}^{\prime}(\cos \theta)+i s_{n}^{\prime}(\cos \theta)\right)\right|
$$

which is the desired inequality.
We first remark that, in the case where $\sqrt{q(x)}$ is of the form

$$
\left|\tau_{l}(x)+i s_{l}(x)\right|, \quad l \leqq n
$$

the functions $\tau_{n}(\cos \theta), s_{n}(\cos \theta), \tau_{l}(\cos \theta)$ and $s_{l}(\cos \theta)$ are related by

$$
\tau_{n}(\cos \theta)+i s_{n}(\cos \theta)=e^{+i(n-l) \theta}\left(\tau_{l}(\cos \theta)+i s_{l}(\cos \theta)\right)
$$

Differentiating both sides with respect to θ and putting $x=\cos \theta$ we see that, in this case, the right hand side of (17) can be written

$$
\left(-\sqrt{1-x^{2}} s_{l}^{\prime}(x)+(n-l) \tau_{l}(x)\right)^{2}+\left(\frac{(n-l) s_{l}(x)}{\sqrt{1-x^{2}}}+\tau_{l}^{\prime}(x)\right)^{2} .
$$

A comparison with the right hand side of (3) will show that Theorem 2 includes Theorem B completely.

Secondly, it should be noted that, while inequality (16) is best possible at every point, inequality (17) is best possible only at the zeros of $s_{n}^{\prime}(t)$. Exact estimates for $t \in(-1,+1)$ would require a much deeper study in
the spirit of [6]. We will not need to do that and conclude this section with the following corollary which combines the inequalities (16) and (17) in a form that is useful in the next one.

Corollary 2. Let $a_{1}<a_{2}<\ldots<a_{n}$ denote the roots of $s_{n}^{\prime}(x)$. If $p_{n}(x)$ is a polynomial of degree $n \geqq k / 2$ satisfying (15), then

$$
\left(p_{n}^{\prime}(t)\right)^{2} \leq \begin{array}{ll}
\left(\tau_{n}^{\prime}(t)\right)^{2} & \text { for } t \notin\left[a_{1}, a_{n}\right] \\
\frac{1}{4 q(t)}\left\{\left(q^{\prime}(t)\right)^{2}+\frac{h^{2}(t)}{1-t^{2}}\right\} & \text { for } t \in\left[a_{1}, a_{n}\right] \tag{18}
\end{array}
$$

Proof. The second part of the inequality can be verified directly by computing the right-hand side of (17). The first one will be a consequence of (16) if we show that $a_{1} \leqq \xi_{1}$ and $a_{n} \geqq \eta_{n-1}$. We verify the first inequality, the second one is obtained mutatis mutandis.

By definition of $\omega_{n}(x)$, we have

$$
\omega_{n}^{\prime}(x)=\left(\frac{1+x}{1-x}\right)^{-1 / 2}\left[\frac{1}{(1-x)^{2}} s_{n}(x)+\left(\frac{1+x}{1-x}\right) s_{n}^{\prime}(x)\right]
$$

and thus,

$$
\operatorname{sign}\left(\omega_{n}^{\prime}\left(a_{1}\right)\right)=\operatorname{sign}\left(s_{n}\left(a_{1}\right)\right) .
$$

On the other hand, using the fact that $H(x)$ decreases from $2 n \pi$ as x increases from -1 , we see that for small positive ϵ,

$$
\operatorname{sign}\left(s_{n}(-1+\epsilon)\right)=\operatorname{sign}\left(s_{n}^{\prime}(-1+\epsilon)\right)=\operatorname{sign}\left(\omega_{n}^{\prime}\left(a_{1}\right)\right) .
$$

It follows from there that

$$
\operatorname{sign}\left(\omega_{n}^{\prime}\left(a_{1}\right)\right)=\operatorname{sign}\left(\omega_{n}^{\prime}(-1+\epsilon)\right),
$$

which implies $\xi_{1} \geqq a_{1}$.
4. Glowal bounds. The use of inequality (1) to get an estimate for

$$
M=\sup \left\{\max _{[-1,+1]}\left|p_{n}^{\prime}(x)\right|| | p_{n}(x) \mid \leqq 1 \text { for } x \in[-1,+1]\right\}
$$

is classical (see [4]). It amounts essentially to proving that if $q(t) \equiv 1$, the right hand side of inequality (18) defines an increasing function on $(0,1)$, so that

$$
M=\left|T_{n}^{\prime}(1)\right|=n^{2} .
$$

Setting

$$
\begin{equation*}
M_{q}(t)=\frac{1}{4 q(t)}\left\{\left(q^{\prime}(t)\right)^{2}+\frac{h^{2}(t)}{1-t^{2}}\right\} \tag{19}
\end{equation*}
$$

we would like to study the behaviour of the function $M_{q}(t)$ for two different types of majorant $q(t)$. It will turn out that this behaviour is greatly influenced by the nearness of the zeros of $q(t)$ to the end points of $[-1,+1]$.

$$
\text { A. } \quad q(t)=\left(\beta^{2}-t^{2}\right)^{k}
$$

Here β is a real number greater than 1 and k an integer. As pointed out by Videnskii in [10], this case is of interest in view of the work of Dzyadyk on the approximation of functions in the $\operatorname{Lip}_{\alpha}$ class. Videnskii himself studied this question in the case $k=1$. Let us suppose that $k \geqq 2$. According to (10) we can write

$$
\begin{equation*}
h(x)=-2\left(\beta^{2}-x^{2}\right)^{k-1}\left[k \beta \sqrt{\beta^{2}-1}+(n-k)\left(\beta^{2}-x^{2}\right)\right] \tag{20}
\end{equation*}
$$

which upon substitution in (19) gives

$$
\begin{equation*}
M_{q}(t)=\frac{\left(\beta^{2}-t^{2}\right)^{k-2}}{\left(1-t^{2}\right)}\left\{B+C t^{2}+D t^{4}\right\} . \tag{21}
\end{equation*}
$$

Here

$$
\begin{aligned}
& B=\left[k \beta \sqrt{\beta^{2}-1}+\beta^{2}(n-k)\right]^{2} \geqq 0 \\
& C=-\left[2(n-k)^{2} \beta^{2}+2 k \beta \sqrt{\beta^{2}-1}(n-k)-k^{2}\right] \leqq 0 \\
& D=n(n-2 k) \geqq 0,
\end{aligned}
$$

where the last two inequalities are valid if $n \geqq 2 k$ which we now suppose to be true. Differentiating (21), we get

$$
\begin{equation*}
M_{q}^{\prime}(t)=\frac{\left(\beta^{2}-t^{2}\right)^{k-3}}{\left(1-t^{2}\right)^{2}} 2 t\left\{H+G t^{2}+I t^{4}+K t^{6}\right\} \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
& H=(C+B) \beta^{2}-B(k-2) \\
& G=2 D \beta^{2}-C(k-1)+B(k-3) \\
& I=-D \beta^{2}+C(k-2)-D k \\
& K=(k-1) D
\end{aligned}
$$

Set

$$
A(t)=H+G t+I t^{2}+K t^{3}
$$

If $k=2, A\left(\beta^{2}\right)=0$, hence the numerator in (22) reduces to

$$
\left(\beta^{2}-t^{2}\right)^{k-3} 2 t A\left(t^{2}\right)=2 t\left(-D t^{4}+2 D t^{2}+(B+C)\right)
$$

The graph of the function $y=-D t^{2}+2 D t+(B+C)$ being a concave parabola with vertex at $t=+1$ we see that, for $k=2, M_{q}^{\prime}(t)$ is increasing on $(0,1)$. For $k>2$, we consider

$$
A^{\prime}(t)=A^{\prime}(1)+A^{\prime \prime}(1)(t-1)+\frac{A^{\prime \prime \prime}(1)}{2}(t-1)^{2}
$$

Now

$$
A^{\prime}(1)=G+2 I+3 K=(k-3)(B+C+D) \geqq 0,
$$

while

$$
\begin{aligned}
\frac{A^{\prime \prime}(1)}{2} & =I+3 K=-\left(\beta^{2}-1\right)\left[n(n-2 k)+2(k-2)(n-k)^{2}\right] \\
& -2 \beta k \sqrt{\beta^{2}-1}(n-k)(k-2)-k^{2}(k-2)
\end{aligned}
$$

is negative and

$$
\frac{A^{\prime \prime \prime}(1)}{6}=K \geqq 0 .
$$

Thus $A^{\prime}(t)$ is positive on $(0,1)$ which implies that $A(t)$ is increasing on that interval.

This leads us to the following generalization of Videnskii's result [10].
Theorem 3. Let $p_{n}(x)$ be a polynomial of degree $n \geqq 2 k$ satisfying

$$
\left|p_{n}(x)\right| \leqq\left(\beta^{2}-x^{2}\right)^{k / 2}
$$

where $\beta \geqq 1$ and $k \geqq 2$, then

$$
\begin{equation*}
\max _{[-1,+1]}\left|p_{n}^{\prime}(x)\right| \leqq \max \left(\sqrt{M_{q}(0)},\left|\tau_{n}^{\prime}(1)\right|\right) \tag{23}
\end{equation*}
$$

where $M_{q}(t)$ is given by (21) and $\tau_{n}(x)$ by

$$
\begin{aligned}
\tau_{n}(x) & =\left(\beta^{2}-x^{2}\right)^{k / 2} \cos \left(-\int_{1}^{x} \frac{k \beta \sqrt{\beta^{2}-1} d t}{\left(\beta^{2}-t^{2}\right) \sqrt{1-t^{2}}}\right. \\
& +(n-k) \arccos x)
\end{aligned}
$$

Proof. Let us first suppose that $\beta>1$. Since for $t \in(-1,+1)$

$$
\tau_{n}(t) s_{n}^{\prime}(t)-s_{n}(t) \tau_{n}^{\prime}(t)=\frac{h(t)}{2 \sqrt{1-t^{2}}}<0
$$

we can use Rolle's theorem to conclude that the zeros of $s_{n}^{\prime}(t)$ and $\tau_{n}^{\prime}(t)$ separate each other, hence that $\tau_{n}^{\prime}(t)$ is increasing on the interval $\left(a_{n}, 1\right)$.

Using $A(1)=(B+C+D)\left(\beta^{2}-1\right)>0$, we obtain

$$
\lim _{t \rightarrow+1^{-}} M_{q}^{\prime}(t)=+\infty
$$

In view of the preceding discussion, we see that $M_{q}(t)$ has at most one local extremum in $(0,1)$ which will then be a minimum. Inequality (23) now follows from Corollary 2.

In the case $\beta=1$,

$$
M_{q}(t)=\left(1-t^{2}\right)^{k-2}\left\{(n-k)^{2}\left(1-t^{2}\right)+k^{2} t^{2}\right\}
$$

is a decreasing function. By continuity, the inequality

$$
\left|p_{n}^{\prime}(t)\right| \leqq \sqrt{M_{q}(t)}
$$

which is valid for $t \in(-1,+1)$ is also valid at the end points, hence

$$
\max _{[-1,+1]}\left|p_{n}^{\prime}(t)\right| \leqq \max _{[-1,+1]} \sqrt{M_{q}(t)}=\sqrt{M_{q}(0)}=(n-k) .
$$

From (21) and the definition of $\tau_{n}(x)$ we obtain, using some elementary computation, that

$$
\sqrt{M_{q}(0)}=\beta^{k-2}\left[k \beta \sqrt{\beta^{2}-1}+\beta^{2}(n-k)\right]
$$

while

$$
\begin{aligned}
\tau_{n}^{\prime}(1) & =\left\{-k\left(\beta^{2}-1\right)^{k / 2-1}\right. \\
& \left.+\left(\beta^{2}-1\right)^{k / 2}\left(\frac{\beta k \sqrt{\beta^{2}-1}}{1-\beta^{2}}-(n-k)\right)^{2}\right\}
\end{aligned}
$$

This implies that

$$
\lim _{\beta \rightarrow \infty} \frac{\left|\tau_{n}^{\prime}(1)\right|}{\sqrt{M_{q}(0)}}=n
$$

whence $\sqrt{M_{q}(0)}<\left|\tau_{n}^{\prime}(1)\right|$ if β is big enough. Obviously, if this inequality is true (23) is best possible.

On the other hand, since for $\beta=1, \tau_{n}^{\prime}(1)=0$, we see that, if β is small, the inequality $\sqrt{M_{q}(0)} \geqq\left|\tau_{n}^{\prime}(1)\right|$ is valid. If so, (23) is again best possible when n is odd, but not when n is even. The study of this last case would require a more precise local estimate than the one provided by Corollary 2.
B. $\quad q(t)=\left(q_{1}(t)\right)^{2}$, where $q_{1}(t) \neq 0$ if $\operatorname{Re}\left(t^{2}\right)>0$.

In this second case, we suppose that the majorant $\sqrt{q(t)}$ is an even real polynomial $q_{1}(t)$ of degree j which has no zero in

$$
\operatorname{Arg}(t) \in\left(\frac{-\pi}{4}, \frac{\pi}{4}\right) \cup\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)
$$

A subclass of this class of majorants has been studied by Videnskii in [9] where he supposed that all the zeros of $q(t)$ are purely imaginary.

Here again, we would like to show that the function

$$
M_{q}(t)=\left(q_{1}^{\prime}(t)\right)^{2}+\frac{h_{l}^{2}(t)}{\left(1-t^{2}\right)}
$$

is increasing on $(0,1)$. For this, we verify that $\left(q_{1}^{\prime}(t)\right)^{2}$ and $h_{1}^{2}(t)$ are polynomials with positive coefficients.

Let R_{1} be the set of zeros of $q_{1}(t)$ lying in $\operatorname{Arg}(t) \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right)$ and R_{2} be the set of zeros of $q_{1}(t)$ lying on the positive imaginary axis. In view of the conditions imposed on $q_{1}(t)$, we see that

$$
\begin{equation*}
q_{1}(t)=C \prod_{z \in R_{1}}\left|t^{2}-z^{2}\right|^{2} \prod_{z \in R_{2}}\left(t^{2}-z^{2}\right) \tag{24}
\end{equation*}
$$

Clearly, in both products, each factor has positive coefficients and so the same is true of $\left(q_{1}^{\prime}(t)\right)^{2}$.

From (8) and (24), we get

$$
\begin{aligned}
h_{1}(t) & =q_{1}(t)\left\{2 \sum_{z \in R_{1}} \operatorname{Re}\left(\frac{z\left(z^{2}-1\right)^{1 / 2}}{t^{2}-z^{2}}\right)\right. \\
& \left.+\sum_{z \in R_{2}} \frac{z\left(z^{2}-1\right)^{1 / 2}}{t^{2}-z^{2}}-(n-j)\right\} .
\end{aligned}
$$

If $z \in R_{2}$, there exists a positive α such that $z=i \alpha$, hence

$$
z\left(z^{2}-1\right)^{1 / 2}=-\alpha \sqrt{\alpha^{2}+1} \leqq 0
$$

On the other hand if $z \in R_{1}$, set

$$
z=\frac{1}{2}\left(\omega+\frac{1}{\omega}\right)
$$

where $\omega=r e^{i \theta}, r>1$. Then

$$
\operatorname{Re}\left(\frac{z\left(z^{2}-1\right)^{1 / 2}}{t^{2}-z^{2}}\right)=\frac{\left(r^{4}-1\right)}{4 r^{2}\left|t^{2}-z^{2}\right|^{2}}\left\{(\cos 2 \theta) t^{2}-|z|^{2}\right\}
$$

In order to verify that $h_{1}^{2}(t)$ has positive coefficients it is enough to check that $\cos 2 \theta \leqq 0$ which follows from the fact that $\operatorname{Re}\left(z^{2}\right) \leqq 0$.

In view of the above discussion, we can conclude that $M_{q}(t)$ is increasing. The next result now follows from Corollary 2.

Theorem 4. Let $q_{1}(x)$ be an even polynomial of degree j with real coefficients, which has no zero in $\operatorname{Arg}(t) \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \cup\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$.

Let $h_{1}(x)$ and $H_{1}(x)$ be defined by (8) and (9) respectively. If $p_{n}(x)$ is a polynomial of degree $n \geqq j$ satisfying $\left|p_{n}(x)\right| \leqq\left|q_{1}(x)\right|$ for $x \in[-1,+1]$, then

$$
\max \left|p_{n}^{\prime}(x)\right| \leqq\left|\tau_{n}^{\prime}(1)\right|=q_{1}^{\prime}(1)+\frac{h_{1}^{2}(1)}{q_{1}(1)}
$$

where

$$
\tau_{n}(x)=q_{1}(x) \cos \left(H_{1}(x)\right)
$$

In conclusion we remark that, as suggested by cases A and B, it would be interesting to determine the class of polynomials $q(t)$ for which the function $M_{q}(t)$ is increasing. Would this, for example be true under the condition that $q(t)$ has positive coefficients? If the answer was yes, it could lead to interesting asymptotic results for majorants

$$
\phi(t)=\sum_{0}^{\infty} a_{n} t^{n} \quad \text { where } a_{n} \geqq 0
$$

and, in particular, for incomplete polynomials.
Acknowledgement. The author would like to thank the referee for many valuable suggestions and improvements on the original version.

References

1. R. P. Boas, Jr., Entire functions (Academic Press, 1954).
2. S. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mémoire de l'Académie Royale de Belgique 4 (1912), 1-104.
3. Estimates of derivatives of polynomials, Collected papers, 1, paper $\mathrm{n}^{\circ} 46$ (1952), 497-499.
4. R. J. Duffin and A. C. Schaeffer, On some inequalities of S. Bernstein and W. Markov for derivatives of polynomials, Bull. Am. Math. Soc. 44 (1938), 289-297.
5. S. Karlin and L. S. Shapley, Geometry of moment spaces, Mem. Am. Math. 12 (1953).
6. W. Markov, Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), 218-258.
7. R. Pierre and Q. I. Rahman, On a problem of Turán about polynomials III, Can. J. Math. 34(1982), 888-889.
8. G. Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications 23. Published by the American Mathematical Society. (Providence, Rhode Island, Third edition, 1967).
9. V. S. Videnskii, Generalization of a theorem of A. A. Markov on the estimation of the derivative of a polynomial, Dokl. Akad. Nauk. SSSR 125 (1959), 15-18.
10. Generalization of the inequalities of V. A. Markov, Dok1. Akad. Nauk. SSSR 120 (1958), 447-450.

Université Laval,
Québec, Québec

[^0]: Received September 7, 1982 and in revised form May 8, 1984. This work was supported by the NSERC under Grant A-3514 and by a grant of the Gouvernement du Québec.

