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LAST EXIT BEFORE AN EXPONENTIAL TIME
FOR SPECTRALLY NEGATIVE LÉVY PROCESSES

E. J. BAURDOUX,∗ Universiteit Utrecht

Abstract

Chiu and Yin (2005) found the Laplace transform of the last time a spectrally negative
Lévy process, which drifts to ∞, is below some level. The main motivation for the study
of this random time stems from risk theory: what is the last time the risk process, modeled
by a spectrally negative Lévy process drifting to ∞, is 0? In this paper we extend the
result of Chiu and Yin, and we derive the Laplace transform of the last time, before
an independent, exponentially distributed time, that a spectrally negative Lévy process
(without any further conditions) exceeds (upwards or downwards) or hits a certain level.
As an application, we extend a result found in Doney (1991).
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1. Introduction

The classical risk process, as introduced in [15], consists of a deterministic, positive drift c
plus a compound Poisson process which has only negative jumps. We denote by λ > 0 the rate
of the Poisson process and by µ the expected jump size. The main quantity of interest is the
moment of ruin, i.e. the first time the risk process becomes negative. To ensure the moment of
ruin is not almost surely finite, the net profit condition

λµ

c
< 1

is imposed. This condition ensures that the risk process drifts to ∞. Recently, various authors
(see, for example, [4], [10], [11], and [12]) have replaced the classical risk process by a general
spectrally negative Lévy process, which we shall denote byX. Also, in some cases, the moment
of ruin may not be the most important quantity of the risk process. Indeed, consider the following
scenario. Instead of going bankrupt when the risk process becomes negative, the firm has other
funds which it can use to support the negative surplus for a while. For this reason, in [8], the
Laplace transform was found for the last passage time at a certain level for the classical risk
process. This was extended to the case of a general spectrally negative Lévy process in [5].
However, a more realistic quantity for study might be the last passage time below 0 before a
fixed time t , i.e.

S−
t := sup{0 ≤ u ≤ t : Xu ≤ 0} for t ≥ 0. (1)

As is often the case, it turns out that it is easier to replace the fixed, deterministic time horizon
by an independent, exponentially distributed random time. For θ ≥ 0, we denote by ẽθ an
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Last exit for spectrally negative Lévy processes 543

exponentially distributed random variable with parameter θ . Here, we use the convention that
an exponential random variable with parameter 0 is taken to be infinite with probability 1.
A Lévy process starting from x ∈ R (with respect to some probability space (�, {Ft }t≥0,Px))
is said to be spectrally negative when it has no positive jumps and when it does not have
monotone paths. We suppress the subscript in Px when x = 0. Now, define the random time

σ−
θ = S−

ẽθ
= sup{0 ≤ t ≤ ẽθ : Xt ≤ 0},

with the convention that sup ∅ = 0. In the main result of this paper, Theorem 2, we give the
Laplace transform of σ−

θ . Using similar techniques, we also find the Laplace transform of

σ+
θ = sup{0 ≤ t ≤ ẽθ : Xt ≥ 0}

and of
Tθ = sup{0 ≤ t ≤ ẽθ : Xt = 0}.

For convenience, we suppress the subscript when θ = 0. For spectrally negative Lévy processes
drifting to ∞, the Laplace transform of σ− was found in [5]. Trivially, in this case it holds that
T = σ−.

As an application of Theorem 2, we extend a result from [6]. In that paper it was proved
that, for a spectrally negative stable process with index α,

P(Xt = Xt = t for some 0 < t < ∞) = 1

α
,

where Xt is the running supremum of X, i.e. Xt = sup0≤s≤t Xs . In the final section of this
paper we find the Laplace transform of sup{t ≥ 0 : Xt = Xt = t} for a general spectrally
negative Lévy process.

Remark 1. The random times introduced above are not stopping times, as they depend on the
future of the process {Xt }t≥0.

2. Preliminaries

In this section we review some important properties of spectrally negative Lévy processes.
For further details, we refer the reader to the books [2] and [13]. For a spectrally negative Lévy
process {Xt }t≥0, it holds that the Laplace exponent

ψ(λ) := log E[exp(λX1)], λ ≥ 0,

is well defined, convex, and infinitely differentiable on (0,∞). Furthermore, when X is of
bounded variation, we can express the Laplace exponent as

ψ(λ) = dλ+
∫
(−∞,0)

(eλx − 1)�(dx),

where � is the jump measure of X and d > 0 is called the drift.
For q ≥ 0, the scale function W(q)(x) is defined as the continuous function on [0,∞) such

that ∫ ∞

0
e−λxW(q)(x) dx = 1

ψ(λ)− q
for any λ > �(q).
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Here � denotes the right inverse of ψ . See, for example, Section VII.2 of [2] or Chapter 8
of [13] for a detailed study of the scale function. When q = 0, we omit the superscript and write
W(x) instead. The functionW(q) is extended to the negative half-line by settingW(Q)(x) = 0
when x < 0. Note that W(q) is not necessarily continuous at 0. In fact, it is not difficult to
show that W(q)(0) = 0 when X is of unbounded variation and W(q)(0) = 1/d when X is of
bounded variation with drift d . Furthermore, for q ≥ 0, we define the function Z(q) by

Z(q)(x) = 1 + q

∫ x

0
W(q)(y) dy.

Note that Z(q)(x) = 1 when x ≤ 0. Integration by parts yields∫ ∞

0
e−λxZ(q)(x) dx = 1

λ
+ q

λ

∫ ∞

0
e−λxW(q)(x) dx = 1

λ
+ q

λ(ψ(λ)− q)
. (2)

For a, b ∈ R, denote first passage times by

τ−
a := inf{t > 0 : Xt ≤ a}

and
τ+
b := inf{t > 0 : Xt ≥ b}.

Also, we denote the first hitting time by

T (a) := inf{t > 0 : Xt = a}.
Scale functions play a vital role in exit problems. For example, it holds that

Ex[exp(−qτ−
0 ) 1{τ−

0 <∞}] = Z(q)(x)−W(q)(x)
q

�(q)
, (3)

where, for the case in which q = 0, the fraction q/�(q) is to be understood in the limiting
sense. Expression (3) first appeared in the form of its Fourier transform in [7].

To derive our results concerning the last exit times, we also make use of potential measures.
For spectrally negative Lévy processes, the q-potential measure U(q)(dy), defined by∫ ∞

0
e−qt P(Xt ∈ dy) dt,

is absolutely continuous with respect to the Lebesgue measure, and a version of its density is
given by

uq(y) = �′(q) e−�(q)y −W(q)(−y); (4)

see [3].
Since, for c ≥ 0, the process {exp(cXt − ψ(c)t)} is a martingale with mean 1, we can

introduce the change of measure

dPc

dP

∣∣∣∣
Ft

= exp(cXt − ψ(c)t).

The process {Xt }t≥0 is still a spectrally negative Lévy process under Pc, and we mark the
Laplace exponent and scale functions of X under Pc with the subscript c. It is straightforward
to check that

ψc(λ) = ψ(c + λ)− ψ(c) for λ ≥ 0,
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and by taking Laplace transforms we also find that

W
(q)
c (x) = e−cxW(q+ψ(c))(x) for q ≥ 0. (5)

Furthermore, we readily check that, for c, p ≥ 0,

�c(p) = sup{x : ψc(x) = p}
= sup{x : ψ(x + c) = p + ψ(c)}
= �(p + ψ(c))− c.

For future reference, we also state the following result, the proof of which is given inAppendixA.

Lemma 1. For q > 0 and λ ≥ −�(q),∫
[0,∞)

e−λxW�(q)(dx) = λ

ψ(�(q)+ λ)− q
, (6)

where the right-hand side is to be interpreted in the limiting sense as �′(q) for the case in
which λ = 0.

Finally, we collect a couple of well-known expressions for first exit problems which we shall
use throughout this paper.

Lemma 2. For x > 0 and u, v ≥ 0,

Ex[exp(−uτ−
0 + vXτ−

0
) 1{τ−

0 <∞}] = evx
(
Z(p)v (x)−W(p)

v (x)
p

�v(p)

)
, (7)

wherep = u−ψ(v). For the case in which u = ψ(v), the fractionp/�v(p) is to be interpreted
in the limiting sense as

lim
u→ψ(v)

u− ψ(v)

�v(u− ψ(v))
= 1

�′(ψ(v))
. (8)

For x < 0 and q ≥ 0,
Ex[exp(−qτ+

0 ) 1{τ+
0 <∞}] = e�(q)x. (9)

Finally, for x > 0 and q ≥ 0,

Ex[e−qT(0) 1{T (0)<∞}] = e�(q)x − ψ ′(�(q))W(q)(x), (10)

and the case in which x = 0 is given by 1 − (d�′(0))−1 when X has bounded variation with
drift d.

Expression (7) follows after a change of measure from (3). Using the fact that the process
{exp(−qt +�(q)Xt )}t≥0 is a martingale, we can deduce (9). Finally, (10) was established in
the form of its Laplace transform in Theorem 1 of [6].

3. Main result

Not surprisingly, scale functions also play a predominant role when considering last exit
times.
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Theorem 1. ([5, Theorem 3.1].) Suppose that ψ ′(0) > 0. Then, for q > 0 and x ∈ R,

Ex[e−qσ−
1{σ−>0}] = �′(q)ψ ′(0) e�(q)x − ψ ′(0)W(q)(x).

In this paper we extend this result by considering last passage below a certain level before
an independent, exponentially distributed time (as well as last passage above and last hit of a
fixed level). We state the main result of this paper.

Theorem 2. For q, θ ≥ 0 and x ∈ R,

Ex[exp(−qσ−
θ )] = 1 + e�(q+θ)x�′(q + θ)

(
θ

�(θ)
− θ

�(q + θ)

)
+ θ

q + θ
Z(q+θ)(x)

− Z(θ)(x)+ θ

�(θ)
(W(θ)(x)−W(q+θ)(x)). (11)

Furthermore,

(12)Ex[exp(−qσ+
θ )] = q

q + θ
Z(q+θ)(x)− e�(θ)xZ(q)�(θ)(x)+ θ

θ + q

+ e�(q+θ)x q�(θ)�′(q + θ)

�(q + θ)(�(q + θ)−�(θ))
. (13)

Finally,

Ex[exp(−qTθ )] = 1 − e�(θ)x + 1

�′(θ)
(W(θ)(x)−W(q+θ)(x))+ �′(q + θ)

�′(θ)
e�(q+θ)x . (14)

Combined with the strong Markov property, Theorem 2 allows us to readily obtain expres-
sions for the joint Laplace transform of the first and last exit times.

Corollary 1. Let p, q ≥ 0. When X does not oscillate,

Ex[e−pT (0)−qT 1{T (0)<∞}] = �′(q)
�′(0)

(
e�(p+q)x − 1

�′(p + q)
W(p+q)(x)

)
. (15)

When X drifts to −∞ and x < 0,

Ex[exp(−pτ+
0 − qσ+) 1{τ+

0 <∞}] = q�(0)�′(q)
�(q)(�(q)−�(0))

e�(p+q)x .

When X drifts to +∞,

Ex[exp(−pτ−
0 −qσ−) 1{τ−

0 <∞}] = �′(q)
�′(0)

(
e�(q)xZ(p)�(q)(x)−

p

�(p + q)−�(q)
W(p+q)(x)

)
.

(16)

Proof. The third equality has already been obtained in [5]. We only prove (15), as the proofs
of the other claims are similar. Suppose that X drifts to ∞. Then �(0) = 0 and, from the
strong Markov property applied at T (0) and (10), we find that

Ex[e−pT (0)−qT 1{T (0)<∞}] = Ex[e−(p+q)T (0) 1{T (0)<∞} E[e−qT ]]
= �′(q)
�′(0)

(
e�(p+q)x − 1

�′(p + q)
W(p+q)(x)

)
.
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Remark 2. Note that Theorem 1 follows by taking p = 0 in (16) (or in (15)).

WhenX is a stable process, we can invert the double Laplace transform in (14) (when x = 0)
and retrieve the known result that, for each t ≥ 0, the random variable defined, analogously to
(1), by

St := sup{0 ≤ u ≤ t : Xu = 0}, t ≥ 0,

is distributed according to the so-called generalized arcsine law. When α = 2, this is the well-
known arcsine law for Brownian motion (see, for example, [14, Chapter VI]). In fact, using the
scaling property of stable processes, the following result can be shown to hold for any stable
process with index α > 1 (i.e. not only in the spectrally negative case). We refer the reader to
Theorem VIII.12 of [2] for the proof in the general case.

Corollary 2. Suppose that X is a spectrally negative stable process with index α ∈ (1, 2].
Then, for 0 ≤ s ≤ t ,

P(St ∈ ds) = sin(π/α)

π
s−1/α(t − s)−1+1/α ds. (17)

Also, the distribution of S−
t is given by

P(S−
t ∈ ds) = 1

α

sin(π/α)

π
s−1/α(t − s)−1+1/α ds +

(
1 − 1

α

)
δt (ds), (18)

where δt is the Dirac measure at t .

Proof. When X is a spectrally negative stable process of index α, it holds that (without loss
of generality) ψ(λ) = λα for α ≥ 0 and, thus, �(q) = q1/α for q ≥ 0. It is straightforward to
check that∫ ∞

0

∫ ∞

s

e−qs−θt s−1/α(t − s)−1+1/α dt ds = �

(
1

α

)
�

(
1 − 1

α

)
θ−1/α(θ + q)−1+1/α.

From (14) we now deduce (17), and (18) follows in a similar way from (11).

4. Proof of Theorem 2

For q ≥ 0, we denote by eq an exponentially distributed random variable with parameter q
which is independent of X and ẽθ . We split the proof of Theorem 2 into different parts.

Proof of (11). Let

A+ = {ẽθ ≥ eq, Xeq > 0, Xs > 0 for all s ∈ [eq, ẽθ ]}.

We can then write the event {σ−
θ < eq} as a disjoint union

{σ−
θ < eq} = {ẽθ < eq} ∪ A+. (19)

We thus have

Ex[exp(−qσ−
θ )] = Px(σ

−
θ < eq) = P(ẽθ < eq)+ Px(A

+) = θ

θ + q
+ Px(A

+).
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Now, for x ≤ 0,

Px(A
+) = q Ex

[∫ ∞

0
e−qt 1{ẽθ≥t} 1{Xs>0 for all s∈[t,ẽθ ]} dt

]

= q

∫ ∞

0
e−(q+θ)t

∫
(0,∞)

Px(Xt ∈ dy)Py(τ
−
0 > ẽθ ) dt

= q

∫
(0,∞)

u(q+θ)(y − x)(1 − Ey[exp(−θτ−
0 )]) dy

= q

∫ ∞

0
�′(q + θ) e−�(q+θ)(y−x)

(
1 − Z(θ)(y)+W(θ)(y)

θ

�(θ)

)
dy

= q�′(q + θ) e�(q+θ)x
(

1

�(q + θ)
− 1

�(q + θ)
− θ

q�(q + θ)
+ θ

�(θ)

1

q

)

= �′(q + θ) e�(q+θ)x
(

θ

�(θ)
− θ

�(q + θ)

)
, (20)

where the second equality follows from the Markov property and the lack of memory property
of the exponential distribution, the fourth equality follows from (4) and (7), and the fifth equality
follows from (2) and the definition of W(q). Hence,

Ex[exp(−qσ−
θ )] = θ

θ + q
+�′(q + θ) e�(q+θ)x

(
θ

�(θ)
− θ

�(q + θ)

)
for x ≤ 0.

Next, let x > 0. In this case, σ−
θ is equal to 0 whenever X does not become negative

before ẽθ . Taking this into account, we refine (19) and write the event {σ−
θ < eq} as a disjoint

union:

{σ−
θ < eq} = {ẽθ < eq} ∪ {σ−

θ = 0, ẽθ ≥ eq} ∪ {σ−
θ ∈ (0, eq), ẽθ ≥ eq}

= {ẽθ < eq} ∪ {τ−
0 > ẽθ , ẽθ ≥ eq} ∪ ({τ−

0 < ẽθ } ∩ A+).

We thus have

Ex[exp(−qσ−
θ )] = θ

θ + q
+ Px(τ

−
0 > ẽθ ≥ eq)+ Px(τ

−
0 < ẽθ , A

+),

and deduce that

Px(τ
−
0 > ẽθ , ẽθ ≥ eq) = Ex

[∫ ∞

0
θ e−θy 1{τ−

0 >y>eq } dy

]
= Ex[(exp(−θeq)− exp(−θτ−

0 )) 1{τ−
0 >eq }]

= Ex

[∫ ∞

0
(e−θz − exp(−θτ−

0 ))q e−qz 1{τ−
0 >z} dz

]

= q

q + θ
+ θ

q + θ
Ex[exp(−(q + θ)τ−

0 )] − Ex[exp(−θτ−
0 )]

= q

q + θ
+ θ

q + θ

(
Z(q+θ)(x)− q + θ

�(q + θ)
W(q+θ)(x)

)

− Z(θ)(x)+ θ

�(θ)
W(θ)(x),

https://doi.org/10.1239/jap/1245676105 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676105


Last exit for spectrally negative Lévy processes 549

where (3) was used for the last equality. For θ, q ≥ 0, define

λ(θ, q) := �′(q + θ)

(
θ

�(θ)
− θ

�(q + θ)

)
.

From the strong Markov property applied at τ−
0 , the memoryless property of the exponential

distribution, (7), and (20), we deduce that

Px(τ
−
0 < ẽθ , A

+) = Ex[1{τ−
0 <eq∧ẽθ } PX

τ
−
0
(A+)]

= λ(θ, q)Ex[exp(�(q + θ)Xτ−
0
) 1{τ−

0 <eq∧ẽθ }]
= λ(θ, q)Ex[exp(−(q + θ)τ−

0 +�(q + θ)Xτ−
0
) 1{τ−

0 <∞}]

= λ(θ, q) e�(q+θ)x
(

1 −W�(q+θ)(x)
1

�′(q + θ)

)
,

where we also used the fact that eq ∧ ẽθ is exponentially distributed with parameter q + θ for
the third equality. From (5) we know that e�(p+q)xW�(p+q)(x) = W(p+q)(x) and, thus, (11)
follows.

Proof of (13). We can write the event {σ+
θ < eq} as a disjoint union:

{ẽθ < eq} ∪ A−,

where
A− = {ẽθ > eq, Xs < 0 for all s ∈ [eq, ẽθ ]}.

We thus have

Ex[exp(−qσ+
θ )] = Px(σ

+
θ < eq) = θ

θ + q
+ Px(A

−). (21)

Let x ≥ 0. Then

Px(A
−) = q Ex

[∫ ∞

0
e−qt 1{ẽθ>t} 1{Xs<0 for all s∈[t,ẽθ ]} dt

]

= q

∫ ∞

0
e−(q+θ)t

∫
(−∞,0)

Px(Xt ∈ dy)Py(τ
+
0 > ẽθ ) dt

= q

∫
(−∞,0)

u(q+θ)(y − x)Py(τ
+
0 > ẽθ ) dy

= q

∫
(−∞,0)

(�′(q + θ) e�(q+θ)(x−y) −W(q+θ)(x − y))(1 − e�(θ)y) dy

= q

∫
(0,∞)

(�′(q + θ)−W�(q+θ)(x + y)) e�(q+θ)(x+y)(1 − e−�(θ)y) dy

= q e�(q+θ)x
∫
(0,∞)

∫ ∞

x+y
W ′
�(q+θ)(z)(e

�(q+θ)y − e(�(q+θ)−�(θ))y) dz dy

= q e�(q+θ)x
∫
(x,∞)

∫ z−x

0
W ′
�(q+θ)(z)(e

�(q+θ)y − e(�(q+θ)−�(θ))y) dy dz, (22)

where the second equality follows from the Markov property and the lack of memory property
of the exponential distribution, the fourth equality follows from (4) and (9), the fifth equality
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follows from (5), the penultimate equality follows from W�(q+θ)(∞) = �′(q + θ) (see (33)
in Appendix A), and the last equality follows from an application of Fubini’s theorem. Define

f (x, z) := e�(q+θ)(z−x)

�(q + θ)
− e(�(q+θ)−�(θ))(z−x)

�(q + θ)−�(θ)
+ �(θ)

�(q + θ)(�(q + θ)−�(θ))
.

Integration by parts yields

∫
(x,∞)

∫ z−x

0
W ′
�(q+θ)(z)(e

�(q+θ)y − e(�(q+θ)−�(θ))y) dy dz

=
∫

[0,∞)

f (x, z)W�(q+θ)(dz)−
∫

[0,x]
f (x, z)W�(q+θ)(dz)

=
∫

[0,∞)

f (x, z)W�(q+θ)(dz)

+
∫ x

0
W�(q+θ)(z)(e�(q+θ)(z−x) − e(�(q+θ)−�(θ))(z−x)) dz

=
∫

[0,∞)

f (x, z)W�(q+θ)(dz)+ e−�(q+θ)x Z(q+θ)(x)− 1

q + θ

− e(�(θ)−�(q+θ))x
Z
(q)

�(θ)(x)− 1

q
.

Using this expression and invoking (21) and (22), we conclude that

Ex[exp(−qσ+
θ )] = θ

q + θ
+ Px(A

−)

= θ

q + θ
+ q e�(q+θ)x

∫
[0,∞)

f (x, z)W�(q+θ)(dz)

+ q

q + θ
(Z(q+θ)(x)− 1)− e�(θ)x(Z(q)�(θ)(x)− 1)

= θ

q + θ
+ q

q + θ
− q

�(q + θ)−�(θ)

�(θ)−�(q + θ)

ψ(�(θ))− (q + θ)
e�(θ)x

+ q�(θ)

�(q + θ)(�(q + θ)−�(θ))
W�(q+θ)(∞) e�(q+θ)x

+ q

q + θ
(Z(q+θ)(x)− 1)− e�(θ)x(Z(q)�(θ)(x)− 1)

= q

q + θ
Z(q+θ)(x)− e�(θ)xZ(q)�(θ)(x)+ θ

θ + q

+ e�(q+θ)x q�(θ)�′(q + θ)

�(q + θ)(�(q + θ)−�(θ))
, (23)

where the third equality follows from an application of Lemma 1 and the last equality is again
a consequence of W�(q+θ)(∞) = �′(q + θ). Note that (23) implies that

P(A−) = q�(θ)�′(q + θ)

�(q + θ)(�(q + θ)−�(θ))
− θ

θ + q
. (24)
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Next, let x < 0. We decompose {eq > σ+
θ } as

{σ+
θ < eq} = {ẽθ < eq} ∪ {τ+

0 > ẽθ , ẽθ ≥ eq} ∪ ({τ+
0 < ẽθ } ∩ A−).

As before, we deduce from the strong Markov property, the memoryless property of the
exponential distribution, (9), and (24) that

Ex[exp(−qσ+
θ )] = θ

θ + q
+ Px(τ

+
0 > ẽθ > eq)+ Px(σ

+
θ ∈ (0, eq), ẽθ ≥ eq)

= θ

θ + q
+ Ex

[∫ ∞

0
θ e−θy 1{τ+

0 >y>eq } dy

]
+ Ex[1{τ+

0 <eq∧ẽθ } P(A−)]

= θ

θ + q
+ Ex[(exp(−θeq)− exp(−θτ+

0 )) 1{τ−
0 >eq }]

+
(

q�(θ)�′(q + θ)

�(q + θ)(�(q + θ)−�(θ))
− θ

θ + q

)
Px(τ

+
0 < eq ∧ ẽθ )

= θ

θ + q
+ Ex

[∫ ∞

0
q e−qt(e−θt − exp(−θτ+

0 )) 1{τ+
0 >t} dt

]

+
(

q�(θ)�′(q + θ)

�(q + θ)(�(q + θ)−�(θ))
− θ

θ + q

)
Ex[exp(−(q + θ)τ+

0 )]

= 1 + θ

q + θ
Ex[exp(−(q + θ)τ+

0 )] − Ex[exp(−θτ+
0 )]

+
(

q�(θ)�′(q + θ)

�(q + θ)(�(q + θ)−�(θ))
− θ

θ + q

)
e�(q+θ)x

= 1 − e�(θ)x + q�(θ)�′(q + θ)

�(q + θ)(�(q + θ)−�(θ))
e�(q+θ)x,

which is (13), since Z(r)ν = 1 for all x ≤ 0 and ν, r ≥ 0.

Proof of (14). We can write the event {Tθ < eq} as a disjoint union:

{ẽθ < eq} ∪ A− ∪ A,

where

A = {ẽθ > eq, Xeq > 0, Xs �= 0 for all s ∈ [eq, ẽθ ]}
and

A− = {ẽθ > eq, Xs < 0 for all s ∈ [eq, ẽθ ]}.
Since we already have an expression for Px(A−) = Ex[exp(−qσ+

θ )] − θ/(q + θ), we need
only consider A.
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First assume that x ≤ 0. In a similar fashion as in the proof of (20) we deduce from (4),
(10), the lack of memory property of the exponential distribution, and the Markov property that

Px(A) = q Ex

[∫ ∞

0
e−qt 1{ẽθ≥t} 1{Xt>0, Xs �=0 for all s∈[t,ẽθ ]} dt

]

= q

∫ ∞

0
e−(q+θ)t

∫ ∞

0
Px(Xt ∈ dy)Py(T (0) > ẽθ ) dt

= q

∫ ∞

0
u(q+θ)(y − x)Py(T (0) > ẽθ ) dy

= q

∫ ∞

0
�′(q + θ) e−�(q+θ)(y−x)(1 − e�(θ)y + ψ ′(�(θ))W(θ)(y)) dy

= q�′(q + θ) e�(q+θ)x
(

1

�(q + θ)
− 1

�(q + θ)−�(θ)
+ 1

q�′(θ)

)
.

We find that

Ex[exp(−qTθ )] = Px(A)+ Px(A
−)+ θ

θ + q

= q�′(q + θ) e�(q+θ)x
(

1

�(q + θ)
− 1

�(q + θ)−�(θ)
+ 1

q�′(θ)

)

+ 1 − e�(θ)x + e�(q+θ)x q�(θ)�′(q + θ)

�(q + θ)(�(q + θ)−�(θ))

= 1 − e�(θ)x + �′(q + θ)

�′(θ)
e�(q+θ)x .

Finally, let x > 0. As before, we find that

{Tθ < eq} = {ẽθ < eq} ∪ {T (0) > ẽθ , ẽθ ≥ eq} ∪ ({T (0) < ẽθ } ∩ (A ∪ A−)).

An application of the strong Markov property at T (0), the memoryless property of the expo-
nential distribution, (7), (8), and (10) imply that

Ex[exp(−qT θ )] = θ

θ + q
+ Ex[(exp(−θeq)− e−θT (0)) 1{T (0)>eq }]

+ Px(T (0) < eq ∧ ẽθ )P(Tθ < eq < ẽθ )

= 1 + θ

θ + q
Ex[e−(q+θ)T (0)] − Ex[e−θT (0)]

+ Ex[e−(q+θ)T (0)]
(
�′(q + θ)

�′(θ)
− θ

θ + q

)

= 1 − e�(θ)x + 1

�′(θ)
(W(θ)(x)−W(q+θ)(x))+ �′(q + θ)

�′(θ)
e�(q+θ)x,

which completes the proof of Theorem 2.

Remark 3. Two of the main ingredients in the proof of Theorem 2 are the q-potential mea-
sure of X and the Laplace transform of the first passage time above or below a given level.
These quantities are also known for certain Lévy processes which do have positive jumps.
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Proposition 2 of [1] indicates that results similar to (11) and (13) can be obtained for so-called
phase-type Lévy processes. Similarly, as mentioned before Corollary 2, we can use the scaling
property to find the Laplace exponent of the last hitting time of 0 for any stable process with
index α > 1. See the proof of Lemma VIII.13 of [2] for details.

Remark 4. As mentioned in the introduction, result (11) could be useful in risk theory, since it
gives information about the last time when the risk process is negative before an independent,
exponentially distributed time. Indeed, the last passage ofX below 0 before a fixed time horizon
can be found by inverting the double Laplace transform in (11). Unfortunately, this seems to be
tractable analytically only in very specific cases. An additional complication is that the scale
function is not always available explicitly. We refer the reader to [9] for examples of explicit
examples of scale functions. Furthermore, scale functions can be evaluated numerically and
we refer the reader to [17] and [18] for such numerical schemes.

5. Application: an extension of a result of Doney [6]

Doney [6, Corollary 3] showed that, for a spectrally negative stable process with index α, it
holds that

P(Xt = Xt = t for some 0 < t < ∞) = 1

α
. (25)

In this section we extend this result and, in particular, we find (for a general spectrally
negative Lévy process) the Laplace exponent of the random time τ1 defined by

τ1 := sup{t ≥ 0 : Xt = Xt = t},
recalling the convention that sup ∅ = 0. Similarly, we define

τ2 = sup{t ≥ 0 : Xt = t},
τ3 = sup{t ≥ 0 : Xt ≥ t},
τ4 = sup{t ≥ 0 : Xt ≥ t}.

Since

{t ≥ 0 : Xt = Xt = t} ⊆ {t ≥ 0 : Xt = t} ⊆ {t ≥ 0 : Xt ≥ t} ⊆ {t ≥ 0 : Xt ≥ t},
we have

τ1 ≤ τ2 ≤ τ3 ≤ τ4.

These random times are trivial when X is of bounded variation with drift d ≤ 1 (since they
are all equal to the first jump time when d = 1 and all equal to 0 when d < 1) and, hence, we
assume throughout this section that

d > 1 whenever X is of bounded variation.

Let q > 0. Since

lim
λ→∞

ψ(λ)

λ
=

{
∞ when X is of unbounded variation,

d when X is of bounded variation with drift d,

we see that there exists a unique yq > 0 such that

ψ(yq) = q + yq.
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Now let zq := ψ(yq). Then �(zq) = �(ψ(yq)) = yq = ψ(yq)− q = zq − q. Finally, set

y0 :=
{

0 when ψ ′(0) ≥ 1,

y when ψ ′(0) < 1,
(26)

where y is the unique solution on (0,∞) ofψ(λ) = λwhenψ ′(0) < 1. We can use Theorem 2
to establish the following result.

Corollary 3. Suppose that X is a spectrally negative Lévy process which is of unbounded
variation or of bounded variation with drift d > 1. Then

E[exp(−qτ1)] = ψ ′(yq)
ψ ′(y0)

ψ ′(y0)− 1

ψ ′(yq)− 1
, (27)

E[exp(−qτ2)] = ψ ′(y0)− 1

ψ ′(yq)− 1
, (28)

and E[exp(−qτ3)] = qy0

yq(yq − y0)(ψ ′(yq)− 1)
. (29)

Finally,

E[exp(−qτ4)] = qy0ψ
′(yq)

ψ(yq)(ψ(yq)− y0)(ψ ′(yq)− 1)
. (30)

Proof. First, suppose thatX does not drift to −∞. Introduce the processes Yt = Xt − t and
Zt = t − τ+

t , which are both spectrally negative Lévy processes. The assumption that X does
not drift to −∞ is used here to ensure that P(τ+

t < ∞) = 1. Note that, since

{t ≥ 0 : Xt = Xt = t} = {t ≥ 0 : τ+
t = t},

the random times τ1 and τ2 are the last hitting times T of 0 for Z and Y , respectively, and τ3
and τ4 are the last passage times above 0 of Y and Z, respectively. Using obvious notation, it
holds that ψY (λ) = ψ(λ)− λ and ψZ(λ) = λ−�(λ); hence,

�Y (q) = yq and �Z(q) = zq.

From the implicit function theorem we find that

d

dq
yq = 1

ψ ′(yq)− 1

and that
d

dq
zq = 1

1 −�′(zq)
= ψ ′(yq)
ψ ′(yq)− 1

.

The result now follows by taking θ = 0 and x = 0 in Theorem 2.
When X does drift to −∞, (28) and (29) still hold, but in this case τ+

t is a subordinator
killed at exponential rate �(0), which is strictly positive as ψ ′(0) < 0. Hence, we are now
looking for the last passage times before e�(0) of a Lévy process with Laplace exponent given
by λ − �(λ) + �(0). Statements (27) and (30) now follow by an application of Theorem 2
with θ = �(0) and x = 0.
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Define, for s ≥ 0,

As := {there exists some t > s : Xt = Xt = t},
and denote A = A0. Equation (25) is contained in the following corollary.

Corollary 4. For a spectrally negative Lévy process, it holds that

P(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ψ ′(y0)
when X has unbounded variation,

d − ψ ′(y0)

dψ ′(y0)− ψ ′(y0)
when X has bounded variation with drift d > 1,

where y0 is defined in (26). In particular, P(A) = 1/α for a spectrally negative stable process
of index α. Also,

P(A) = 1 ⇐⇒ ψ ′(0) = 1. (31)

In fact, when ψ ′(0) = 1,
P(As) = 1 for all s ≥ 0.

Proof. Since

lim
λ→∞ψ

′(λ) =
{

∞ when X is of unbounded variation,

d when X is of bounded variation with drift d,

it follows from Corollary 3 that

P(A) = 1 − P(τ1 = 0)

= 1 − lim
q→∞ E[exp(−qτ1)]

= 1 − lim
q→∞

ψ ′(yq)
ψ ′(y0)

ψ ′(y0)− 1

ψ ′(yq)− 1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ψ ′(y0)
when X is of unbounded variation,

d − ψ ′(y0)

dψ ′(y0)− ψ ′(y0)
when X is of bounded variation with drift d > 1.

When X is a stable process of index α ∈ (1, 2], we have y0 = 1 and, thus,

P(A) = 1

ψ ′(1)
= 1

α
.

To show (31), suppose that ψ ′(0) = 1. It then holds that y0 = 1 and, hence, P(A) = 1.
For the other direction, we remark that ψ ′(0) > 1 implies that ψ ′(y0) = ψ ′(0) > 1. Also,

when ψ ′(0) < 1, we have ψ ′(y0) > 1, as y0 is the unique solution to ψ(y) = y on (0,∞) and
because ψ is a strictly convex function on [0,∞). We conclude that, whenever ψ ′(0) �= 1, we
have ψ ′(y0) > 1, from which it follows that P(A) < 1.

From (27) we see that ψ ′(0) = 1 implies that E[exp(−qτ1)] = 0 for any q > 0. The final
statement in Corollary 4 now follows.
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Remark 5. As an example, we consider a standard Brownian motion. Owing to its continuous
paths we have τ2 = τ3. Its Laplace exponent is given by ψ(λ) = λ2/2, so ψY (λ) = λ2/2 − λ

and ψZ(λ) = λ− √
2λ; hence,

yq = 1 + √
2q + 1 and zq = 1 + q + √

2q + 1.

From Corollary 3 we readily deduce that

E[exp(−qτ1)] = aq + 1

2aq
,

E[exp(−qτ2)] = E[exp(−qτ3)] = 1

aq
,

and E[exp(−qτ4)] = 2aq + 2

(q + 2)aq + 4q + 2
,

where aq = √
2q + 1.

Appendix A

Proof of Lemma 1. Suppose that q > 0. First, let λ > 0. Then (6) follows by integration
by parts. Indeed, in this case∫

[0,∞)

e−λx W�(q)(dx) = λ

∫ ∞

0
e−λx W�(q)(x) dx

= λ

ψ�(q)(λ)

= λ

ψ(�(q)+ λ)− q
. (32)

Under P�(q), the process {Xt }t≥0 drifts to ∞ and now from Equation (8.15) of [13] we deduce
that

W�(q)(x) = 1

ψ ′
�(q)(0+) Px

(
inf
t≥0
Xt ≥ 0

)
.

It follows that
lim
x→∞W�(q)(x) = �′(q), (33)

and, hence, (6) holds for λ = 0 as well.
Next, we show that (6) holds for λ = −�(q). We make use of the resolvent measure for the

reflected process {Vt }t≥0 defined by

Vt = sup
0≤s≤t

(Xs ∨ 0)−Xt .

In Theorem 1(ii) of [16], the resolvent measure

R
q
a (x, dy) =

∫ ∞

0
e−qt Px

(
Vt ∈ dy, sup

0≤s≤t
Vs ≤ a

)
of V killed at exceeding a certain level a > 0 was found. In particular, for x = 0, it holds that

R
q
a (0, dy) =

(
W(q)(a)

W(q)′(y+)
W(q)′(a+) −W(q)(y)

)
dy for y ∈ (0, a]
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and Rqa (0, {0}) = W(q)(a)W(q)(0)/W(q)′(a+). Using the fact that W�(q)(∞) < ∞ and (5),
we can take a → ∞ and deduce that the resolvent measure

Rq(0, dy) =
∫ ∞

0
e−qt P0(Vt ∈ dy)

of the unkilled reflected process is given by

Rq(0, dy) =
(

1

�(q)
W(q)′(y+)−W(q)(y)

)
dy = 1

�(q)
e�(q)yW�(q)(dy) for y ≥ 0.

An application of Fubini’s theorem yields∫
[0,∞)

e�(q)xW�(q)(dx) = �(q)

∫
[0,∞)

Rq(0, dx)

= �(q)

∫
[0,∞)

∫ ∞

0
e−qt P(Vt ∈ dx) dt

= �(q)

∫ ∞

0
e−qt P(Vt ∈ [0,∞)) dt

= �(q)

q
, (34)

which is (6) for λ = −�(q).
Finally, for the case −�(q) < λ < 0, we make use of an analytic extension. We can extend

the Laplace exponent ψ to those z ∈ C for which Re(z) > 0 and we denote this extension
by �. Define the function g : A → C by

g(z) =
⎧⎨
⎩

z

�(z+�(q))− q
when z �= 0 and Re(z) > −�(q),

�′(q) when z = 0,

whereA is an open set in C such that Re(z) > −�(q) for all z ∈ A and such that�(z+�(q)) �=
q on A \ {0}. Since the Laplace exponent � is analytic when Re(z) > 0, we can write

�(z+�(q)) = q +
∞∑
k=1

zk

k!�
(k)(�(q)) when Re(z) > −�(q),

where �(k) denotes the kth derivative of �. The fact that ψ ′(�(q)) > 0 implies that g
is bounded in some (complex) neighborhood of 0, and we can use the Riemann removable
singularity theorem to deduce that g(λ) is real analytic for λ > −�(q). The coefficients cn in
the power series of g are given in terms of the nth (right) derivative at 0 of the left-hand side of
(32). Specifically, because of (34),

cn =
∫

[0,∞)

(−x)n
n! W�(q)(dx) for n ∈ N.

In particular, for λ ∈ (−�(q), 0),

g(λ) =
∞∑
n=0

λn
∫

[0,∞)

(−x)n
n! W�(q)(dx) =

∞∑
n=0

∫
[0,∞)

|λx|n
n! W�(q)(dx).
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From another application of Fubini’s theorem, it follows that, for any |λ| < �(q),

g(λ) =
∞∑
n=0

cnλ
n

=
∞∑
n=0

λn
∫

[0,∞)

(−x)n
n! W�(q)(dx)

=
∫

[0,∞)

∞∑
n=0

(−λx)n
n! W�(q)(dx)

=
∫

[0,∞)

e−λx W�(q)(dx).

This completes the proof of Lemma 1.
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