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Abstract

For the fourth-order linear difference equation tfun_1 = bnun, with bn > 0 for all n,
generalized zeros are defined, following Hartman [5], and two theorems are proved
concerning separation of zeros of linearly independent solutions. Some preliminary results
deal with non-oscillation and asymptotic behavior of solutions of this equation for various
types of initial conditions. Finally, recessive solutions are defined, and results are
obtained analogous to known results for recessive solutions of second-order difference
equations.

1. Introduction

In a recent paper [5] Hartman introduced the concept of a generalized zero of a
solution of an nth order linear difference equation and discussed disconjugacy
and non-oscillation of solutions of such equations. In this paper we consider
generalized zeros and oscillation and asymptotic properties of solutions of
fourth-order linear difference equations. In particular, we discuss discrete ana-
logues for certain results of Leighton and Nehari [8] on oscillation and separation
of zeros of solutions of a fourth-order differential equation.

Specifically, we consider here the fourth-order linear difference equation

tfun_2 = bnun, /i = 2,3,4,. . . , (1.1)
where b = { bn }, n = 2,3,4,..., is a given infinite sequence of positive numbers,
A is the forward difference operator defined as Awn = un+l — un, and

A2«n = A ( A M J = un+2 - 2un+1 + «„,

A3«n = A(A 2 «J = un+3 - 3un+2 + 3un+1 - un,

A4«n = A(A3«n) = u n + 4 - 4« n + 3 + 6u n + 2 - 4« n + 1 + «„. (1.2)
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|2] A fourth order linear difference equation 311

By a solution of (1) we mean a real sequence u = {«„}, n = 0,1,2,..., which
satisfies (1.1).

One possible application of our results would be in the numerical approxima-
tion of solutions of the fourth-order differential equationy""{t) - b(t)y(t) = 0,
b(t) > 0. This follows from the fact that the operator given by (1.1) is stable in
the sense defined by Dahlquist [1, page 19], where the h in [1, page 6] can be
thought of as 1. Another possible application lies with the numerical approxima-
tion of recessive type solutions discussed in Section 5. In the second-order case,
the concept of recessive solutions has been important in the numerical approxi-
mation of certain types of special functions ([9]).

Difference equations also arise directly in mechanics (see Fort [2] and Green-
span [4]), in biology ([3]), and in the theory of codes ([12]), although these are more
typically first and second order difference equations.

Before proceeding, we note that the letters /, j , m, n, M, N, P, Q, R will be
used below only as nonnegative integer variables. We occasionally write WLOG
for "without loss of generality". By the graph of a solution u of (1.1) we will mean
the graph consisting of the line segments connecting successive points (n,un) and
(n + 1, un+l), n = 0,1,2,....

In Section 2 we define generalized zeros and discuss uniqueness of solutions of
(1.1) satisfying certain initial value properties. In section 4, several theorems
culminating in two separation of zeros theorems are presented. Theorems 4.3 and
4.4 are discrete analogues of Theorems 2.6 and 3.1 of Leighton and Nehari [8],
and the sequence of Lemmas in Section 3 is somewhat analogous to the corre-
sponding chain of results of Leighton and Nehari.

In Section 5 we discuss existence of positive decreasing solutions (recessive
solutions) of (1.1).

2. Definitions and preliminary results

It is readily verified from (1.2) that the fourth-order forward difference
operator may be written in the form

A4«n_2 = un+2 - un+l - Aun - tfun_x - A3un_2, (2.1)

and so (1.1) may be written as

un+2 = A3un_2 + A2un_, + Aun + un+l + bnun. (2.2)

Also, from (1.2) we may write (1.1) in the alternate form

" n + 4 = 4 » n + 3 - ( 6 - * n + 2 ) " n + 2 + 4 " n + i - «„> « > 0 . ( 2 . 3 )
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F r o m (2.3) it follows inductively that all solutions of (1.1) are defined for all

n > 0, a n d tha t a un ique solution of (1.1) is determined if any four successive

va lues uN, uN+l, uN+2, "AT+3 ^ given. In particular, the following uniqueness

property is clear.

LEMMA 2.1. / / u is a solution of (1.1) with uN = uN+1 = uN+1 = uN+3 = 0 for
some N ^ 0, then un = Ofor alln > 0.

We now define a "generalized zero" for a solution of (1.1) as follows:

DEFINITION. Let u = { un }, n = 0,1,2,..., be a solution of (1.1). Then n > 0 is
a generalized zero if one of the following holds:

"n = 0; (2.4)

n > 0 and un_lun < 0; (2.5)
n > 1,

and there exists an integer k,\ < k < n, such that

(-\)kun_kun>Q, and un_1 = un_2 = • • • = un_k+1 = 0. (2.6)

This is essentially the definition given by Hartman [5]. To this we add the
following terminology:

A generalized zero of a solution u of (1.1) is said to be of order 0,1, or k > 1,
according to whether condition (2.4), (2.5), or (2.6), respectively, holds. In
particular, a generalized zero of order 0 will simply be called a "zero", and a
generalized zero of order one will be called a "node", as in Fort [2] and Hartman
[5]-

We note also that if u has a generalized zero of order k at n, then u necessarily
has k consecutive generalized zeros at n — k + l,...,n. Figure 1 illustrates
generalized zeros of order 0,1,2 and 3 respectively, at n. It will be shown below in
Theorem 4.1 that a solution of (1.1) cannot have a generalized zero of order
k > 3. We know already from Lemma 2.1 that a nontrivial solution of (1.1) can
have zeros at no more than three consecutive values of n. However, a solution of
(1.1) can have arbitrarily many consecutive nodes, as exhibited by the sequence
un = (-1)", which is a solution of A4nn_2 = 16«n.

Figure 1. Generalized zeros of order 0, 1, 2, and 3.
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3. Monotonicity properties

We begin with a preliminary lemma on the behavior of a sequence with a
nonnegative second difference.

LEMMA 3.1. / / u is an infinite sequence satisfying A2«n > 0 for all n > Kfor some
K, then

un > UK+ A«AT(" - K), foralln^K. (3.1)

PROOF. Since A2MM > 0 for n > K, Awn is nondecreasing so

n - 1
Un ~ UK = L A", > (« - ^O^M*.

Our second lemma is a difference equation analogue of Lemma 2.1 of Leighton
and Nehari [8]. Note that it is assumed here and throughout this paper that
bn > 0 for all n.

LEMMA 3.2. Ifu is a nontrivial solution o/(l.l) and if

(a) un>0,

(b) Aun >0(

(c) A^.^O, {3V

(d) A3un_2>0,

for some n = N, N ^ 2, then (3.2) holds for all n > N, with strict inequality in
(3.2a) for all n > N + 2, strict inequality in (3.2b) for all n > N + 1, an</ sfrz'c/
inequality in (3.2c) and (3.2d)/or all n ^ N + 3. Furthermore

A 4 « n _ 2 >0 , foralln>N, (3.2e)

/cr inequality for all n > N + 2, a«</ un, Awn, a«rf A2wn a// rend to + oo as
n -* oo.

PROOF. Given uw > 0, Au^ > 0, A2wAr_1 > 0, and b?uN_2 > 0, we immediately
have M^^.! — uN = AuN > 0, hence

UN> 0.

From (2.2) we obtain

. j + A2
MAf_! + Aw^ + ft^^. (3.3)
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Then (3.3) gives us

A2uN = A « ^ + 1 - AuN = £?uN_2 + A2uN_1 + bNuN, (3.4)

and this in turn leads to

A3uN_1 = b2uN - A2uN_l = A3uN_2 + bNuN. (3.5)

All the terms on the right-hand sides of (3.3), (3.4), and (3.5) are nonnegative, so
kuNJrl, A2uN, and A3uN_1 are nonnegative. Thus, assuming that conditions
(3.2a-d) hold for N implies that they also hold for N + 1. Proceeding in this way,
we see by mathematical induction that conditions (3.2a-d) hold for all n ^ N.
Condition (3.2e) follows immediately from (1.1), since bn > 0 and un > 0 for all
n > N.

Since bN > 0, at least one term on the right in (3.3) must be positive, since
otherwise uN+l = uN = uN_l = uN_2 = 0 by (1.2), hence u would be the trivial
solution of (1.1) by Lemma 2.1. Thus AuN+l > 0 and it follows that strict
inequality holds in (3.2b) for ah1 n > N + 1. This implies that un is strictly
increasing for n > N + 1, and since uN+1 > 0, we then have un > 0 for all
n > iV + 2, as claimed. This in turn implies, by use of (1.1), that strict inequality
holds for (3.2e) for n > Af + 2. Also, using (3.4) and (3.5), we may conclude that
A2wn > 0 and &3un_l > 0 for all n > N + 2. Therefore strict inequality holds in
(3.2c) and (3.2d) for all n > N + 3.

To prove the last statement in the conclusion, we observe that the sequences
{un}, {vn} = {A«n}, and {wn} = {A2«n} all satisfy the hypotheses of Lemma
3.1 for any K > N. Applying Lemma 3.1 to these three sequences yields, respec-
tively,

un>uK+ AuK(n - K),

Aun> AuK+ A2uK(n - K),

for all n > K. In particular, these inequalities are true for K = N + 2, and since
AuK, A2uK, and A3uK are all positive for K = N + 2, it follows that un, Aun, and
A2un tend to + oo as n -» oo, which completes the proof.

We note that the above theorem fails if the hypothesis M^ > 0 is replaced by
uN+l > 0. This is shown by the example un = (-1)"+1, which is a solution of
A4un_2 — 16un. This sequence satisfies u3 = 1 > 0, Aw2 = 2 > 0, A2«j = 4 > 0,
A3M0 = 8 > 0, but fails to have any of the monotonicity properties of the
conclusion of the lemma. It is interesting to note also that the initial conditions
given in the hypotheses of the lemma are not necessarily of "convex" type, i.e.,
the graph of a solution satisfying these conditions is not necessarily convex
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upward on the interval from N — 2 to N + 1. For example, a sequence u
satisfying u0 — 0, ux = 1, u2 = 0, u3 = 1 satisfies the hypotheses of the lemma,
since u2 = 0, AM2 = 1 > 0, A2«j = 2 > 0, and A3M0 = 4 > 0. However, the "con-
vex" conditions u0 = 2, u1 = 0, u2 = 0, M3 = 1, do not, since in this case u2 = 0,
A«2 = 1, A2MX = 1, but A3u0 = - 1 .

The following lemma is a corollary of Lemma 3.2. It is essentially a special case
of Lemma 3.2, in a geometrical sense. That is, while the hypotheses of Lemma 3.2
allow a diversity of "shapes" in the graph of u from N — 2 to N + 1, the
following lemma requires that the graph be convex upward on the interval from N
to N + 3.

LEMMA 3.3. If u is a nontrivial solution of (1.1) and if

(a) « n > 0 ,

(b) A M n >0 ,

(c) A^0, ( 3 6 )

(d) A 3 « n >0,

/or some n = N, N > 0, f/ien (3.6) /10/dls /or a// n > TV, w/7ft .y/r/cf inequality in
(3.6a, b, d) /or all n > N + 3, and in (3.6c) /or all n ^ N + 4. Furthermore

A*un>0 foralln>N, (3.6e)

w/f/j .srr/cr inequality for n ^ N + 2, and un, Aun, and A2«n a// te/jrf fo + oo as
n —» oo.

PROOF. Given a nontrivial solution w of (1.1) satisfying (3.6) for n = JV > 0, let
M = N + 2. Then A3MW_2 = A2uw_! - A2«A/_2 > 0, so

A2uA/_1 > A2wM_2 = A2
MAf > 0.

Similarly, A2MA/_2 > 0 implies AMA/_1 > A«M_2 > 0, and A2«A/_1 > 0 implies
Aww> A M ^ ! , hence

Aww> AuM_, s* A u ^ . z ^ O . (3.7)

This in turn implies

"w+i > «w > UM-I > UM-2 > 0- (3-8)
Thus A3«A/_2, A2uM_v AuM, and «M are all nonnegative, and it follows from
Lemma 3.2 that

(a) un>0,
(b) A M ^ O ,

(c) A2t/n_1>0, (3.9)

(d) A3«n_2>0,

(e) A4un-2>0,
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for all n > M, with strict inequality in (3.9a, e) for n > M + 2, in (3.9b) for
n > M + 1, and in (3.9c, d) for n > M + 3. Also un, Awn, and A2un tend to + oo
as n -» oo. By shifting subscripts, and using M = N + 2, we may rewrite (3.9)
and the related statements about strict inequality as follows:

(3.10)

Since M = N + 2, (3.7) and (3.8) immediately imply that un > 0 and A«n ^ 0
hold also for n = N + 1 and n = N. Furthermore, (3.8) implies that if M^+3 = 0,
then MJV+3 = w^+2 =

 "N+I = "^ = 0, so u would be the trivial solution of (1.1).
Therefore uN+3 > 0. Finally, A2uN > 0 by hypothesis, and we have shown that all
of conditions (3.6) hold for n > N, with strict inequality as stated in the
conclusion.

We will need the following "backwards" version of Lemma 3.2, which de-
scribes behavior of a solution of (1.1) for values of n less than some given N. Note
that, in contrast to Lemmas 3.2 and 3.3, the sense of the inequalities alternates in
conditions (3.11).

LEMMA 3.4. Ifu is a nontrivial solution of (1.1) with

(a) un>0,

(b) *«„_,<<>,

(c) *«._,>(>, ( j

(d) AX-x^O,

for some n = iV > 3 , then u satisfies (3 .11) for all n,2 < n < N, and

A4un_2 > 0, 2 < n < N. (3.11e)

Furthermore, uo> ux > 0, and AM0 < 0. Strict inequality holds in (3.11a, e) for
2 ^ n ̂  N - 2 (if N > 4), in (3.11b) for 2 < n < AT - 1, and m (3.11c, d) for
2 < n =$ N - 3 (//TV > 5).

PROOF. Let w be a nontrivial solution of (1.1) satisfying (3.11) for some N ^ 3.
Let
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Then it is readily verified that

Avj= -Au2N-j-i, j = 0,l,.-.,2N- 1,

A2
Vj = A2u2N^_2, j = 0,l,...,2N-2,

A^.= -A3
U^_y_3 , y = O , l , . . . , 2 J V - 3 , ^'U)

A\ = A4u2N_j_4, j = 0 , 1 , . . . ,2N - 4.

In particular, since u is a solution of (1.1),

A V J = *>4»2N-J-2 = b2N.jU2N.j, j = 2 , 3 , . . . . 2 J V - 2.

So u is a solution of

A V 2 = V;> 7 = 2 ,3 , . . . , 2 JV-2 , (3.13)
where Bj = b2N_j > 0, j = 2 ,3 , . . . , IN - 2. Using (3.12) and the definition of vJf

we find that vN = uN, AvN = -AuN_l = A2uN_v A2vN_l, and A3vN_2 = -A3wAf_1.
It then follows from our hypotheses that v satisfies the hypotheses of Lemma 3.2,
which implies that

(a) Vj>0,

(b) AVj>0,

(c) AVi>0, (3.14)

(d) AV 2 >0 ,
(e) &\_2>0,

for N < y < 27V - 2, with strict inequality holding as follows:

(a) e y >0 , N+2*j<2N-2, (AT > 4),

(b) Ai;y. > 0 , A ^ + l < y < 2 A ^ - 2 , (JV > 3),

(c) A V i > 0 , J V + 3 < y < 2 J V - 2 , (JV>5), (3.15)

(d) A3i>y._2>0, N + 3 < > < 2N - 2, (N > 5),

(e) A " b , _ 2 > 0 , N + 2^j *z2N -2, (N > 4).

It follows from (3.12) and (3.14) that

(a) «2N_, > 0 ,

(b) Au2N_j_x < 0,

(c) tfu^.j.-L > 0, (3.16)

(d) A 3 ^ ^ . ! < 0,

(e) A4
2JV_,-2 > 0,
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for N < y < 2N — 2, with strict inequality for the same values of j as given in
(3.15). If we let in n = 2N — j , we may rewrite (3.16) as

(a) uH>0,

(b) AttJI_1<0,

(c) 6?uH.l>0, (3.17)

(d) A'u^^O,
(e) A V , - 2 > 0 ,

for 2 <; n < N, which proves that (3.11) holds as claimed. The values of n which
give strict inequality in (3.17), as claimed in the conclusion of the lemma, follow
immediately by letting,/ = 2N - n in they-intervals stated in (3.15). To complete
the proof we need to extend the domain of (3.17a, b) by showing u0 > ML > 0,
and Au0 < 0. To do this, we first observe that (3.15b) implies v2N_1 — v2N_2 =
Av2N_2 > 0 SO

"l = V2N-\ > V2N-2 > 0- (3-!8)

Also, v is a solution of (3.13) and we may rewrite (3.13), as in (2.2), as

oJ+2 = A3
Uy_2 + A2i;y_i + A», + vj+i + Bjor (3.19)

In particular,

v2N = A3i;2A,_4 + A2u2A,_3 + Ay2N_2 + u2N_1 + B2N_2u2N_2, (3.20)

from which it follows by (3.14b, c, d) withy = 2N - 2, and by (3.18), that

«o = <>ZN > 0. (3.21)

Similarly (3.14) and (3.20) imply

^V2N-l = ^ 2 ^ ~ v2N-l

= A3»2A,_4 + A2y2^-3 + &"2s-2 + B2N_2v2N_2 > 0, (3.22)

hence AM0 = -Au2Ar_1 < 0, hence ul < u0, which completes the proof.

We end this section with another lemma which describes the monotonicity of a
solution which actually assumes the value zero. This result will be utilized
extensively in the next section.

LEMMA 3.5. Let N > 2. If u is a solution of (1.1) with uN = 0, uN_1 > 0,
M/v+1 > 0, «Af_1 and uN+l not both 0, then at least one of the following conditions
must be true.

(a) Either un > 0 for all n > N + \,or
(b) un > 0 for all n < N - 1, n > 0.

In particular, u cannot have generalized zeros of any order at both R and S, where
R < N — 1 < N + 1 < S. An analogous statement holds for the hypotheses «Af_1

^ 0 and uN+l < 0.
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P R O O F . F rom the hypotheses, we have

N+1 > 0,

^2uN_1 = uN+1 - 2uN + uN_! > 0.

If A3MAr_2 > 0, then Lemma 3.2 applies, and we can conclude un > 0 for all

n > TV + 2. On the other hand, if A?uN_2 < 0, then (1.1) imphes A3uAr_1 —

&uN_2 = A 4 M A , _ 2 = fc^M^ = 0, hence A3uN_x = A3«Ar_2 > 0. If iV > 3, then the

hypotheses of Lemma 3.4 are satisfied, hence «„ > 0 for all n «s N — 2.

If N = 2, then A3wAr_2 = w3 — 3M 2 + 3wj — w0. Since M^ = u2 = 0 and A3wAr_2

= A3uN_! < 0, we have that u3 + 3«! < M0. Since M3 and MX are nonnegative and

are not bo th equal to zero, it must be true that u 0 > 0, which is part (b) of our

conclusion for N = 2.

4. Separation theorems

In this section, we present several theorems dealing with the location and
separation of zeros and generalized zeros. Before proceeding, we note again that
the term "generalized zeros" includes both zeros and nodes, although we occa-
sionally mention all three terms for emphasis.

THEOREM 4.1. If u is a nontrivial solution o / ( l . l ) with zeros at three consecutive
values of n, say N, N + 1 and N + 2, then u has no other generalized zeros. If
uN+3 > 0 ( < 0), then Aun > 0 ( < 0) for all n, and the inequality is strict if
n^N + 2orn^N— 1. In particular, p < N and q > N + 2 imply upuq < 0.

PROOF. Clearly &uN = &2uN = 0. Since u is nontrivial, W.L.O.G. we may
assume uN+3 > 0. Thus A3MN = M^+3 > 0, and Lemma 3.3 implies u is positive
and strictly increasing for n > N + 3.

Next, let v = -u. Then vN+1 = 0, &vN = 0, k2vN = 0 and A3iv < 0. If iV > 2,
then Lemma 3.4 imphes that v is positive and strictly decreasing for 0 < n < N.
(Note that N in Lemma 3.4 is replaced here by iV + 1.) Thus u is negative and
strictly increasing for 0 < n < N. If N = 1, we again assume uN+3 = uA > 0.
Then by (1.1), A4u0 = b2u2 = 0. But A4u0 = «4 + u0 by (1.2), so u0 = -uA < 0
and AM0 = ux — u0 > 0, as claimed. If N = 0, the part of the conclusion concern-
ing n < N — 1 is vacuous, so this completes the proof.
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Notice that Theorem 4.1 confirms the remark made at the end of Section 2;
i.e., the highest possible order of a generalized zero for a solution of (1.1) is 3.
Moreover, our next theorem implies that if a solution of (1.1) has a generalized
zero of order 3, then it can have no other zeros or generalized zeros (except, of
course, for the two adjacent zeros which are included in the definition of a
generalized zero of order 3).

THEOREM 4.2. Let N > 1. Suppose u is a solution of (1.1) with uN = 0, uN+l = 0,
uN+2 =£ 0, but N + 2 is a generalized zero for u. Then u has no other generalized
zeros. If uN+2 > 0 ( < 0), then A « n > 0 ( < 0) for all n, with strict inequality if
n^N+2orn^N— 1. In particular, p < N and q > N + 1 imply upuq < 0.

PROOF. Since uN+2 ^ 0» we may assume W.L.O.G. that uN+2 > 0. Since
uN = uN+1 — 0, N + 2 cannot be a generalized zero of order 1 or 2, and Theorem
4.1 implies that the order cannot be greater than 3. Thus N + 2 is a generalized
zero of order 3, which implies that uN_x < 0. From (1.1), we have

"N+I ~ 4MJV+2 + 6u»+i ~ AUN + UN-I = bN+1uN+l, or
uN+3 = 4uN+2- uN_x.

This implies

= 4uN+2 - uN_1 - 3uN+2 + 3uN+1 - uN

Clearly, A2uN > 0, AuN = 0 and uN — 0. We may now apply Lemma 3.3 and
conclude that u is positive and strictly increasing for n > iV + 3.

For n < N, let v = -u. Then vN = 0, kvN_y < 0, A2uA,_1 > 0 and &3vN_l < 0.
If N > 3, an application of Lemma 3.4 yields the result, just as in Theorem 4.1. If
N = 2, then u2 = w3 = 0, ux < 0, u4 > 0, and Awx > 0. By (1.1) we have A4w0 =
b2u2 = 0. But

A 4 M 0 = u4 — 4u3 + 6w2 - 4MJ + u0 = u4 — Aux + u0,

and so 4wt — u0 = u4 > 0. Hence u0 < 4uv < 0, and M0 — ux < 3ux < 0. There-
fore M0 < 0 and M0 > 0, as claimed. If iV" = 1, then wt = u2 = 0, «3 =£ 0, and
N + 2 = 3 is a generalized zero. It follows from the definition of a generalized
zero that this must be a generalized zero of order 3, so that if u3 > 0 then u0 < 0.
Hence AM0 > 0, which completes the proof.

COROLLARY 4.1. If u is a nontrivial solution o / ( l . l ) with generalized zeros at M
and P and a zero at N, M + 1 < N < P — 1, then uN_1uN+1 < 0. In particular, u
does not have a generalized zero at N + 1.
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PROOF. Since M+l<N<P-l, it follows immediately from Theorem 4.1
that uN+1 and uN_x cannot both equal 0. If uN+1uN_l > 0, Lemma 3.5 implies
that w cannot have generalized zeros at both M and P, a contradiction. Thus,

COROLLARY 4.2. / / u is a nontrivial solution of (1.1) with uM = uN = uP = 0,
M < N < P - 1, then uN+l * 0.

PROOF. If N = M + 1, the corollary follows immediately from Theorem 4.1. If
N > M + 1, it follows from Corollary 4.1.

COROLLARY 4.3. / / a nontrivial solution u of (1.1) has a zero at M and a
generalized zero at P, where M < P, then u cannot have consecutive zeros at N,
N + 1, where M < N < P - 1.

PROOF. Let u be a nontrivial solution of (1.1) with zeros at M, N, N + 1 and a
generalized zero at P, where M < N < P — 1. Theorems 4.1 and 4.2 imply that
we must have M < N - 1 and P > N + 2, i.e., M+l<N<P-l. Corollary
4.1 implies uN_1uN+1 < 0, contradicting uN+1 = 0.

We remark that Corollary 4.3 says that if a solution u has four or more zeros,
no two zeros can occur at consecutive values of n, unless they are the first two
zeros or the last two zeros. For example, consider the sequence
{-4 ,0 ,0 , -1 ,0 ,1 ,0 ,0 ,4 ,15 , . . . } . This satisfies A4«n_2 = 5un, with t^ = - 4 . That
this sequence is positive and increasing for n > 9 follows from Lemma 3.2 with
N = 1. Note also that the terms «3 through M7 illustrate Corollary 4.1.

THEOREM 4.3. / / two nontrivial solutions u and v of (1.1) have three zeros in
common, then u and v are linearly dependent, i.e., specifying any three zeros {not
generalized zeros) uniquely determines a nontrivial solution up to a multiplicative
constant.

PROOF. We will consider two cases. First, assume uM = uN = uN+l = vM = vN

= vN+1 = 0, for some M and N, 0 s£ M < N. Then uN+2 =£ 0 and vN+2 ¥= 0 by
Theorem 4.1. Define wn = vN+2un — uN+2vn. Since wn is a linear combination of
un and vn, it is a solution of (1.1). However, wM — wN = wN+1 = wN+2 = 0, and
so w must be the trivial solution by Theorem 4.1. Since uw+2 and vN+2 are
nonzero, this means u and v are constant multiples of each other.

Next, suppose uM = uN = uP = 0 and vM = vN = vP = 0, where M < N < P
- 1. Then uN+1 * 0 and vN+l * 0 by Corollary 4.3. Define wn = vN+1un -
uN+lvn. Clearly, wM = wN = wN+l = wP = 0, which contradicts Corollary 4.2
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unless wn = 0. This means u and v are constant multiples of each other and
completes the proof.

Our next theorem is a separation of zeros theorem for independent solutions of
(1.1). When we say that P and Q, P < Q, are consecutive generalized zeros of u,
we mean that u has no generalized zero N such that P < N < Q.

THEOREM 4.4. Let u and v be nontrivialsolutions o/(l . l) with uM = vM— uN =
vN = 0. Suppose u has consecutive generalized zeros at P and Q, where M < P < Q
< N.IfM + 1 < P, then either

Vp-\Vp < 0, or (41)
vkvk + i < 0 forsomek, P < k < Q — 1. (4.2)

IfM + 1 = P and uP = 0, then (4.2) holds. If M + 1 = PanduP*0, but P is a
generalized zero for u, then either (4.2) holds, or

vP ¥= 0 and v has a generalized zero at P. (4-3)

In any case, therefore, v has a generalized zero for some Z, where P < Z < Q.

PROOF. Consider the generalized zero of u at P. Then (2.4), (2.5) or (2.6) must
hold for n = P.

First, assume that (2.4) holds, i.e., uP = 0, and suppose P - 1 > M. Then we
must have uP_luP+1 + 0, otherwise we contradict Corollary 4.3. If uP_1uP+1 > 0,
then Lemma 3.5 is contradicted. Thus P — 1 > M implies uP_luP+1 < 0. This is
listed as possibility (4.5) below. If P - 1 = M, then uP_1 = uP = 0, and P + 1 is
not a generalized zero, since otherwise either Theorem 4.1 or Theorem 4.2 would
contradict the fact that uN = 0. This is listed as (4.6) below.

Next, if (2.5) holds, then uP_1uP < 0, hence P - 1 > M and condition (4.4)
below must hold.

Finally, suppose that (2.6) holds. If k = 3 (the highest value allowed, by the
remark following Theorem 4.1), there would be two consecutive zeros of u
followed by a generalized zero. Theorem 4.2 implies uN =t 0, a contradiction.
Thus P cannot be a generalized zero of order 3. Now suppose k = 2. If
P — 2 > M, we may assume uP > 0, uP_Y = 0 and uP_2 > 0. Lemma 3.5 then
implies that uM and uN cannot both equal 0, a contradiction. If P — 2 = M and
k = 2, then uM ¥= 0, a contradiction. Suppose P — 2 < M. Then P = M + 1,
« P _ J = 0 and upup_2 = uPuM_1 > 0. This possibility can occur and is listed as
(4.7) below.

Therefore, if u has a generalized zero at P, one of the following occurs:

M+\<P and uP_xuP < 0, (4.4)

M + l < i ) , u/, = 0, and «/ ,_1MP + 1 < 0, (4.5)

M + 1 = P, uP = 0, and P + 1 is not a generalized zero, or (4.6)
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M + 1 = P, uP¥=0 and uPuM_1 > 0. (4.7)

A similar analysis holds for the generalized zero at Q. However, it will be
sufficient for us to note that if uQ_1uQ > 0 then Q cannot be a generalized zero,
so it must be true that

uQ^uQ < 0. (4.8)

Suppose that (4.4) holds for u, and neither (4.1) nor (4.2) is true for v.
W.L.O.G., we may assume uP_l > 0 and uP < 0. Then «„ < 0 for P < n < Q - 1,
since P and Q are consecutive generalized zeros for u. We may also assume
vP_x > 0 and vn > 0 for P < n < Q. Let wn be defined by:

Wn = Wn-1 ~ «A-1- (4-9)

Clearly, wP > 0. Consider wQ. If wQ > 0, since vQ > 0, vQ_y > 0, and uQ_x < 0,
we must conclude uQ < 0. However, if uQ and uQ_x are both negative, u does not
have a generalized zero at Q. Thus, u>e < 0. Since wP > 0 and u>e s£ 0, there exists
a first integer R, P < /? < Q — 1, such that vvR > 0 and ws+1 < 0. Let sn be a
solution of (1.1) defined by

•*„ = f«"«-i - uRvn-i- (410)
Note that J R = wR > 0, \^+ 1 = 0 and sR+2 = - H ^ + 1 > 0. Then Lemma 3.5
implies that sM+1 and sN+1 cannot both equal 0, a contradiction. Thus, if (4.4)
holds for u, then v satisfies (4.1) or (4.2), so v has a generalized zero for some Z,
P < Z < Q.

Suppose now that (4.5) holds for u and that neither (4.1) nor (4.2) is true for v.
W.L.O.G., assume uP_l > 0 and uP+l < 0. We may also assume un < 0 for
P + l < / i < g - l and vn> 0 for ? < n < g. Define w as in (4.9). Then
wP > 0. Arguing as we did above, we again arrrive at a contradiction.

Suppose that (4.6) holds for u and that (4.2) is not true for v. Then we may
assume vn > 0, P < n < Q, where P - 1 = M. W.L.O.G., assume uP+1 < 0.
Then wP+l > 0. An application of the same argument as above, with P replaced
by P + 1, leads to a contradiction.

Finally, suppose that (4.7) holds for u but that neither (4.2) nor (4.3) is true for
v. Then we may assume un < 0 for P < n < Q — 1, uM,x < 0, and vn > 0 for
P < n < Q, and M + 1 is not a generalized zero for v. Since vM = 0, it follows
from the definition of a generalized zero that vM_x < 0. As before, define wn by
(4.9). Clearly wP = 0, so we consider wP+l. Suppose wP+1 > 0. As above, we can
then conclude that wQ < 0, and the same argument as in the preceding case leads
to a contradiction. Next, assume wP+l < 0. Let sn be a solution of (1.1) defined
by

sn = VPUn-l ~ "pVn-l- (4.H)

Then sM+1 = 0 and sM+2 = 0 since P = M + 1, and sM+3 = -*vP+1 > 0. If
Wp+i = 0>t n e solution ^ has three consecutive zeros a t M + l , A f + 2 , A / + 3 and
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another zero at N + 1, a contradiction of Theorem 4.1. Thus >vP+1 < 0 and
therefore sM+3 > 0. This means that sM > 0, because if sM < 0 Theorem 4.1 or
Theorem 4.2 would again contradict sN+1 = 0. However, sM > 0 implies vPuM_1

> upvM_v Since yw_x < 0 and up < 0, this means vPuM_1 > 0. This is a
contradiction, since vP > 0 and MM_X < 0. This proves the theorem.

Concerning the hypotheses of Theorem 4.4, it seems reasonable to ask for two
solutions un and vn both to have a zero at some specified value M; i.e. uM = vM =
0. However, examples indicate it may not always happen in this case that there
exists an N > M such that uN = vN = 0. It might be useful, therefore, to allow at
least one of the solutions, say v, to have a generalized zero at N > M. Given M
and N > M + 2, let u be a solution such that uM = uN_1 = uN = 0. It is easy to
argue that such a u exists, as follows. Let r be a solution of (1.1) such that
rN_z = rN_l = rN = 0 and rN+1 > 0. Let J be a solution such that sN_2 < 0,
sN_1 = sN = 0 and sN+1 > 0. Theorems 4.1 and 4.2 apply to r and s, respectively,
and a suitable linear combination of them yields u. By Theorem 4.3, u is
essentially unique. We can now state the following separation theorem.

THEOREM 4.5. Suppose v is a nontrivial solution o / ( l . l ) such that vM = 0 and v
has a generalized zero at N > M + 2. Let u be the {essentially unique) solution such
that uM = uN_1 = uN = 0. Suppose u has consecutive generalized zeros at P and Q,
where M < P < Q < N. Then the same conclusions hold as in Theorem 4.4, so that
v has a generalized zerc at Z, where P < Z < Q. Similarly, if v has consecutive
generalized zeros at P and Q, then u has a generalized zero for some Z, P < Z < Q.

PROOF. Aside from one or two differences, the proof is essentially the same as
that for Theorem 4.4. We arrive at (4.4), (4.5), (4.6), or (4.7) for the generalized
zero of M at P. At Q, u satisfies (4.8).

Suppose that (4.4) holds for u and neither (4.1) nor (4.2) is true for v. We can
again assume un < 0 for P < n ^ Q - 1. Define wn as in (4.9). Arguing as before,
we find there exists an R, P^R^Q— 1, such that wR > 0 and wR+1 ^ 0. Let
sn be defined by (4.10). Then sR = wR > 0, sR+l = 0, and sR+2 = ~WR+I > 0. We
must next consider the following two possibilities (which is not necessary in
Theorem 4.4, since there vN = 0, but here N is a generalized zero for v).

Possibility 1: Let R + 1 = ,/V - 1, in which case R + l = Q = N-l, and

•*K + 2 = ~WR + 1 = - * V - 1 = -ON-luN-2 > °- I f ~WR + 1 = ° ' S i n c e "Ar-2 < 0 We
have vN_x = 0, a contradiction. If -wR+1 > 0, since Q = N — 1 and uN_2 < 0,
we must have vN_1 > 0. Also, ^ + 3 = vRuR+2 - uRvR+2 = vRuN - uRvN =
-uRvN. Since sM+1 = 0, Lemma 3.5 implies sR+i = - M * ^ > 0. Since uR < 0, we
have vN > 0. Thus vN and vN_l are both positive, which contradicts the fact that v
has a generalized zero at N.
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Possibility 2: Let R + 1 < N - 1. We again have sR > 0, sR+1 = 0 and sR+1 =
-wR+i > 0. Since sM+l = 0, Lemma 3.5 implies that sn > 0, for all n > R + 2. In
particular, sN > 0 and sN+l > 0. However, sN = vRuN_1 — uRvN_1 = -uRuN_1,
and sN+1 = vRuN — uRvN = -uRvN. Since sN > 0, sN+1 > 0 and M^ < 0, we
conclude that uN_1 and vN are both positive, again contradicting the assumption
that v has a generalized zero at N. Thus we have shown that if (4.4) holds for w,
then v satisfies (4.1) or (4.2).

Next, suppose that (4.5) holds for u and that neither (4.1) nor (4.2) is true for v.
We may assume uP_1 > 0 and uP+l < 0. Just as in Theorem 4.4, we can argue
that wP > 0. This means there is a first integer R such that wR > 0 and wR+1 < 0.
Arguing as we did in the previous three paragraphs, we arrive at a contradiction.

Suppose (4.6) holds for u and (4.2) is not true for v. As in Theorem 4.4, we can
argue that wP+x > 0. Applying the same argument as we did for (4.4) and (4.5) in
the preceding parts of this proof yields a similar contradiction.

Finally, suppose (4.7) is true for u but that neither (4.2) nor (4.3) is true for v.
Then we may assume un < 0, P < n < Q — 1, uM_1 < 0, vn > 0, P < n < Q, and
«A/-I < 0. Define wn by (4.9). Clearly wP = 0. If wp+1 > 0, we reach the same
contradiction as we did for (4.4), (4.5) and (4.6). Thus, we assume wP+1 < 0. Let s
be the solution defined by (4.11). Then sM+l = 0, sM+2 = 0 and sM+3 = -wP + 1

> 0. If -wp+l = 0, s has three consecutive zeros at M + 1, M + 2 and M + 3.
Theorem 4.1 implies s is one sign, say positive, for all n > M + 3. In particular,
SN

 =
 -UM+IVN-I > 0 and sN+1 = -uM+1vN > 0. This implies <;„_!£>„ > 0, a

contradiction. Therefore, we assume -wP+1 > 0 so that sM+3 > 0. If sM < 0,
Theorems 4.1 or 4.2 imply s is of one sign for all n > M + 3 and we can again
arrive at the contradiction vN_xvN > 0. Thus, sM > 0, which implies vPuM_1 >
UPVM-\- Since uP < 0 and vM_x < 0, we have vPuM_1 > 0. This is a contradic-
tion since vP > 0 and uM_l < 0. Thus vn must have a generalized zero for some Z,
P «£ Z < Q.

If we assume u has consecutive generalized zeros at P and Q and try to show u
has a generalized zero for some Z, P ^ Z ^ Q, essentially the same proof works.
We omit the details.

5. Recessive solutions

Certain types of second order linear difference equations have so-called reces-
sive solutions [9]. Under certain conditions, it can be shown that these solutions
are positive and monotone decreasing [10]. Recessive solutions for second order
equations have been found useful for calculating certain types of special functions
[9]. In this section, we define recessive solutions for the fourth order linear
difference equation (1.1) and discuss some associated properties.
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DEFINITION. A solution u o/(l.l) will be called recessive if there exists an M > 0
such that

un > 0, A«n < 0, A2wn > 0 and A3un < 0, n > M. (5.1)

We will construct a recessive solution of (1.1) by modifying the technique used
in the second order case ([6], [11]). Let uk = {uk} be the solution of (1.1) such
that uk = M£+ 1 = M£+2 = 0 and UQ = 1, k > 1. For each k, uk exists and is
unique. The existence is clear from Theorem 4.1 and a normalization, while the
uniqueness follows from Theorem 4.3. Note that by construction,

0 < u * ^ l , 0^n^k + 2. (5.2)

Also, Theorem 4.1 implies that

« ; > « , \ i , J>0. (5.3)

We now consider uk as a sequence in k. By (5.2), 0 < uk «s 1, for all k. Thus
limsup^...^ {«*} exists; call it «1. Then there exists a subsequence Â ,- of A: such
that M*1' -» Mj as / -> oo. Next, consider uk as a sequence in k. By (5.2),
l imsup^^u*" exists; call it u2. Also, there exists a subsequence &2, of ku such
that M*21 -» u2 (and «*2' -» t^) as / -» oo. In a similar fashion, by considering «*,
we can arrive at a subsequence k3l and a limit w3 such that w^31 -» My as / -» oo,
1 O < 3. Clearly M^3' = 1, for all i.

Recall that by definition, for any n and any k,

«*+2 " 4"* + 1 + 6uk
n - Auk

n_, + uk_2 = bnu
k. (5.4)

Consider (5.4) with n = 2 and fc replaced by Ar3l. We can conclude hm^^u^3'
exists; call it «4. Now replace n by 3 in (5.4) and conclude the existence
l i m H w U s " ; call the limit u5. Proceeding inductively, we conclude that lim,-0O uk}>

exists for any n > 0, and we call the limit un. Replacing k by k3l in (5.4) and
letting i -» oo, we can conclude that un is a solution of (1.1). Also,

un>un+1>0. (5.5)

This follows from (5.3) by replacing k by k3l, fixingy, and letting / -» oo. From
(5.5), we can conclude that

Urn un exists; call it L. (5.6)
n-»oo

We will now show w is a recessive solution of (1.1).

LEMMA 5.1. The solution u constructed above is a recessive solution of (1.1). In
addition, Awn, A

2un and A3Mn all monotonically approach zero as n —* oo.

PROOF. We first show(5.1) is satisfied. By (5.3) and Theorem 4.1, w*3i
+3 < 0.

Choose k2i > 3 and apply Lemma 3.4 with N = k3l + 1. We can conclude that
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j-n

for any n such that 2 «s n < k3l, + 1, AM*3^ < 0, & u*hi > 0 and A3!/*3^ < 0.
Letting i -» oo implies u satisfies (5.1) for M = 1 and is recessive. We remark that
u also satisfies (5.1) for M = 0. Concerning the monotonicity, choose any n > 2
and any &3, > /i. Then A 2 ! ^ ! ^ 0, which means AM*31 > «**!, hence 0 < -Au*3<

< - A K * ^ ! . Taking the Umit as / -» oo implies that Awn is monotonically de-
creasing in absolute value. By (5.6), since un monotonically approaches a finite
limit, Awn -» 0 as n -* oo. The argument that A2wn and A3«n monotonically
approach zero is similar and will be omitted.

Using Lemma 5.1 and (1.1), we may deduce the following formulas for this
recessive solution un.

-A 3 " n _ 2 = E bjur (5.7)

00

(5.8)

-A««-2 = _E IU - « + 1 ) 0 - " + 2)/2\bjUr (5.9)

«»-2 = ^ + E [ ( y - « + 1)(7 - « + 2 ) 0 - » + 3)/6] 6,ay. (5.10)

LEMMA 5.2. / / L°°«36n = oo, then the recessive solution u constructed above
approaches zero as n -» oo.

PROOF. Since u is positive and monotone decreasing, the result follows directly
from (5.10).

In the second order case, it is known that this recessive solution u is unique,
once the starting value u0 is specified [9]. It would be interesting to know under
what circumstances uniqueness holds for recessive solutions of (1.1). A lemma
that may be of some use in this respect is the following.

LEMMA 5.3. Suppose w and u are two recessive solutions of (1.1) such that
WM ~ UM- Ifw

n > unfor a " n ^ M, then wn = un.

PROOF. Let W = limn_00H'n and L = l i m ^ a u B . By hypothesis, W > L. Next,
defineyn = wn — un. From (5.10) with n = M + 2 we have

oo

0 > W - L + E [U- l)y(y + l)/6] tyj > 0.
j-M+2

From this we can conclude M» = «„.
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