LOCALLY PRIMITIVE GRAPHS AND BIDIRECT PRODUCTS OF GRAPHS

CAI HENG LI ${ }^{凶}$ and LI MA
(Received 30 September 2010; accepted 24 May 2011)
Communicated by L. M. Batten

Abstract

We characterise regular bipartite locally primitive graphs of order $2 p^{e}$, where p is prime. We show that either $p=2$ (this case is known by previous work), or the graph is a binormal Cayley graph or a normal cover of one of the basic locally primitive graphs; these are described in detail.

2010 Mathematics subject classification: primary 20B25; secondary 05E18.
Keywords and phrases: locally primitive graphs, Cayley graphs, bidirect product of graphs.

1. Introduction

Studying locally primitive graphs has been a central topic in algebraic graph theory for more than half a century. Giudici et al. [6] established a framework for studying locally primitive bipartite graphs, which reduces the study to 'basic' objects in terms of O'Nan-Scott types. In this paper, we will study locally primitive graphs based on bidirect products of graphs, defined below.

Definition 1.1. Let Σ be a connected bipartite graph with biparts U and W. The bidirect square $\Sigma^{\times_{\mathrm{bi}} 2}$ is defined to be the graph with vertex set $(U \times U) \cup(W \times W)$ such that $\left(u_{1}, u_{2}\right) \sim\left(w_{1}, w_{2}\right)$ if and only if both $u_{1} \sim w_{1}$ and $u_{2} \sim w_{2}$ in Σ (where \sim denotes adjacency). Recursively, the bidirect mth power $\Sigma^{\chi_{\mathrm{bi}} m}$ is defined as the graph with vertex set $U^{m} \cup W^{m}$ such that, if $u_{1} \in U^{m-1}, w_{1} \in W^{m-1}, u_{2} \in U$ and $w_{2} \in W$, then $\left(u_{1}, u_{2}\right) \sim\left(w_{1}, w_{2}\right)$ if and only if both $u_{1} \sim w_{1}$ in $\Sigma^{x_{\mathrm{bi}}(m-1)}$ and $u_{2} \sim w_{2}$ in Σ.

We remark that the square $\Sigma^{\times_{\mathrm{bi}} 2}$ is one of the connected component of the direct product $\Sigma \times \Sigma$, see Section 2 for details. Giudici et al. [5] used the bidirect product to study homogeneous factorisations of graphs, calling it the bipartite product. We think that 'bidirect product' is more appropriate.

[^0]Let $\Gamma=(V, E)$ be a connected graph with vertex set V and edge set E. Denote by $\Gamma(v)$ the neighbourhood of the vertex v, that is, the set of vertices adjacent to v. For a subgroup X of Aut Γ, the graph Γ is called X-locally-primitive if, for each vertex $v \in V$, the action of X_{v}, the stabiliser of v, on $\Gamma(v)$ is primitive.

Theorem 1.2. Let Σ be a connected bipartite graph, and let $\Gamma=\Sigma^{x_{\mathrm{bil}} m}$. Then Γ is G-locally-primitive for some subgroup G of a wreath product X ? S_{m}, where $X \leq$ Aut Σ, if and only if Σ is X-locally-primitive.

For the rich literature on locally primitive graphs, see the references in [6, 7]. In particular, a theory is established in [6] for the global action analysis of such graphs. The main point of the global action analysis is to take normal quotient and then to analyse 'basic objects', defined below.

Let $\Gamma=(V, E)$ be a connected G-locally-primitive graph. If Γ is bipartite, then let U and W be the biparts. We denote by G^{+}the stabiliser of U and W, that is, $G^{+}=G_{U}=G_{W}$. Let N be a normal subgroup of G. Denote by V_{N} the set of N-orbits in V. The normal quotient Γ_{N} of Γ induced by N is defined as the graph with vertex set V_{N}, and two vertices $B, C \in V_{N}$ are adjacent if there exist $u \in B$ and $v \in C$ that are adjacent in Γ. Then Γ is a normal multicover of Γ_{N}, and, further, if Γ and Γ_{N} have the same valency, then Γ is a normal cover of Γ_{N}, that is, the induced subgraph on $[B, C]$ for adjacent B and C is a perfect matching.

Let $M \triangleleft G$ be maximal subject to the condition that M has at least three orbits on V, and, further, M is intransitive on each of the biparts U and W if Γ is bipartite. Then Γ is a normal cover of the quotient Γ_{M}, and each minimal normal subgroup of G / M is transitive on V_{M} or one of U_{M} and W_{M} if Γ is bipartite. Therefore, with respect to this group G / M, the graph Γ_{M} has no further nontrivial normal quotient. Such graphs lie in the core of the class of locally primitive graphs, which are basic (or minimal) objects for the class of graphs.

A bipartite locally primitive graph Γ is called basic if there exists a subgroup G of Aut Γ which acts on Γ locally primitively and any nontrivial normal subgroup of G is transitive on at least on one of the biparts. This leads to the study of basic objects, as described in $[6,7]$, associated with a theory based on the O'Nan-Scott-Praeger theorem for quasiprimitive permutation groups, proved by Praeger in [14].

Locally primitive graphs of prime power order are characterised in [9, 10, 12]. Here we characterise the family of graphs that are regular, bipartite, locally primitive, and of order $2 p^{e}$, where p is prime. Typical examples include:
(i) the complete bipartite graphs $\mathrm{K}_{p^{e}, p^{e}}$;
(ii) the graphs $\mathrm{K}_{p^{e}, p^{e}}-p^{e} \mathrm{~K}_{2}$ obtained by deleting a 1-factor from $\mathrm{K}_{p^{e}, p^{e}}$;
(iii) the incidence graph $\mathrm{D}_{2}^{1}(11,5)$ and the nonincidence graph $\overline{\mathrm{D}}_{2}^{1}(11,5)$ of the 2-($11,5,1$)-design;
(iv) the incidence graph $\mathrm{PH}(d, q)$ and the nonincidence graph $\overline{\mathrm{PH}}(d, q)$ of the projective geometry $\operatorname{PG}(d-1, q)$, where $d \geq 3$; and
(v) the standard double cover of the Schläfli graph.

Other basic graphs are bidirect powers of these graphs. We remark that the Schläfli graph is the graph on isotropic lines in the $\mathrm{U}(4,2)$ geometry, adjacent when disjoint, which is a strongly regular graph of valency 16 , and is a locally primitive Cayley graph of the metacyclic group $\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$ (see [1] or [2] for more details).

A bipartite graph $\Gamma=(V, E)$ is called a Cayley graph of a group R if Aut Γ has a subgroup which is isomorphic to R and regular on V. If further Aut Γ has a subgroup R which is regular on V and $R \cap(\operatorname{Aut} \Gamma)^{+}$is normal in Aut Γ, then Γ is called a binormal Cayley graph. Binormal Cayley graphs have many interesting properties; see [11].

The main result of this paper is to present a classification of regular locally primitive graphs of order $2 p^{m}$. The case where $p=2$ is characterised in [12].
Theorem 1.3. Each regular bipartite locally primitive graph of order $2 p^{m}$, where p is an odd prime number, is either a binormal Cayley graph, or a normal cover of one of the following basic G-locally-primitive graphs:
(i) $\Gamma=\mathrm{K}_{p^{e}, p^{e}}$;
(ii) the standard double cover of $\Sigma^{\times m}$, where $m \geq 1$ and $\Sigma=\mathrm{K}_{p^{e}}$ or the Schläfli graph;
(iii) $\Gamma=\Sigma^{\times_{\mathrm{bi}} m}$, where $m \geq 1$ and

$$
\Sigma=\mathrm{D}_{2}^{1}(11,5), \overline{\mathrm{D}}_{2}^{1}(11,5), \mathrm{PH}(d, q), \text { or } \overline{\mathrm{PH}}(d, q)
$$

We remark that a binormal Cayley graph is a normal cover of a biquasiprimitive graph of affine type, and basic locally primitive biquasiprimitive graphs of affine type are not yet completely determined, see [9].

For a positive integer s, an s-arc of a graph Γ is a sequence of $s+1$ vertices $v_{0}, v_{1}, \ldots, v_{s}$ such that v_{i} is adjacent to v_{i+1} and $v_{i} \neq v_{i+2}$. A graph Γ is called locally (G, s)-arc-transitive if, for each vertex v, the stabiliser G_{v} is transitive on the t-arcs starting from v for all $t \leq s$.
Corollary 1.4. Each regular bipartite locally 2-arc-transitive graph of order $2 p^{m}$, where p is an odd prime number, is a normal cover of one of the following basic locally ($G, 2$)-arc-transitive graphs:

$$
\begin{equation*}
\Gamma=\mathrm{K}_{p^{e}, p^{e}}, \mathrm{~K}_{p^{e}, p^{e}}-p^{e} \mathrm{~K}_{2}, \mathrm{D}_{2}^{1}(11,5), \overline{\mathrm{D}}_{2}^{1}(11,5) \text {, or } \mathrm{PH}(d, q) ; \tag{i}
\end{equation*}
$$

(ii) $\quad G^{+}=\mathbb{Z}_{p}^{e} \rtimes G_{v}$, where G^{+}is a primitive affine group and $G_{v} \cong G_{v}^{\Gamma(v)}$ is a primitive permutation group.
In particular, regular bipartite locally 4-arc-transitive graphs of order $2 p^{e}$, where p is an odd prime number, are cycles or normal covers of $\mathrm{PH}(3, q)$.

It is shown in [10] that 4-arc-transitive graphs of order p^{e} are all cycles. To extend this result to the case of order $2 p^{e}$ where p is an odd prime number, one needs to characterise the nonbipartite case, and so needs to extend the result of Guralnick [8] to classify almost simple groups which have subgroups of index $2 p^{e}$.

2. Bidirect product

Let Σ_{i} be a connected bipartite graph with vertex set V_{i} and biparts U_{i} and W_{i}, where $i=1$ or 2 . Recall that the direct product $\Sigma_{1} \times \Sigma_{2}$ is the graph with vertex set $V_{1} \times V_{2}$
such that two vertices $\left(v_{1}, v_{2}\right)$ and $\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$ are adjacent if and only if $v_{i} \sim v_{i}^{\prime}$ in Σ_{i} for $i=1$ and 2 .

It is easily shown that $\Sigma_{1} \times \Sigma_{2}$ is disconnected and has exactly two connected components, which are the induced subgraphs of $\Sigma_{1} \times \Sigma_{2}$ whose vertex sets are either $\left(U_{1} \times U_{2}\right) \cup\left(W_{1} \times W_{2}\right)$ or $\left(U_{1} \times W_{2}\right) \cup\left(U_{2} \times W_{1}\right)$.

Let $X \leq$ Aut $\Sigma_{1}, Y \leq$ Aut Σ_{2}, and $G=X \times Y$. Then G acts on $V=V_{1} \times V_{2}$ in the following way:

$$
\left(v_{1}, v_{2}\right)^{(x, y)}=\left(v_{1}^{x}, v_{2}^{y}\right) .
$$

For all elements $(x, y) \in G$ and vertices $\left(v_{1}, v_{2}\right)$ and $\left(v_{3}, v_{4}\right)$ in $V_{1} \times V_{2}$,

$$
\begin{aligned}
\left(v_{1}, v_{2}\right) \sim\left(v_{3}, v_{4}\right) & \Longleftrightarrow v_{1} \sim v_{3} \text { in } \Sigma_{1}, \text { and } v_{2} \sim v_{4} \text { in } \Sigma_{2} \\
& \Longleftrightarrow v_{1}^{x} \sim v_{3}^{x} \text { in } \Sigma_{1}, \text { and } v_{2}^{y} \sim v_{4}^{y} \text { in } \Sigma_{2} \\
& \Longleftrightarrow\left(v_{1}, v_{2}\right)^{(x, y)}=\left(v_{1}^{x}, v_{2}^{y}\right) \sim\left(v_{3}^{x}, v_{4}^{y}\right)=\left(v_{3}, v_{4}\right)^{(x, y)} .
\end{aligned}
$$

Thus, (x, y) is an automorphism of $\Sigma_{1} \times \Sigma_{2}$, and

$$
X \times Y \leq \operatorname{Aut}\left(\Sigma_{1} \times \Sigma_{2}\right)
$$

In particular, if Σ_{1} and Σ_{2} are both vertex-transitive, then so is $\Sigma_{1} \times \Sigma_{2}$. However, the direct product of two edge-transitive graphs is not necessarily edge-transitive.

Example 2.1. Let $\Sigma_{1}=\mathrm{K}_{2,3}$ and $\Sigma_{2}=\mathrm{K}_{3,4}$. Then the connected components of $\Sigma_{1} \times \Sigma_{2}$ are $\mathrm{K}_{6,12}$ and $\mathrm{K}_{8,9}$. Because the two components are not isomorphic, $\Sigma_{1} \times \Sigma_{2}$ is not edge-transitive.

Although the two components are not necessarily isomorphic, the following lemma shows that each of them is edge-transitive.

Lemma 2.2. Assume that Σ_{1} is X-edge-transitive, and Σ_{2} is Y-edge-transitive. Then the connected components of $\Sigma_{1} \times \Sigma_{2}$ are $(X \times Y)$-edge-transitive.

Proof. Let Γ be the component of $\Sigma_{1} \times \Sigma_{2}$ with vertex set $\left(U_{1} \times U_{2}\right) \cup\left(W_{1} \times W_{2}\right)$. Take two edges $\left\{\left(u_{1}, u_{2}\right),\left(w_{1}, w_{2}\right)\right\}$ and $\left\{\left(u_{1}^{\prime}, u_{2}^{\prime}\right),\left(w_{1}^{\prime}, w_{2}^{\prime}\right)\right\}$. Then $\left\{u_{1}, w_{1}\right\}$ and $\left\{u_{1}^{\prime}, w_{1}^{\prime}\right\}$ are two edges of Σ_{1}, and $\left\{u_{2}, w_{2}\right\}$ and $\left\{u_{2}^{\prime}, w_{2}^{\prime}\right\}$ are two edges of Σ_{2}. Thus, relabelling if necessary, we may assume that there exist $x \in X$ and $y \in Y$ such that

$$
u_{1}^{x}=u_{1}^{\prime}, \quad w_{1}^{x}=w_{1}^{\prime}, \quad u_{2}^{y}=u_{2}^{\prime}, \quad w_{2}^{y}=w_{2}^{\prime} .
$$

Therefore the element (x, y) maps the edge $\left\{\left(u_{1}, u_{2}\right),\left(w_{1}, w_{2}\right)\right\}$ to the edge $\left\{\left(u_{1}^{\prime}, u_{2}^{\prime}\right),\left(w_{1}^{\prime}, w_{2}^{\prime}\right)\right\}$. Hence Γ is $(X \times Y)$-edge-transitive.

Similarly, the component with vertex set $\left(U_{1} \times W_{2}\right) \cup\left(U_{2} \times W_{1}\right)$ is also $(X \times Y)$ -edge-transitive.

Edge-transitive graphs are often described as coset graphs, which are defined as follows.

Definition 2.3. For a group G and subgroups L, R such that $L \cap R$ is core-free in G, that is, contains no nontrivial normal subgroup, let $[G: L]=\{L x \mid x \in G\}$ and $[G: R]=$ $\{R x \mid x \in G\}$. Consider the G-edge-transitive graph with vertex set $[G: L] \cup[G: R]$ and edges $\{L x, R y\}$, where $y x^{-1} \in R L$. This graph is called a coset graph, and is denoted by $\operatorname{Cos}(G, L, R)$.
Lemma 2.4. Let $\Gamma=(V, E)$ and $G \leq$ Aut Γ be such that G is transitive on E and intransitive on V. Then for an edge $\{u, w\}, \Gamma$ is isomorphic to $\operatorname{Cos}\left(G, G_{u}, G_{w}\right)$.

Coset graph representations for bidirect products are interesting and important.
Lemma 2.5. Let Σ_{1} be an X-edge-transitive graph and Σ_{2} be a Y-edge-transitive graph, both of which are connected and bipartite. Then

$$
\Sigma_{1}=\operatorname{Cos}\left(X, X_{u_{1}}, X_{w_{1}}\right) \quad \text { and } \quad \Sigma_{2}=\operatorname{Cos}\left(Y, Y_{u_{2}}, Y_{w_{2}}\right)
$$

where $\left\{u_{1}, w_{1}\right\}$ and $\left\{u_{2}, w_{2}\right\}$ are edges of Σ_{1} and Σ_{2} respectively, and the two connected components of $\Sigma_{1} \times \Sigma_{2}$ are

$$
\operatorname{Cos}\left(X \times Y, X_{u_{1}} \times Y_{u_{2}}, X_{w_{1}} \times Y_{w_{2}}\right) \quad \text { and } \quad \operatorname{Cos}\left(X \times Y, X_{u_{1}} \times Y_{w_{2}}, X_{u_{2}} \times Y_{w_{1}}\right)
$$

Proof. Let $G=X \times Y$, and let v be a vertex of $\Sigma_{1} \times \Sigma_{2}$. Then $v=\left(v_{1}, v_{2}\right)$, where v_{1} and v_{2} are vertices of Σ_{1} and Σ_{2}. An element $g=(x, y) \in G$ lies in G_{v} if and only if

$$
\left(v_{1}, v_{2}\right)=v=v^{g}=\left(v_{1}, v_{2}\right)^{(x, y)}=\left(v_{1}^{x}, v_{2}^{y}\right),
$$

or, equivalently, $v_{1}^{x}=v_{1}$ and $v_{2}^{y}=v_{2}$, that is, $x \in X_{v_{1}}$ and $y \in Y_{v_{2}}$. Thus, $G_{v}=X_{v_{1}} \times Y_{v_{2}}$. By Lemma 2.2, each of the components of $\Sigma_{1} \times \Sigma_{2}$ is $(X \times Y)$-edge-transitive.

Let $\left\{u_{1}, w_{1}\right\}$ and $\left\{u_{2}, w_{2}\right\}$ be edges of Σ_{1} and Σ_{2}. Then both $\left\{\left(u_{1}, u_{2}\right),\left(w_{1}, w_{2}\right)\right\}$ and $\left\{\left(u_{1}, w_{2}\right),\left(u_{2}, w_{1}\right)\right\}$ are edges of $\Sigma_{1} \times \Sigma_{2}$, and they lie in different components. By Lemma 2.4, the two components of $\Sigma_{1} \times \Sigma_{2}$ can be represented as coset graphs.

The case where $\Sigma_{1}=\Sigma_{2}$ is especially interesting. Recall from Definition 1.1 that, given a connected bipartite graph Σ with biparts U and W, we write $\Sigma^{x_{\mathrm{bi}} 2}$ for the connected component of $\Sigma \times \Sigma$ with vertex set $(U \times U) \cup(W \times W)$, and $\Sigma^{\times_{\mathrm{b} i} m}$ for the connected component of $\Sigma^{\times_{\mathrm{bi}}(m-1)} \times \Sigma$ with vertex set $\left(U^{m-1} \times U\right) \cup\left(W^{m-1} \times W\right)$ when $m \geq 3$.

The other component of $\Sigma \times \Sigma$ has vertex set $(U \times W) \cup(W \times U)$, and is arctransitive provided that Σ is edge-transitive.
Example 2.6. Let $X=\operatorname{PSL}(2, p)$, where p is a prime congruent to 5 modulo 8. Then X has subgroups $L \cong A_{4}$ (the alternating group) and $R \cong D_{12}$ (the dihedral group) such that $L \cap R \cong \mathbb{Z}_{2}^{2}$ and $\langle L, R\rangle=X$. Thus, the coset graph $\Sigma=\operatorname{Cos}(X, L, R)$ is a connected cubic graph and X-locally-primitive, but not X-arc-transitive.

Let $U=[X: L]$ and $W=[X: R]$. Then the component of $\Sigma \times \Sigma$ whose vertex set is $(U \times W) \cup(W \times U)$ is $X \imath S_{2}$-arc-transitive. The other component is $\Sigma^{\mathrm{b}_{\mathrm{bi}}{ }^{2}}$, which is X $\imath S_{2}$-locally-primitive but not arc-transitive.

In terms of coset graphs, the m th power $\Sigma^{\times_{b i} m}$ has a simple form.

Lemma 2．7．Suppose that $\Sigma=\operatorname{Cos}\left(X, X_{\alpha}, X_{\beta}\right)$ ．Then

$$
\Sigma^{x_{\mathrm{bi}} m}=\operatorname{Cos}\left(X^{m}, X_{\alpha}^{m}, X_{\beta}^{m}\right) .
$$

If Σ is of valency $\left\{k_{1}, k_{2}\right\}$ ，then $\Sigma^{\times_{\mathrm{bi}} m}$ has valency $\left\{k_{1}^{m}, k_{2}^{m}\right\}$ ．Further，Aut $\Sigma^{\times_{\mathrm{bi}} m}$ has a subgroup X i S_{m} ，that is，

$$
\text { Aut } \Sigma^{\times_{\mathrm{b} i} m} \geq X \imath S_{m}
$$

Proof．The bipartition of the vertex set of Σ is $\left[X: X_{\alpha}\right] \cup\left[X: X_{\beta}\right]$ ，and the vertex set of $\Sigma^{\times_{\mathrm{bi}} m}$ is $\left[X: X_{\alpha}\right]^{m} \cup\left[X: X_{\beta}\right]^{m}$ ，which is equal to $\left[X^{m}: X_{\alpha}^{m}\right] \cup\left[X^{m}: X_{\beta}^{m}\right]$ ．We may inductively assume that

$$
\Sigma^{\times_{\mathrm{bi}}(m-1)}=\operatorname{Cos}\left(X^{m-1}, X_{\alpha}^{m-1}, X_{\beta}^{m-1}\right) .
$$

By Lemma 2．5，$\Sigma^{\times_{\mathrm{bi}} m}$ is a component of $\operatorname{Cos}\left(X^{m-1}, X_{\alpha}^{m-1}, X_{\beta}^{m-1}\right) \times \operatorname{Cos}\left(X, X_{\alpha}, X_{\beta}\right)$ ．It follows that $\Sigma^{\times_{\mathrm{b} i} m}=\operatorname{Cos}\left(X^{m}, X_{\alpha}^{m}, X_{\beta}^{m}\right)$ ．

Let $\Gamma=\Sigma^{\times_{b i} m}$ ．Let $u=(\alpha, \alpha, \ldots, \alpha)$ and $w=(\beta, \beta, \ldots, \beta)$ be vertices of Γ ．Then

$$
\begin{aligned}
|\Gamma(u)| & =\left|X_{\alpha}^{m}: X_{\alpha}^{m} \cap X_{\beta}^{m}\right|=\left|X_{\alpha}: X_{\alpha} \cap X_{\beta}\right|^{m}, \\
|\Gamma(w)| & =\left|X_{\beta}^{m}: X_{\alpha}^{m} \cap X_{\beta}^{m}\right|=\left|X_{\beta}: X_{\alpha} \cap X_{\beta}\right|^{m} .
\end{aligned}
$$

Thus，if Σ is of valency $\left\{k_{1}, k_{2}\right\}$ ，then Γ has valency $\left\{k_{1}^{m}, k_{2}^{m}\right\}$ ．
Write $g=(1, \ldots, 1 ; \pi) \in X \backslash S_{m}$ where $\pi \in S_{m}$ ．For all elements $g_{1}=\left(x_{1}, \ldots, x_{m}\right)$ ， $g_{2}=\left(y_{1}, \ldots, y_{m}\right) \in X^{m}$ ，the following is true：

$$
\begin{aligned}
X_{\alpha}^{m} g_{1} \sim X_{\beta}^{m} g_{2} & \Longleftrightarrow g_{2}^{-1} g_{1} \in X_{\alpha}^{m} X_{\beta}^{m} \\
& \Longleftrightarrow\left(y_{1}^{-1} x_{1}, \ldots, y_{m}^{-1} x_{m}\right) \in\left(X_{\alpha} X_{\beta} \times \cdots \times X_{\alpha} X_{\beta}\right) \\
& \Longleftrightarrow\left(y_{1}^{-1} x_{1}, \ldots, y_{m}^{-1} x_{m}\right)^{g} \in\left(X_{\alpha} X_{\beta} \times \cdots \times X_{\alpha} X_{\beta}\right)^{g} \\
& \Longleftrightarrow\left(g_{1}^{-1} g_{2}\right)^{g} \in\left(X_{\alpha}^{m} X_{\beta}^{m}\right)^{g}=X_{\alpha}^{m} X_{\beta}^{m} \\
& \Longleftrightarrow\left(X_{\alpha}^{m} g_{1}\right)^{g} \sim\left(X_{\beta}^{m} g_{2}\right)^{g} .
\end{aligned}
$$

Thus，$g=(1, \ldots, 1 ; \pi)$ is an automorphism of $\Sigma^{\times_{\mathrm{bi}} m}$ ，and $X 乙 S_{m} \leq$ Aut $\Sigma^{\times_{\mathrm{bi}} m}$ ．
Now we are ready to prove Theorem 1．2．
Proof of Theorem 1．2．Let Σ be a connected bipartite graph with biparts U and W ， and let $\Gamma=\Sigma^{\times_{\text {bi }} m}$ with $m \geq 2$ ．Then Γ is a bipartite graph with biparts U^{m} and W^{m} ．In this proof，H will denote the symmetric group S_{m} ．

Assume that $\Gamma=\Sigma^{\mathrm{x}_{\mathrm{b} i} m}$ is G－locally－primitive，where $G \leq X$ 亿 S_{m} with $X \leq$ Aut Σ ． Let $Y=X \imath H$ ．By Lemma 2．7，$Y \leq$ Aut Γ ，and thus Γ is Y－locally－primitive．So，if $\{u, w\}$ is an edge of Γ ，then $Y_{u w}=Y_{u} \cap Y_{w}$ is a maximal subgroup of both Y_{u} and Y_{w} ． Now $Y_{u}=X_{\alpha} \prec H$ and $Y_{w}=X_{\beta} \prec H$ ，and $Y_{u w}=Y_{u} \cap Y_{w}=\left(X_{\alpha} \cap Y_{\beta}\right) \prec H$ ．If it were true that $X_{\alpha} \cap X_{\beta}<A<X_{\alpha}$ ，then it would follow that $Y_{u w}=\left(X_{\alpha} \cap X_{\alpha}\right)$ ८ $H<A$ 乙 $H<X_{\alpha} \prec H$ ， which would be a contradiction．Thus，$X_{\alpha} \cap X_{\beta}$ is a maximal subgroup of X_{α} ；similarly， $X_{\alpha} \cap X_{\beta}$ is a maximal subgroup of X_{β} ．Therefore Σ is X－locally－primitive．

Conversely, assume that Σ is X-locally-primitive. Let $\{\alpha, \beta\}$ be an edge of Σ. Since X_{α} is primitive on $\left[X_{\alpha}: X_{\alpha} \cap X_{\beta}\right]$ and X_{β} is primitive on [$X_{\beta}: X_{\alpha} \cap X_{\beta}$], we see that $X_{\alpha} \cap X_{\beta}$ is a maximal subgroup of both X_{α} and X_{β}. Let $G=X \imath H$. By Lemma 2.7, G is a subgroup of Aut Γ, and $G_{u}=X_{\alpha} \backslash H$ and $G_{w}=X_{\beta} \backslash H$. Hence the arc stabiliser $G_{u w}$ is equal to $G_{u} \cap G_{w}=\left(X_{\alpha} \cap X_{\beta}\right)$ \} H. It follows from [4, Lemma 2.7A] that $G_{u} \cap G_{w}$ is maximal in both G_{u} and G_{w}. Thus, $\Sigma^{\times_{\mathrm{b} i} m}$ is G-locally-primitive.

We end this section with an example.
Example 2.8. Let $X=\operatorname{PSL}(2, p)$, where p is a prime congruent to 5 modulo 8 . Let Σ be the connected cubic X-locally-primitive graph defined in Example 2.6.

Then the bidirect m th-power $\Sigma^{\times_{\mathrm{b} i} m}$ is a G-locally-primitive graph of valency 3^{m}, where $G=X 乙 S_{m}$.

3. Order twice a prime power

Let $\Gamma=(V, E)$ be an X-locally-primitive graph with biparts U and W. Assume that X is not transitive on V. Assume further that each minimal normal subgroup is transitive on U or on W. Then Γ is a 'basic' graph in the terminology of [6], and one of the following properties hold.
(i) Γ is a complete bipartite graph.
(ii) X is faithful on both U and W, and quasiprimitive on U.

The O'Nan-Scott-Praeger theorem [13] classifies quasiprimitive permutation groups into eight types. Let X act faithfully and quasiprimitively on U, of degree p^{e}, and N be a minimal normal subgroup of X. If N is a nonabelian simple group, then X is almost simple; we write X is of type $A S$. If N is abelian, then $N=\mathbb{Z}_{p^{e}}$ and $X \leq N \rtimes \mathrm{GL}(e, p)$; then X is called affine or of type HA. Assume now that N is neither simple nor abelian; then X is primitive of product action type; we write X is of type PA. More precisely, let H be a group acting on Δ, and P be a subgroup of the symmetric group S_{l}. Let $G=H 乙 P$. Then G acts naturally on Δ^{l} by the so-called product action, as follows: for $\left(\delta_{1}, \ldots, \delta_{l}\right) \in \Delta^{l}, x=\left(h_{1}, \ldots, h_{l}\right) \in H^{l}$, and $\sigma \in P$,

$$
\left(\delta_{a}, \ldots, \delta_{l}\right)^{\left(h_{1}, \ldots, h_{l}\right) \sigma}=\left(\epsilon_{1}, \ldots, \epsilon_{l}\right),
$$

where $\epsilon_{i}=\delta_{i^{\prime}}$ and $i^{\prime}=i^{\sigma^{-1}}$. It is known that G is primitive on Δ^{l} if and only if H acts primitively but not regularly on Δ and P is a transitive subgroup of S_{l}; see [4, Lemma 2.7A].

Noticing that $|U|=|W|=p^{e}$, we quote a theorem of Guralnick.
Theorem 3.1 (Guralnick [8]). Let T be a nonabelian simple group with a subgroup H of index p^{e} with p prime. Then $T=A_{p^{e}}$, or $\operatorname{PSL}(m, q)$ with $\left(q^{m}-1\right) /(q-1)=p^{e}$, or $\operatorname{PSL}(2,11)$ with $p^{e}=11$, or M_{11} with $p^{e}=11$, or M_{23} with $p^{e}=23$, or $\operatorname{PSU}(4,2)$ with $p^{e}=27$. In particular, either T is 2-transitive on $[T: H]$ or $T=\operatorname{PSU}(4,2)$.

We first consider the case where X acts faithfully on both U and W.

Lemma 3.2. Assume that X acts faithfully on both U and W, and quasiprimitively on U. Then X acts primitively on both U and W; further, the actions of X on U and W are permutationally isomorphic, and X is affine, or almost simple, or of product action type.

Proof. Since $|U|=p^{e}$, the quasiprimitive group X has degree p^{e}. By Theorem 3.1, X is primitive on U, and X is almost simple, affine or is of product action type. Moreover, since $|W|=|U|, X$ is also primitive on W, and X^{U} and X^{W} are permutationally isomorphic.
3.1. Almost simple groups. We need to introduce a special type of cover. Let $\Sigma=(V, E)$ be a graph. The standard double cover $\tilde{\Sigma}$ of Σ is defined as the bipartite graph with biparts $U=\{(u, 0) \mid u \in V\}$ and $W=\{(w, 1) \mid w \in V\}$, such that two vertices $(u, 0)$ and $(w, 1)$ are adjacent if and only if u, w are adjacent in Σ.

It is easily shown that $\tilde{\Sigma}$ is connected if and only if Σ is connected and nonbipartite. Moreover, if Σ is G-locally-primitive, then $\tilde{\Sigma}$ is also G-locally-primitive, with the natural actions of G on U and W. Thus, for each locally primitive graph Σ of order p^{e} with p prime, the standard double cover $\tilde{\Sigma}$ is an example satisfying our condition.

Now let $\Gamma=(V, E)$ be a connected bipartite graph with biparts U and W. Assume that $X \leq$ Aut Γ is transitive on E and intransitive on V. Assume further that X_{u} and X_{w} are conjugate in X, where $u \in U$ and $w \in W$. Then the action of X_{u} on $W \backslash\{w\}$ is equivalent to the action of X_{w} on $W \backslash\{w\}$. Hence, $\Gamma(u)$ is an orbit of X_{w} on $W \backslash\{w\}$. It follows that Γ is the standard double cover of the orbital graph Σ of X acting on W, where the arc set of Σ is equal to $(w, v)^{X}$ with $v \in \Gamma(u)$.

Lemma 3.3. Let Γ be a connected bipartite graph with biparts U and W. Assume that $X \leq$ Aut Γ is transitive on E and intransitive on V such that X_{u} and X_{w} are conjugate (in X), where $u \in U$ and $w \in W$. Then Γ is the standard double cover of an orbital graph Σ of X acting on W. Furthermore, Γ is X-locally-primitive if and only if Σ is.

We now consider the almost simple group case. We analyse the candidates for the simple groups T appearing in the list of Guralnick in Theorem 3.1. Recall that the socle $\operatorname{soc}(X)$ of a group X is the subgroup generated by all its minimal normal subgroups.
Lemma 3.4. Let X be almost simple, and assume that X_{u} and X_{w} are conjugate in X for some vertices $u \in U$ and $w \in W$. Then either $\Gamma=\mathrm{K}_{p^{e}, p^{e}}-p^{e} \mathrm{~K}_{2}$, or Γ is the standard double cover of the Schläfli graph.

Proof. Let $T=\operatorname{soc}(X)$. By Lemma 3.3, Γ is the standard double cover of an orbital graph of X on W. Then, by Theorem 3.1, either X is 2-transitive on both U and W, or $T=\operatorname{PSU}(4,2)$ and $|U|=|W|=27$. In the former case, Γ is the standard double cover of a complete graph $\mathrm{K}_{p^{e}}$, and so $\Gamma=\mathrm{K}_{p^{e}, p^{e}}-p^{e} \mathrm{~K}_{2}$. In the latter case, by [12], the only locally primitive orbital graph of $T=\operatorname{PSU}(4,2)$ on W is the Schläfli graph; so Γ is the standard double cover of the Schläfli graph.

Example 3.5. Suppose that $X=\operatorname{PSL}(2,11)$ acts on 11 points. Then $X_{u} \cong X_{w} \cong A_{5}$, and $|U|=|W|=11$. Assume that X_{u} and X_{w} are not conjugate (in X). Then X_{u} does not fix
any point of W. The permutation degrees of $X_{u} \cong A_{5}$ that are less than 11 are 5 and 6 . It follows that X_{u} acting on W has exactly two orbits, of sizes 5 and 6 . Therefore Γ has valency 5 or 6 .

The graph of valency 5 , denoted by $\mathrm{D}_{2}^{1}(11,5)$, is the incidence graph of the wellknown 2-($11,5,1$)-design; that of valency 6 is the complement of $D_{2}^{1}(11,5)$ in $\mathrm{K}_{11,11}$, denoted by $\overline{\mathrm{D}}_{2}^{1}(11,5)$. Both $\mathrm{D}_{2}^{1}(11,5)$ and $\overline{\mathrm{D}}_{2}^{1}(11,5)$ are 2-arc-transitive.
Example 3.6. Let $X=\operatorname{PSL}(d, q)$ act on $\left(q^{d}-1\right) /(q-1)$ points. Assume that X_{u} and X_{w} are not conjugate in X. Then

$$
X_{u} \cong X_{w} \cong\left[q^{d-1}\right] \rtimes \frac{1}{(d, q-1)} \mathrm{GL}(d-1, q) \quad \text { and } \quad|U|=|W|=\frac{q^{d}-1}{q-1} .
$$

Without loss of generality, we may assume that u is a 1 -subspace, and w is a hyperplane. Now X_{w} does not fix any 1-subspace, point of U, and

$$
X_{w} \cong\left[q^{d-1}\right] \rtimes \frac{1}{(d, q-1)} \mathrm{GL}(d-1, q) .
$$

Assume that u is contained in w. Now w is a space of dimension $d-1$, and contains exactly $\left(q^{d-1}-1\right) /(q-1)$ subspaces of dimension one. Moreover, $\mathrm{GL}(d-1, q)$ is 2-transitive on these 1-subspaces. It follows that X_{w} is 2-transitive on $\Gamma(w)$. This graph is actually the incidence graph of projective points and hyperplanes in the projective geometry, denoted by $\mathrm{PH}(d, q)$. The graph $\mathrm{PH}(d, q)$ is 2-arc-transitive.

Assume that u is not contained in w. The number of 1 -subspaces that are not contained in w is equal to

$$
\frac{q^{d}-1}{q-1}-\frac{q^{d-1}-1}{q-1}=q^{d-1}
$$

It follows that X_{w} is 2-transitive on $\Gamma(w)$. This graph, denoted by $\overline{\mathrm{PH}}(d, q)$, is the complement of $\operatorname{PH}(d, q)$ in $\mathrm{K}_{n, n}$ where $n=\left(q^{d}-1\right) /(q-1)$. It is not 2-arc-transitive.

Lemma 3.7. Let X be almost simple, and assume that X_{u} and X_{w} are not conjugate in X for all $u \in U$ and all $w \in W$. Then $\Gamma=\mathrm{D}_{2}^{1}(11,5), \overline{\mathrm{D}}_{2}^{1}(11,5), \operatorname{PH}(d, q)$, or $\overline{\mathrm{PH}}(d, q)$.

Proof. Let $T=\operatorname{soc}(X)$. It follows from Theorem 3.1 that either $T=\operatorname{PSL}(2,11)$ and $p^{e}=11$, or $T=\operatorname{PSL}(d, q)$ and $p^{e}=\left(q^{d}-1\right) /(q-1)$.

In the former case, $\Gamma=\mathrm{D}_{2}^{1}(11,5)$ or $\overline{\mathrm{D}}_{2}^{1}(11,5)$, as in Example 3.5. These two graphs are locally ($T, 2$)-arc-transitive.

In the latter case, $\Gamma=\mathrm{PH}(d, q)$ or $\overline{\mathrm{PH}}(d, q)$, as in Example 3.6.
3.2. Product action type. Assume that the actions of X on U and W are both of product action type. Let $\{u, w\}$ be an edge of Γ, where $u \in U$ and $w \in W$. Let $N=$ $\operatorname{soc}(X)=T^{l}$, where $l \geq 2$ and T is one of the simple groups that appear in Theorem 3.1.

Lemma 3.8. Suppose that N_{u} and N_{w} are conjugate in N. Then Γ is the standard double cover of a graph with form $\Sigma^{\times m}$ with $m \geq 2$, where $\Sigma=\mathrm{K}_{p^{r}}$ or Σ is the Schläfli graph.
Proof. Since N is transitive on both U and W, we see that X_{u} and X_{w} are conjugate in X. By Lemma 3.3, Γ is the standard double cover of a locally primitive orbital graph Γ_{0} of X acting U. Such a graph Γ_{0} is characterised in [12], which shows that $\Gamma_{0}=\Sigma^{\times m}$, where $\Sigma=\mathrm{K}_{p^{r}}$ or Σ is the Schläfli graph.

Next we consider the case where N_{u} and N_{w} are not conjugate.
Lemma 3.9. Assume that N_{u} and N_{w} are not conjugate in N. Then $\Gamma=\Sigma^{\chi_{\mathrm{bi}} m}$, where $m \geq 2$ and

$$
\Sigma=\mathrm{D}_{2}^{1}(11,5), \overline{\mathrm{D}}_{2}^{1}(11,5), \mathrm{PH}(d, q), \text { or } \overline{\mathrm{PH}}(d, q) .
$$

Proof. In this case, it follows from Theorem 3.1 that either $T=\operatorname{PSL}(2,11)$ and $N_{u} \cong N_{w}=A_{5}^{m}$, or $T=\operatorname{PSL}(d, q)$, associated with the actions on 1 -subspaces and hyperplanes. Thus, G^{U} and G^{W} are both primitive of product action type.

We may write the biparts U and W as $U=\left[N: N_{u}\right]=\Delta^{m}$ and $W=\left[N: N_{w}\right]=\Pi^{m}$, where $\Delta=\left[T: T_{\delta}\right]$ and $\Pi=\left[T: T_{\pi}\right]$, and $u=(\delta, \delta, \ldots, \delta)$ and $w=(\pi, \pi, \ldots, \pi)$. Then $N_{u}=T_{\delta}^{m}$ and $N_{w}=T_{\pi}^{m}$. Since Γ is G-locally-primitive, Γ is N-edge-transitive. Thus,

$$
\Gamma=\operatorname{Cos}\left(N, N_{u}, N_{w}\right)=\operatorname{Cos}\left(T^{m}, T_{\delta}^{m}, T_{\pi}^{m}\right)
$$

By Lemma 2.5, we see that $\Gamma=\Sigma^{\times_{b i} m}$, where $\Sigma=\operatorname{Cos}\left(T, T_{\delta}, T_{\pi}\right)$. By Theorem 1.2, Σ is T-locally-primitive. By Lemma 3.7, we conclude that

$$
\Sigma=\mathrm{D}_{2}^{1}(11,5), \overline{\mathrm{D}}_{2}^{1}(11,5), \mathrm{PH}(d, q), \text { or } \overline{\mathrm{PH}}(d, q)
$$

as required.
Proof of Theorem 1.3. Let $\Gamma=(V, E)$ be a connected bipartite G-locally-primitive graph of order $2 p^{e}$. Assume that G has exactly two orbits on V, which are the biparts of Γ, denoted by U and W.

Let $M \triangleleft G$ be maximal subject to the condition that M has at least three orbits on each of U and W. Let U_{M} and W_{M} be the sets of M-orbits on U and W, respectively. Then each minimal normal subgroup of G / M is transitive on U_{M} or W_{M}. By [6], Γ is a normal cover of Γ_{M}, M is semiregular on V, and either $\Gamma_{M}=\mathrm{K}_{p^{e}, p^{e}}$, or G / M is faithful and quasiprimitive on both U_{M} and W_{M}.

The former case fits Theorem 1.3(i). For the latter case, by Lemma 3.2, the actions of G / M on U_{M} and W_{M} are equivalent and of type HA, AS or PA. If these actions are of type HA, then G / M has a normal subgroup, N say, which is regular on both U_{M} and W_{M}, and hence $M N$ is a normal subgroup of G which is regular on both U and W. Thus, Γ is a binormal Cayley graph.

Assume finally that the actions of G / M on U_{M} and W_{M} are of type AS or PA. Then by Lemmas 3.4 and 3.7 to 3.9 , the quotient graph Γ_{M} fits either part (ii) or (iii) of Theorem 1.3.

In order to prove Corollary 1.4, we need to quote a result about the vertex stabiliser of s-arc-transitive graphs. For a graph Γ and an $\operatorname{arc}(u, w)$, denote by $G_{u}^{[1]}$ the kernel of G_{u} acting on $\Gamma(u)$. Then the induced permutation group $G_{u}^{\Gamma(u)}$ is isomorphic to $G_{u} / G_{u}^{[1]}$. Let $G_{u w}^{[1]}=G_{u}^{[1]} \cap G_{w}^{[1]}$, the kernel of the arc stabiliser $G_{u w}$ acting on the double star $\Gamma(u) \cup \Gamma(w)$. Then the well-known Thompson-Wielandt theorem tells us that $G_{u w}^{[1]}$ is a r-group for some prime r. Moreover, the following result is already known.
Theorem 3.10 (Weiss [15]). Let Γ be a connected (G, s)-arc-transitive graph where $s \geq 2$. Then, for an arc (u, w), either $G_{u w}^{[1]}=1$ and $s \leq 3$, or $G_{u w}^{[1]}$ is a nontrivial r-group and $\operatorname{soc}\left(G_{u}^{\Gamma(u)}\right)=\operatorname{PSL}(d, q)$, where $|\Gamma(u)|=\left(q^{d}-1\right) /(q-1)$ and $r \mid q$; furthermore, if $s \geq 4$, then $d=2$.

Observe that G_{u} is an extension of the kernel $G_{a}^{[1]}$ by the factor group $G_{u}^{\Gamma(u)}$, and, furthermore, $G_{u}^{[1]}$ is an extension of $G_{u w}^{[1]}$ by $\left(G_{u}^{[1]}\right)^{\Gamma(w)}$, that is,

$$
G_{u} \cong G_{u}^{[1]} G_{u}^{\Gamma(u)} \cong\left(G_{u w}^{[1]}\left(G_{u}^{[1]}\right)^{\Gamma(w)}\right) G_{u}^{\Gamma(u)} .
$$

From the above theorem, the following statements follow.
Lemma 3.11. The stabiliser G_{u} has at most two insoluble composition factors, and, further, one of the following results holds.
(i) $\quad G_{u}$ is soluble, and $G_{u}^{\Gamma(u)} \leq \mathrm{A} \Gamma \mathrm{L}\left(1, r^{f}\right)$, the 1-dimensional affine semilinear group.
(ii) G_{u} has only one insoluble composition factor, namely, $\operatorname{soc}\left(G_{u}^{\Gamma(u)}\right)$.
(iii) G_{u} has exactly two insoluble composition factors, one of which is $\operatorname{soc}\left(G_{u}^{\Gamma(u)}\right)$ and the other is the unique insoluble composition factor of $G_{u w}^{\Gamma(u)}$.
(iv) $G_{u}^{\Gamma(u)}$ is affine of degree r^{d} and G_{u} has exactly two insoluble composition factors that are isomorphic to the unique insoluble composition factor of $G_{u w}^{\Gamma(u)}$.
Proof of Corollary 1.4. Let Γ be a 2 -arc-transitive graph of order $2 p^{e}$, where p is an odd prime. Then Γ is G-locally-primitive and satisfies Theorem 1.3. We may assume that each nontrivial normal subgroup of G has at most two orbits on the vertex set. If Γ is a binormal Cayley graph, then it is easy to see that $G^{+}=\mathbb{Z}_{p}^{e} \rtimes G_{u}$.

Assume now that Γ is a standard double cover of $\Sigma^{\times m}$ where $\Sigma=\mathrm{K}_{p^{e}}$ or the Schläfli graph. Then $\Sigma^{\times m}$ is 2-arc-transitive. If $m \geq 2$ and $\Sigma=\mathrm{K}_{p^{e}}$, then Γ is a Hamming graph, and is known not to be 2 -arc-transitive. If Σ is the Schläfli graph, then $G_{u} \triangleright\left(\mathbb{Z}_{2}^{4} \rtimes A_{5}\right)^{m}$. It follows from Lemma 3.11 that $m=1$, and hence Γ itself is the Schläfli graph and has valency 16 . So $G_{u}=\mathbb{Z}_{2}^{4} \rtimes A_{5}$ or $\mathbb{Z}_{2}^{4} \rtimes S_{5}$, which is not possible since neither $\mathbb{Z}_{2}^{4} \rtimes A_{5}$ nor $\mathbb{Z}_{2}^{4} \rtimes S_{5}$ has a representation of degree 16 . Therefore $\Sigma=\mathrm{K}_{p^{e}}$ and $\Gamma=\mathrm{K}_{p^{e}, p^{e}}-p^{e} \mathrm{~K}_{2}$.

Suppose that $\Gamma=\Sigma^{\times_{\text {bi }} m}$, where

$$
\Sigma=\mathrm{D}_{2}^{1}(11,5), \overline{\mathrm{D}}_{2}^{1}(11,5), \mathrm{PH}(d, q), \text { or } \overline{\mathrm{PH}}(d, q)
$$

Then $m=1$ by Lemma 3.11. Obviously, $\overline{\mathrm{PH}}(d, q)$ is not 2 -arc-transitive. Therefore

$$
\Gamma=\Sigma=\mathrm{D}_{2}^{1}(11,5), \overline{\mathrm{D}}_{2}^{1}(11,5), \text { or } \operatorname{PH}(d, q) .
$$

Finally, it is clear that neither $\mathrm{K}_{p^{e}, p^{e}}$ nor $\mathrm{K}_{p^{e}, p^{e}}-p^{e} \mathrm{~K}_{2}$ is 4-arc-transitive. By Theorem 3.10, we conclude that if Γ is 4 -arc-transitive, then $\Gamma=\mathrm{PH}(3, q)$.

Acknowledgements

The authors are very grateful to the referees for their valuable suggestions.

References

[1] A. E. Brouwer, 'Descriptions of various graphs', available at http://www.win.tue.nl/~aeb/graphs.
[2] A. E. Brouwer and H. A. Wilbrink, 'Ovoids and fans in the generalized quadrangle GQ(4, 2)', Geom. Dedicata 36 (1990), 121-124.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and P. A. Wilson, Atlas of Finite Groups (Oxford University Press, London, 1985).
[4] J. D. Dixon and B. Mortimer, Permutation Groups (Springer, New York, 1996).
[5] M. Giudici, C. H. Li, P. Potočnik and C. E. Praeger, 'Homogeneous factorisations of graph products', Discrete Math. 308 (2008), 3652-3667.
[6] M. Giudici, C. H. Li and C. E. Praeger, 'Analysing locally s-arc transitive graphs', Trans. Amer. Math. Soc. 356 (2004), 291-317.
[7] M. Giudici, C. H. Li and C. E. Praeger, 'On finite locally s-arc transitive graphs with a star normal quotient', J. Group Theory 9 (2006), 641-658.
[8] R. Guralnick, 'Subgroups of prime power index in a simple group order', J. Algebra 246 (1983), 304-311.
[9] A. A. Ivanov and C. E. Praeger, 'On finite affine 2-arc transitive graphs', European J. Combin. 14 (1993), 421-444.
[10] C. H. Li, 'Finite s-arc transitive graphs of prime power order', Bull. Lond. Math. Soc. 33 (2001), 129-137.
[11] C. H. Li, 'Finite edge-transitive Cayley graphs and rotary Cayley maps', Trans. Amer. Math. Soc. 358 (2006), 4605-4635.
[12] C. H. Li, J. M. Pan and L. Ma, 'Locally primitive graphs of prime-power order', J. Aust. Math. Soc. 86 (2009), 111-122.
[13] C. E. Praeger, 'Primitive permutation groups with a doubly transitive subconstituent', J. Aust. Math. Soc. (Series A) 45 (1988), 66-77.
[14] C. E. Praeger, 'An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs', J. Lond. Math. Soc. (2) 47 (1993), 227-239.
[15] R. Weiss, ' s-transitive graphs', in: Algebraic Methods in Graph Theory, vol. II, Colloquia Mathematica Societatis Janos Bolyai, 25 (eds. L. Lovasz and V. T. Sos) (North-Holland, Amsterdam-New York, 1981), pp. 827-847.

CAI HENG LI, School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650091, PR China
 and
 School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009, Australia
 e-mail: cai.heng.li@uwa.edu.au

LI MA, School of Mathematics and Statistics, Yunnan University,
Kunming, Yunnan 650091 , PR China
e-mail: marysunjay @yahoo.com.cn

[^0]: This work forms part of the PhD project of the second-named author, partially supported by an NNSF(K1020261), and an ARC Discovery Grant.
 (C) 2011 Australian Mathematical Publishing Association Inc. 1446-7887/2011 \$16.00

