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Abstract

We characterise regular bipartite locally primitive graphs of order 2pe, where p is prime. We show that
either p = 2 (this case is known by previous work), or the graph is a binormal Cayley graph or a normal
cover of one of the basic locally primitive graphs; these are described in detail.
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1. Introduction

Studying locally primitive graphs has been a central topic in algebraic graph theory
for more than half a century. Giudici et al. [6] established a framework for studying
locally primitive bipartite graphs, which reduces the study to ‘basic’ objects in terms
of O’Nan–Scott types. In this paper, we will study locally primitive graphs based on
bidirect products of graphs, defined below.

D 1.1. Let Σ be a connected bipartite graph with biparts U and W. The
bidirect square Σ×bi2 is defined to be the graph with vertex set (U × U) ∪ (W ×W)
such that (u1, u2) ∼ (w1, w2) if and only if both u1 ∼ w1 and u2 ∼ w2 in Σ (where ∼
denotes adjacency). Recursively, the bidirect mth power Σ×bim is defined as the graph
with vertex set Um ∪Wm such that, if u1 ∈ Um−1, w1 ∈Wm−1, u2 ∈ U and w2 ∈W, then
(u1, u2) ∼ (w1, w2) if and only if both u1 ∼ w1 in Σ×bi(m−1) and u2 ∼ w2 in Σ.

We remark that the square Σ×bi2 is one of the connected component of the direct
product Σ × Σ, see Section 2 for details. Giudici et al. [5] used the bidirect product to
study homogeneous factorisations of graphs, calling it the bipartite product. We think
that ‘bidirect product’ is more appropriate.
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Let Γ = (V, E) be a connected graph with vertex set V and edge set E. Denote by
Γ(v) the neighbourhood of the vertex v, that is, the set of vertices adjacent to v. For a
subgroup X of Aut Γ, the graph Γ is called X-locally-primitive if, for each vertex v ∈ V ,
the action of Xv, the stabiliser of v, on Γ(v) is primitive.

T 1.2. Let Σ be a connected bipartite graph, and let Γ = Σ×bim. Then Γ is
G-locally-primitive for some subgroup G of a wreath product X o S m, where X ≤ Aut Σ,
if and only if Σ is X-locally-primitive.

For the rich literature on locally primitive graphs, see the references in [6, 7]. In
particular, a theory is established in [6] for the global action analysis of such graphs.
The main point of the global action analysis is to take normal quotient and then to
analyse ‘basic objects’, defined below.

Let Γ = (V, E) be a connected G-locally-primitive graph. If Γ is bipartite, then
let U and W be the biparts. We denote by G+ the stabiliser of U and W, that is,
G+ = GU = GW . Let N be a normal subgroup of G. Denote by VN the set of N-orbits
in V . The normal quotient ΓN of Γ induced by N is defined as the graph with vertex
set VN , and two vertices B,C ∈ VN are adjacent if there exist u ∈ B and v ∈C that are
adjacent in Γ. Then Γ is a normal multicover of ΓN , and, further, if Γ and ΓN have the
same valency, then Γ is a normal cover of ΓN , that is, the induced subgraph on [B,C]
for adjacent B and C is a perfect matching.

Let M CG be maximal subject to the condition that M has at least three orbits on V ,
and, further, M is intransitive on each of the biparts U and W if Γ is bipartite. Then
Γ is a normal cover of the quotient ΓM , and each minimal normal subgroup of G/M is
transitive on VM or one of UM and WM if Γ is bipartite. Therefore, with respect to this
group G/M, the graph ΓM has no further nontrivial normal quotient. Such graphs lie in
the core of the class of locally primitive graphs, which are basic (or minimal) objects
for the class of graphs.

A bipartite locally primitive graph Γ is called basic if there exists a subgroup G of
Aut Γ which acts on Γ locally primitively and any nontrivial normal subgroup of G is
transitive on at least on one of the biparts. This leads to the study of basic objects,
as described in [6, 7], associated with a theory based on the O’Nan–Scott–Praeger
theorem for quasiprimitive permutation groups, proved by Praeger in [14].

Locally primitive graphs of prime power order are characterised in [9, 10, 12]. Here
we characterise the family of graphs that are regular, bipartite, locally primitive, and
of order 2pe, where p is prime. Typical examples include:

(i) the complete bipartite graphs Kpe,pe ;
(ii) the graphs Kpe,pe − peK2 obtained by deleting a 1-factor from Kpe,pe ;

(iii) the incidence graph D1
2(11, 5) and the nonincidence graph D

1
2(11, 5) of the

2-(11, 5, 1)-design;
(iv) the incidence graph PH(d, q) and the nonincidence graph PH(d, q) of the

projective geometry PG(d − 1, q), where d ≥ 3; and
(v) the standard double cover of the Schläfli graph.
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Other basic graphs are bidirect powers of these graphs. We remark that the Schläfli
graph is the graph on isotropic lines in the U(4, 2) geometry, adjacent when disjoint,
which is a strongly regular graph of valency 16, and is a locally primitive Cayley graph
of the metacyclic group Z9 o Z3 (see [1] or [2] for more details).

A bipartite graph Γ = (V, E) is called a Cayley graph of a group R if Aut Γ has a
subgroup which is isomorphic to R and regular on V . If further Aut Γ has a subgroup R
which is regular on V and R ∩ (Aut Γ)+ is normal in Aut Γ, then Γ is called a binormal
Cayley graph. Binormal Cayley graphs have many interesting properties; see [11].

The main result of this paper is to present a classification of regular locally primitive
graphs of order 2pm. The case where p = 2 is characterised in [12].

T 1.3. Each regular bipartite locally primitive graph of order 2pm, where p is
an odd prime number, is either a binormal Cayley graph, or a normal cover of one of
the following basic G-locally-primitive graphs:

(i) Γ = Kpe,pe ;
(ii) the standard double cover of Σ×m, where m ≥ 1 and Σ = Kpe or the Schläfli graph;
(iii) Γ = Σ×bim, where m ≥ 1 and

Σ = D1
2(11, 5), D

1
2(11, 5), PH(d, q), or PH(d, q).

We remark that a binormal Cayley graph is a normal cover of a biquasiprimitive
graph of affine type, and basic locally primitive biquasiprimitive graphs of affine type
are not yet completely determined, see [9].

For a positive integer s, an s-arc of a graph Γ is a sequence of s + 1 vertices
v0, v1, . . . , vs such that vi is adjacent to vi+1 and vi , vi+2. A graph Γ is called locally
(G, s)-arc-transitive if, for each vertex v, the stabiliser Gv is transitive on the t-arcs
starting from v for all t ≤ s.

C 1.4. Each regular bipartite locally 2-arc-transitive graph of order 2pm,
where p is an odd prime number, is a normal cover of one of the following basic
locally (G, 2)-arc-transitive graphs:

(i) Γ = Kpe,pe , Kpe,pe − peK2, D1
2(11, 5), D

1
2(11, 5), or PH(d, q);

(ii) G+ = Ze
p oGv, where G+ is a primitive affine group and Gv �GΓ(v)

v is a primitive
permutation group.

In particular, regular bipartite locally 4-arc-transitive graphs of order 2pe, where p is
an odd prime number, are cycles or normal covers of PH(3, q).

It is shown in [10] that 4-arc-transitive graphs of order pe are all cycles. To extend
this result to the case of order 2pe where p is an odd prime number, one needs to
characterise the nonbipartite case, and so needs to extend the result of Guralnick [8] to
classify almost simple groups which have subgroups of index 2pe.

2. Bidirect product

Let Σi be a connected bipartite graph with vertex set Vi and biparts Ui and Wi, where
i = 1 or 2. Recall that the direct product Σ1 × Σ2 is the graph with vertex set V1 × V2

https://doi.org/10.1017/S1446788711001480 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001480


234 C. H. Li and L. Ma [4]

such that two vertices (v1, v2) and (v′1, v′2) are adjacent if and only if vi ∼ v′i in Σi

for i = 1 and 2.
It is easily shown that Σ1 × Σ2 is disconnected and has exactly two connected

components, which are the induced subgraphs of Σ1 × Σ2 whose vertex sets are either
(U1 × U2) ∪ (W1 ×W2) or (U1 ×W2) ∪ (U2 ×W1).

Let X ≤ Aut Σ1, Y ≤ Aut Σ2, and G = X × Y . Then G acts on V = V1 × V2 in the
following way:

(v1, v2)(x,y) = (vx
1, vy

2).

For all elements (x, y) ∈G and vertices (v1, v2) and (v3, v4) in V1 × V2,

(v1, v2) ∼ (v3, v4)⇐⇒ v1 ∼ v3 in Σ1, and v2 ∼ v4 in Σ2

⇐⇒ vx
1 ∼ vx

3 in Σ1, and vy
2 ∼ vy

4 in Σ2

⇐⇒ (v1, v2)(x,y) = (vx
1, vy

2) ∼ (vx
3, vy

4) = (v3, v4)(x,y).

Thus, (x, y) is an automorphism of Σ1 × Σ2, and

X × Y ≤ Aut(Σ1 × Σ2).

In particular, if Σ1 and Σ2 are both vertex-transitive, then so is Σ1 × Σ2. However, the
direct product of two edge-transitive graphs is not necessarily edge-transitive.

E 2.1. Let Σ1 = K2,3 and Σ2 = K3,4. Then the connected components of Σ1 × Σ2

are K6,12 and K8,9. Because the two components are not isomorphic, Σ1 × Σ2 is not
edge-transitive.

Although the two components are not necessarily isomorphic, the following lemma
shows that each of them is edge-transitive.

L 2.2. Assume that Σ1 is X-edge-transitive, and Σ2 is Y-edge-transitive. Then the
connected components of Σ1 × Σ2 are (X × Y)-edge-transitive.

P. Let Γ be the component of Σ1 × Σ2 with vertex set (U1 × U2) ∪ (W1 ×W2).
Take two edges {(u1, u2), (w1, w2)} and {(u′1, u′2), (w′1, w′2)}. Then {u1, w1} and {u′1, w′1}
are two edges of Σ1, and {u2, w2} and {u′2, w′2} are two edges of Σ2. Thus, relabelling if
necessary, we may assume that there exist x ∈ X and y ∈ Y such that

ux
1 = u′1, wx

1 = w′1, uy
2 = u′2, wy

2 = w′2.

Therefore the element (x, y) maps the edge {(u1, u2), (w1, w2)} to the edge
{(u′1, u′2), (w′1, w′2)}. Hence Γ is (X × Y)-edge-transitive.

Similarly, the component with vertex set (U1 ×W2) ∪ (U2 ×W1) is also (X × Y)-
edge-transitive. �

Edge-transitive graphs are often described as coset graphs, which are defined as
follows.
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D 2.3. For a group G and subgroups L, R such that L ∩ R is core-free in G,
that is, contains no nontrivial normal subgroup, let [G : L] = {Lx | x ∈G} and [G : R] =

{Rx | x ∈G}. Consider the G-edge-transitive graph with vertex set [G : L] ∪ [G : R] and
edges {Lx, Ry}, where yx−1 ∈ RL. This graph is called a coset graph, and is denoted by
Cos(G, L, R).

L 2.4. Let Γ = (V, E) and G ≤ Aut Γ be such that G is transitive on E and
intransitive on V. Then for an edge {u, w}, Γ is isomorphic to Cos(G,Gu,Gw).

Coset graph representations for bidirect products are interesting and important.

L 2.5. Let Σ1 be an X-edge-transitive graph and Σ2 be a Y-edge-transitive graph,
both of which are connected and bipartite. Then

Σ1 = Cos(X, Xu1 , Xw1 ) and Σ2 = Cos(Y, Yu2 , Yw2 ),

where {u1, w1} and {u2, w2} are edges of Σ1 and Σ2 respectively, and the two connected
components of Σ1 × Σ2 are

Cos(X × Y, Xu1 × Yu2 , Xw1 × Yw2 ) and Cos(X × Y, Xu1 × Yw2 , Xu2 × Yw1 ).

P. Let G = X × Y , and let v be a vertex of Σ1 × Σ2. Then v = (v1, v2), where v1 and
v2 are vertices of Σ1 and Σ2. An element g = (x, y) ∈G lies in Gv if and only if

(v1, v2) = v = vg = (v1, v2)(x,y) = (vx
1, vy

2),

or, equivalently, vx
1 = v1 and vy

2 = v2, that is, x ∈ Xv1 and y ∈ Yv2 . Thus, Gv = Xv1 × Yv2 .
By Lemma 2.2, each of the components of Σ1 × Σ2 is (X × Y)-edge-transitive.

Let {u1, w1} and {u2, w2} be edges of Σ1 and Σ2. Then both {(u1, u2), (w1, w2)} and
{(u1, w2), (u2, w1)} are edges of Σ1 × Σ2, and they lie in different components. By
Lemma 2.4, the two components of Σ1 × Σ2 can be represented as coset graphs. �

The case where Σ1 = Σ2 is especially interesting. Recall from Definition 1.1 that,
given a connected bipartite graph Σ with biparts U and W, we write Σ×bi2 for the
connected component of Σ × Σ with vertex set (U × U) ∪ (W ×W), and Σ×bim for the
connected component of Σ×bi(m−1) × Σ with vertex set (Um−1 × U) ∪ (Wm−1 ×W) when
m ≥ 3.

The other component of Σ × Σ has vertex set (U ×W) ∪ (W × U), and is arc-
transitive provided that Σ is edge-transitive.

E 2.6. Let X = PSL(2, p), where p is a prime congruent to 5 modulo 8. Then
X has subgroups L � A4 (the alternating group) and R � D12 (the dihedral group) such
that L ∩ R � Z2

2 and 〈L, R〉 = X. Thus, the coset graph Σ = Cos(X, L, R) is a connected
cubic graph and X-locally-primitive, but not X-arc-transitive.

Let U = [X : L] and W = [X : R]. Then the component of Σ × Σ whose vertex set
is (U ×W) ∪ (W × U) is X o S 2-arc-transitive. The other component is Σ×bi2, which is
X o S 2-locally-primitive but not arc-transitive.

In terms of coset graphs, the mth power Σ×bim has a simple form.
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L 2.7. Suppose that Σ = Cos(X, Xα, Xβ). Then

Σ×bim = Cos(Xm, Xm
α , Xm

β ).

If Σ is of valency {k1, k2}, then Σ×bim has valency {km
1 , km

2 }. Further, Aut Σ×bim has a
subgroup X o S m, that is,

Aut Σ×bim ≥ X o S m.

P. The bipartition of the vertex set of Σ is [X : Xα] ∪ [X : Xβ], and the vertex set
of Σ×bim is [X : Xα]m ∪ [X : Xβ]m, which is equal to [Xm : Xm

α ] ∪ [Xm : Xm
β ]. We may

inductively assume that

Σ×bi(m−1) = Cos(Xm−1, Xm−1
α , Xm−1

β ).

By Lemma 2.5, Σ×bim is a component of Cos(Xm−1, Xm−1
α , Xm−1

β ) × Cos(X, Xα, Xβ). It
follows that Σ×bim = Cos(Xm, Xm

α , Xm
β ).

Let Γ = Σ×bim. Let u = (α, α, . . . , α) and w = (β, β, . . . , β) be vertices of Γ. Then

|Γ(u)| = |Xm
α : Xm

α ∩ Xm
β | = |Xα : Xα ∩ Xβ|

m,

|Γ(w)| = |Xm
β : Xm

α ∩ Xm
β | = |Xβ : Xα ∩ Xβ|

m.

Thus, if Σ is of valency {k1, k2}, then Γ has valency {km
1 , km

2 }.
Write g = (1, . . . , 1; π) ∈ X o S m where π ∈ S m. For all elements g1 = (x1, . . . , xm),

g2 = (y1, . . . , ym) ∈ Xm, the following is true:

Xm
α g1 ∼ Xm

β g2 ⇐⇒ g−1
2 g1 ∈ Xm

α Xm
β

⇐⇒ (y−1
1 x1, . . . , y−1

m xm) ∈ (XαXβ × · · · × XαXβ)

⇐⇒ (y−1
1 x1, . . . , y−1

m xm)g ∈ (XαXβ × · · · × XαXβ)g

⇐⇒ (g−1
1 g2)g ∈ (Xm

α Xm
β )g = Xm

α Xm
β

⇐⇒ (Xm
α g1)g ∼ (Xm

β g2)g.

Thus, g = (1, . . . , 1; π) is an automorphism of Σ×bim, and X o S m ≤ Aut Σ×bim. �

Now we are ready to prove Theorem 1.2.

P  T 1.2. Let Σ be a connected bipartite graph with biparts U and W,
and let Γ = Σ×bim with m ≥ 2. Then Γ is a bipartite graph with biparts Um and Wm. In
this proof, H will denote the symmetric group S m.

Assume that Γ = Σ×bim is G-locally-primitive, where G ≤ X o S m with X ≤ Aut Σ.
Let Y = X o H. By Lemma 2.7, Y ≤ Aut Γ, and thus Γ is Y-locally-primitive. So, if
{u, w} is an edge of Γ, then Yuw = Yu ∩ Yw is a maximal subgroup of both Yu and Yw.
Now Yu = Xα o H and Yw = Xβ o H, and Yuw = Yu ∩ Yw = (Xα ∩ Yβ) o H. If it were true
that Xα ∩ Xβ < A < Xα, then it would follow that Yuw = (Xα ∩ Xα) o H < A o H < Xα o H,
which would be a contradiction. Thus, Xα ∩ Xβ is a maximal subgroup of Xα; similarly,
Xα ∩ Xβ is a maximal subgroup of Xβ. Therefore Σ is X-locally-primitive.
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Conversely, assume that Σ is X-locally-primitive. Let {α, β} be an edge of Σ. Since
Xα is primitive on [Xα : Xα ∩ Xβ] and Xβ is primitive on [Xβ : Xα ∩ Xβ], we see that
Xα ∩ Xβ is a maximal subgroup of both Xα and Xβ. Let G = X o H. By Lemma 2.7,
G is a subgroup of Aut Γ, and Gu = Xα o H and Gw = Xβ o H. Hence the arc stabiliser
Guw is equal to Gu ∩Gw = (Xα ∩ Xβ) o H. It follows from [4, Lemma 2.7A] that
Gu ∩Gw is maximal in both Gu and Gw. Thus, Σ×bim is G-locally-primitive. �

We end this section with an example.

E 2.8. Let X = PSL(2, p), where p is a prime congruent to 5 modulo 8. Let Σ

be the connected cubic X-locally-primitive graph defined in Example 2.6.
Then the bidirect mth-power Σ×bim is a G-locally-primitive graph of valency 3m,

where G = X o S m.

3. Order twice a prime power

Let Γ = (V, E) be an X-locally-primitive graph with biparts U and W. Assume that X
is not transitive on V . Assume further that each minimal normal subgroup is transitive
on U or on W. Then Γ is a ‘basic’ graph in the terminology of [6], and one of the
following properties hold.

(i) Γ is a complete bipartite graph.
(ii) X is faithful on both U and W, and quasiprimitive on U.

The O’Nan–Scott–Praeger theorem [13] classifies quasiprimitive permutation
groups into eight types. Let X act faithfully and quasiprimitively on U, of degree
pe, and N be a minimal normal subgroup of X. If N is a nonabelian simple group,
then X is almost simple; we write X is of type AS. If N is abelian, then N = Zpe and
X ≤ N o GL(e, p); then X is called affine or of type HA. Assume now that N is neither
simple nor abelian; then X is primitive of product action type; we write X is of type PA.
More precisely, let H be a group acting on ∆, and P be a subgroup of the symmetric
group S l. Let G = H o P. Then G acts naturally on ∆l by the so-called product action,
as follows: for (δ1, . . . , δl) ∈ ∆l, x = (h1, . . . , hl) ∈ Hl, and σ ∈ P,

(δa, . . . , δl)(h1,...,hl)σ = (ε1, . . . , εl),

where εi = δi′ and i′ = iσ
−1

. It is known that G is primitive on ∆l if and only if H
acts primitively but not regularly on ∆ and P is a transitive subgroup of Sl; see [4,
Lemma 2.7A].

Noticing that |U | = |W | = pe, we quote a theorem of Guralnick.

T 3.1 (Guralnick [8]). Let T be a nonabelian simple group with a subgroup H
of index pe with p prime. Then T = Ape , or PSL(m, q) with (qm − 1)/(q − 1) = pe, or
PSL(2, 11) with pe = 11, or M11 with pe = 11, or M23 with pe = 23, or PSU(4, 2) with
pe = 27. In particular, either T is 2-transitive on [T : H] or T = PSU(4, 2).

We first consider the case where X acts faithfully on both U and W.
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L 3.2. Assume that X acts faithfully on both U and W, and quasiprimitively on U.
Then X acts primitively on both U and W; further, the actions of X on U and W are
permutationally isomorphic, and X is affine, or almost simple, or of product action
type.

P. Since |U | = pe, the quasiprimitive group X has degree pe. By Theorem 3.1, X is
primitive on U, and X is almost simple, affine or is of product action type. Moreover,
since |W | = |U |, X is also primitive on W, and XU and XW are permutationally
isomorphic. �

3.1. Almost simple groups. We need to introduce a special type of cover. Let
Σ = (V, E) be a graph. The standard double cover Σ̃ of Σ is defined as the bipartite
graph with biparts U = {(u, 0) | u ∈ V} and W = {(w, 1) | w ∈ V}, such that two vertices
(u, 0) and (w, 1) are adjacent if and only if u, w are adjacent in Σ.

It is easily shown that Σ̃ is connected if and only if Σ is connected and nonbipartite.
Moreover, if Σ is G-locally-primitive, then Σ̃ is also G-locally-primitive, with the
natural actions of G on U and W. Thus, for each locally primitive graph Σ of order pe

with p prime, the standard double cover Σ̃ is an example satisfying our condition.
Now let Γ = (V, E) be a connected bipartite graph with biparts U and W. Assume

that X ≤ Aut Γ is transitive on E and intransitive on V . Assume further that Xu and
Xw are conjugate in X, where u ∈ U and w ∈W. Then the action of Xu on W \ {w} is
equivalent to the action of Xw on W \ {w}. Hence, Γ(u) is an orbit of Xw on W \ {w}.
It follows that Γ is the standard double cover of the orbital graph Σ of X acting on W,
where the arc set of Σ is equal to (w, v)X with v ∈ Γ(u).

L 3.3. Let Γ be a connected bipartite graph with biparts U and W. Assume that
X ≤ Aut Γ is transitive on E and intransitive on V such that Xu and Xw are conjugate
(in X), where u ∈ U and w ∈W. Then Γ is the standard double cover of an orbital
graph Σ of X acting on W. Furthermore, Γ is X-locally-primitive if and only if Σ is.

We now consider the almost simple group case. We analyse the candidates for the
simple groups T appearing in the list of Guralnick in Theorem 3.1. Recall that the socle
soc(X) of a group X is the subgroup generated by all its minimal normal subgroups.

L 3.4. Let X be almost simple, and assume that Xu and Xw are conjugate in X for
some vertices u ∈ U and w ∈W. Then either Γ = Kpe,pe − peK2, or Γ is the standard
double cover of the Schläfli graph.

P. Let T = soc(X). By Lemma 3.3, Γ is the standard double cover of an orbital
graph of X on W. Then, by Theorem 3.1, either X is 2-transitive on both U and W, or
T = PSU(4, 2) and |U | = |W | = 27. In the former case, Γ is the standard double cover
of a complete graph Kpe , and so Γ = Kpe,pe − peK2. In the latter case, by [12], the only
locally primitive orbital graph of T = PSU(4, 2) on W is the Schläfli graph; so Γ is the
standard double cover of the Schläfli graph. �

E 3.5. Suppose that X = PSL(2, 11) acts on 11 points. Then Xu � Xw � A5, and
|U | = |W | = 11. Assume that Xu and Xw are not conjugate (in X). Then Xu does not fix
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any point of W. The permutation degrees of Xu � A5 that are less than 11 are 5 and 6.
It follows that Xu acting on W has exactly two orbits, of sizes 5 and 6. Therefore Γ has
valency 5 or 6.

The graph of valency 5, denoted by D1
2(11, 5), is the incidence graph of the well-

known 2-(11, 5, 1)-design; that of valency 6 is the complement of D1
2(11, 5) in K11,11,

denoted by D
1
2(11, 5). Both D1

2(11, 5) and D
1
2(11, 5) are 2-arc-transitive.

E 3.6. Let X = PSL(d, q) act on (qd − 1)/(q − 1) points. Assume that Xu and
Xw are not conjugate in X. Then

Xu � Xw � [qd−1] o
1

(d, q − 1)
GL(d − 1, q) and |U | = |W | =

qd − 1
q − 1

.

Without loss of generality, we may assume that u is a 1-subspace, and w is a
hyperplane. Now Xw does not fix any 1-subspace, point of U, and

Xw � [qd−1] o
1

(d, q − 1)
GL(d − 1, q).

Assume that u is contained in w. Now w is a space of dimension d − 1, and contains
exactly (qd−1 − 1)/(q − 1) subspaces of dimension one. Moreover, GL(d − 1, q) is
2-transitive on these 1-subspaces. It follows that Xw is 2-transitive on Γ(w). This graph
is actually the incidence graph of projective points and hyperplanes in the projective
geometry, denoted by PH(d, q). The graph PH(d, q) is 2-arc-transitive.

Assume that u is not contained in w. The number of 1-subspaces that are not
contained in w is equal to

qd − 1
q − 1

−
qd−1 − 1

q − 1
= qd−1.

It follows that Xw is 2-transitive on Γ(w). This graph, denoted by PH(d, q), is the
complement of PH(d, q) in Kn,n where n = (qd − 1)/(q − 1). It is not 2-arc-transitive.

L 3.7. Let X be almost simple, and assume that Xu and Xw are not conjugate in

X for all u ∈ U and all w ∈W. Then Γ = D1
2(11, 5), D

1
2(11, 5), PH(d, q), or PH(d, q).

P. Let T = soc(X). It follows from Theorem 3.1 that either T = PSL(2, 11) and
pe = 11, or T = PSL(d, q) and pe = (qd − 1)/(q − 1).

In the former case, Γ = D1
2(11, 5) or D

1
2(11, 5), as in Example 3.5. These two graphs

are locally (T, 2)-arc-transitive.
In the latter case, Γ = PH(d, q) or PH(d, q), as in Example 3.6. �

3.2. Product action type. Assume that the actions of X on U and W are both of
product action type. Let {u, w} be an edge of Γ, where u ∈ U and w ∈W. Let N =

soc(X) = T l, where l ≥ 2 and T is one of the simple groups that appear in Theorem 3.1.
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L 3.8. Suppose that Nu and Nw are conjugate in N. Then Γ is the standard double
cover of a graph with form Σ×m with m ≥ 2, where Σ = Kpr or Σ is the Schläfli graph.

P. Since N is transitive on both U and W, we see that Xu and Xw are conjugate in
X. By Lemma 3.3, Γ is the standard double cover of a locally primitive orbital graph
Γ0 of X acting U. Such a graph Γ0 is characterised in [12], which shows that Γ0 = Σ×m,
where Σ = Kpr or Σ is the Schläfli graph. �

Next we consider the case where Nu and Nw are not conjugate.

L 3.9. Assume that Nu and Nw are not conjugate in N. Then Γ = Σ×bim, where
m ≥ 2 and

Σ = D1
2(11, 5), D

1
2(11, 5), PH(d, q), or PH(d, q).

P. In this case, it follows from Theorem 3.1 that either T = PSL(2, 11) and
Nu � Nw = Am

5 , or T = PSL(d, q), associated with the actions on 1-subspaces and
hyperplanes. Thus, GU and GW are both primitive of product action type.

We may write the biparts U and W as U = [N : Nu] = ∆m and W = [N : Nw] = Πm,
where ∆ = [T : Tδ] and Π = [T : Tπ], and u = (δ, δ, . . . , δ) and w = (π, π, . . . , π). Then
Nu = T m

δ and Nw = T m
π . Since Γ is G-locally-primitive, Γ is N-edge-transitive. Thus,

Γ = Cos(N, Nu, Nw) = Cos(T m, T m
δ , T m

π ).

By Lemma 2.5, we see that Γ = Σ×bim, where Σ = Cos(T, Tδ, Tπ). By Theorem 1.2,
Σ is T -locally-primitive. By Lemma 3.7, we conclude that

Σ = D1
2(11, 5), D

1
2(11, 5), PH(d, q), or PH(d, q),

as required. �

P  T 1.3. Let Γ = (V, E) be a connected bipartite G-locally-primitive
graph of order 2pe. Assume that G has exactly two orbits on V , which are the biparts
of Γ, denoted by U and W.

Let M CG be maximal subject to the condition that M has at least three orbits on
each of U and W. Let UM and WM be the sets of M-orbits on U and W, respectively.
Then each minimal normal subgroup of G/M is transitive on UM or WM . By [6], Γ is a
normal cover of ΓM , M is semiregular on V , and either ΓM = Kpe,pe , or G/M is faithful
and quasiprimitive on both UM and WM .

The former case fits Theorem 1.3(i). For the latter case, by Lemma 3.2, the actions
of G/M on UM and WM are equivalent and of type HA, AS or PA. If these actions are
of type HA, then G/M has a normal subgroup, N say, which is regular on both UM

and WM , and hence MN is a normal subgroup of G which is regular on both U and W.
Thus, Γ is a binormal Cayley graph.

Assume finally that the actions of G/M on UM and WM are of type AS or PA. Then
by Lemmas 3.4 and 3.7 to 3.9, the quotient graph ΓM fits either part (ii) or (iii) of
Theorem 1.3. �
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In order to prove Corollary 1.4, we need to quote a result about the vertex stabiliser
of s-arc-transitive graphs. For a graph Γ and an arc (u, w), denote by G[1]

u the kernel of
Gu acting on Γ(u). Then the induced permutation group GΓ(u)

u is isomorphic to Gu/G
[1]
u .

Let G[1]
uw = G[1]

u ∩G[1]
w , the kernel of the arc stabiliser Guw acting on the double star

Γ(u) ∪ Γ(w). Then the well-known Thompson–Wielandt theorem tells us that G[1]
uw is a

r-group for some prime r. Moreover, the following result is already known.

T 3.10 (Weiss [15]). Let Γ be a connected (G, s)-arc-transitive graph where
s ≥ 2. Then, for an arc (u, w), either G[1]

uw = 1 and s ≤ 3, or G[1]
uw is a nontrivial r-group

and soc(GΓ(u)
u ) = PSL(d, q), where |Γ(u)| = (qd − 1)/(q − 1) and r | q; furthermore, if

s ≥ 4, then d = 2.

Observe that Gu is an extension of the kernel G[1]
a by the factor group GΓ(u)

u , and,
furthermore, G[1]

u is an extension of G[1]
uw by (G[1]

u )Γ(w), that is,

Gu �G[1]
u GΓ(u)

u � (G[1]
uw(G[1]

u )Γ(w))GΓ(u)
u .

From the above theorem, the following statements follow.

L 3.11. The stabiliser Gu has at most two insoluble composition factors, and,
further, one of the following results holds.

(i) Gu is soluble, and GΓ(u)
u ≤ AΓL(1, r f ), the 1-dimensional affine semilinear group.

(ii) Gu has only one insoluble composition factor, namely, soc(GΓ(u)
u ).

(iii) Gu has exactly two insoluble composition factors, one of which is soc(GΓ(u)
u ) and

the other is the unique insoluble composition factor of GΓ(u)
uw .

(iv) GΓ(u)
u is affine of degree rd and Gu has exactly two insoluble composition factors

that are isomorphic to the unique insoluble composition factor of GΓ(u)
uw .

P  C 1.4. Let Γ be a 2-arc-transitive graph of order 2pe, where p is an
odd prime. Then Γ is G-locally-primitive and satisfies Theorem 1.3. We may assume
that each nontrivial normal subgroup of G has at most two orbits on the vertex set.
If Γ is a binormal Cayley graph, then it is easy to see that G+ = Ze

p oGu.
Assume now that Γ is a standard double cover of Σ×m where Σ = Kpe or the Schläfli

graph. Then Σ×m is 2-arc-transitive. If m ≥ 2 and Σ = Kpe , then Γ is a Hamming
graph, and is known not to be 2-arc-transitive. If Σ is the Schläfli graph, then
Gu B (Z4

2 o A5)m. It follows from Lemma 3.11 that m = 1, and hence Γ itself is the
Schläfli graph and has valency 16. So Gu = Z4

2 o A5 or Z4
2 o S 5, which is not possible

since neither Z4
2 o A5 nor Z4

2 o S 5 has a representation of degree 16. Therefore Σ = Kpe

and Γ = Kpe,pe − peK2.
Suppose that Γ = Σ×bim, where

Σ = D1
2(11, 5), D

1
2(11, 5), PH(d, q), or PH(d, q).

Then m = 1 by Lemma 3.11. Obviously, PH(d, q) is not 2-arc-transitive. Therefore

Γ = Σ = D1
2(11, 5), D

1
2(11, 5), or PH(d, q).
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Finally, it is clear that neither Kpe,pe nor Kpe,pe − peK2 is 4-arc-transitive. By
Theorem 3.10, we conclude that if Γ is 4-arc-transitive, then Γ = PH(3, q). �
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