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Abstract

Kipnis and Varadhan (1986) showed that, for an additive functional, Sn say, of a reversible
Markov chain, the condition E[S2

n]/n → κ ∈ (0, ∞) implies the convergence of the
conditional distribution of Sn/

√
E[S2

n], given the starting point, to the standard normal
distribution. We revisit this question under the weaker condition, E[S2

n] = n�(n), where
� is a slowly varying function. It is shown by example that the conditional distributions
of Sn/

√
E[S2

n] need not converge to the standard normal distribution in this case; and
sufficient conditions for convergence to a (possibly nonstandard) normal distribution are
developed.
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1. Introduction

Consider a reversible Markov chain . . . , W−1, W0, W1, . . ., defined on a probability space
(�, A, P), with a Polish state space W , transition function Q, and marginal distribution π .
Thus, π{B} = P[Wn ∈ B], Q(w; B) = P[Wn+1 ∈ B | Wn = w], and (the reversibility
condition) ∫

A

Q(w; B)π{dw} =
∫

B

Q(w; A)π{dw} (1)

for Borel sets A, B ⊆ W , w ∈ W , and n ∈ Z. Using (and abusing) notation in a standard
manner, we write

Qf (w) =
∫

W
f (z)Q(w; dz) π -almost everywhere

for f ∈ L1(π) and Qk = Q ◦ · · · ◦ Q for the iterates of Q. In addition, let L
p
0 (π) = {f ∈

Lp(π) : ∫
W f dπ = 0},

Vn = I + Q + · · · + Qn−1, and V̄n = 1

n
(V1 + · · · + Vn),
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and let ‖ · ‖ denote the norm in an L2 space, either L2(π) or L2(P). Finally, ‘
d−→’ denotes

convergence in distribution and ‘
p−→’ denotes convergence in probability of conditional distri-

butions; that is, if the Zn : � → R are random variables and G is a distribution function, then
Zn | W0

p−→ G means that the conditional distribution of Zn given W0 converges in probability
to G.

The reversibility condition (1) is equivalent to requiring that (W0, W1) and (W1, W0) have
the same distribution, since the left-hand side of (1) is P[W0 ∈ A, W1 ∈ B] and the right-
hand side is P[W0 ∈ B, W1 ∈ A]. An important consequence (also equivalent) is that the
restriction of Q to L2(π) is a self-adjoint operator. For 〈f, g〉 = ∫

W fgdπ , where 〈·, ·〉 denotes
the inner product in L2(π), 〈f, Qg〉 = E[f (W0)g(W1)] = E[f (W1)g(W0)] = 〈Qf, g〉 for all
f, g ∈ L2(π).

Given g ∈ L2
0(π), let Xk = g(Wk), Sn = X1 + · · · + Xn, and σ 2

n = E[S2
n]. Kipnis and

Varadhan [7] showed that if

lim
n→∞

σ 2
n

n
= κ ∈ [0, ∞) (2)

then the conditional distribution of Sn/
√

n given W0 converges in probability to the normal
distribution with mean 0 and variance κ . We show in Proposition 1 that κ > 0 except for
trivial special cases; then σ−1

n Sn | W0
p−→ Normal[0, 1]. Kipnis and Varadhan showed that Sn

could be written in the form Sn = Mn +Rn, where 0 = M0, M1, M2, . . . is a square integrable
martingale with (strictly) stationary increments Dk = Mk − Mk−1 and ‖Rn‖ = o(

√
n). The

result has applications to Monte Carlo Markov chains (see, for instance, [12]), since many
algorithms lead to reversible chains, and, to interacting particle systems [6], [7].

Here we consider the case in which (2) is weakened to

σ 2
n = n�(n), (3)

where � is a slowly varying function, as defined in Chapter 1 of [2]. An example will show
that the main result from [7] does not extend completely. Some features do extend, however.
For the remainder of the paper, reversibility is assumed along with g ∈ L2

0(π), and � is defined
by (3).

Further developments under condition (2) may be found in [3], and [10] is a recent article
on asymptotic normality of sums of stationary processes with nonlinear growth of variance.

2. Generalities

In the first proposition below, we show that the case limn→∞ �(n) = ∞ only needs to be
considered. The relation

σ 2
n = [2〈g, V̄ng〉 − ‖g‖2]n (4)

is used in its proof.

Proposition 1. If lim infn→∞ �(n) < ∞ then (2) holds, and if lim infn→∞ �(n) = 0 then
Sn = 1

2 [1 + (−1)n−1]X1 with probability 1.

Proof. Since Q is self-adjoint, we may write Q = ∫
�

λdM(λ), where � ⊆ [−1, 1] is the
spectrum of Q and M is a countably additive, projection-valued set function defined on the Borel
sets of �. Then Qk = ∫

�
λkdM(λ) for all k ≥ 1. See [5, Chapter 2]. Let µg(B) = 〈g, M(B)g〉.

Then µg is a measure, and

〈g, V̄ng〉 =
∫

�

(
1 − λ

n

1 − λn

1 − λ

)
µg(dλ)

1 − λ
. (5)
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Observe that the integrand on the right-hand side of (5) is nonnegative. So, if lim infn→∞ �(n)

< ∞ then the limit inferior of the left-hand side of (5) is finite and, therefore,
∫

�

µg(dλ)

1 − λ
< ∞ (6)

by Fatou’s lemma. It is clear the integrands on the right-hand side of (5) are dominated by an
integrable function; hence, the integral converges to that on the left-hand side of (6), and (2)
holds with

κ = 2
∫

�

µg(dλ)

1 − λ
− ‖g‖2 =

∫
�

1 + λ

1 − λ
µg(dλ).

If lim infn→∞ �(n) = 0 then the last integral is 0 and, therefore, µg is a point mass at {−1}.
It follows that Qg = −g, E[(X0 + X1)

2] = 0, Xn = (−1)Xn−1 with probability 1, and
Sn = 1

2 [1 + (−1)n−1]X1 with probability 1.
As a consequence, there is no loss of generality in supposing that �(n) → ∞, which we do

where convenient. For if lim infn→∞ �(n) < ∞ then the Kipnis–Varadhan result is applicable.

The proof of the next proposition uses (4) and

V̄n =
n−1∑
k=0

(
1 − k

n

)
Qk. (7)

Proposition 2. If � varies slowly in (3) then ‖Vng‖ = o(σn).

Proof. Using the reversibility and (7),

‖Vng‖2
2 =

n−1∑
j=0

n−1∑
k=0

〈g, Qk+j g〉

=
n−1∑
i=0

(i + 1)〈g, Qig〉 +
2n−2∑
i=n

(2n − 1 − i)〈g, Qig〉

=
2n−2∑
i=0

(2n − 1 − i)〈g, Qig〉 − 2
n−1∑
i=0

(n − 1 − i)〈g, Qig〉

= 1
2 [σ 2

2n−1 + (2n − 1)‖g‖2] − [σ 2
n−1 + (n − 1)‖g‖2]

= 1
2σ 2

2n−1 − σ 2
n−1 + 1

2‖g‖2.

The proposition then follows directly from (3) and the slow variation of �.

Corollary 1. If � varies slowly then there is a sequence of square integrable martingales
0 = Mn,1, Mn,2, . . . with stationary increments Dn,k = Mn,k − Mn,k−1, k ≥ 1, for which
maxk≤n ‖Sk − Mn,k‖ = o(σn).

Proof. The result follows from Proposition 2 and Theorem 1 of [13]. It is relevant that

Dn,k = V̄ng(Wk) − QV̄ng(Wk−1)

and Mn,k = Dn,1 + · · · + Dn,k in the proof of the latter result.
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Corollary 2. If � varies slowly and there is a λ ≥ 0 for which

1

σ 2
n

n∑
k=1

E[D2
n,k | Wk−1] →p λ (8)

and
1

σ 2
n

n∑
k=1

E[D2
n,k1{|Dn,k |>εσn} | Wk−1] →p 0 (9)

for every ε > 0, then
Sn

σn

∣∣∣∣ W0
p−→ Normal[0, λ]. (10)

Proof. The result follows from the martingale central limit theorem (see, for example,
[1, pp. 475–478]) applied conditionally given F0 := σ(. . . , W−1, W0). For λ = 1, the proof
is detailed in [13], and the extension to λ = 1 presents no difficulty.

In the next proposition we write Sn = Sn(g) and σn = σn(g) to emphasize the dependence
on g. We also use the following result.

Lemma 1. If Zn | W0
p−→ G and Z′

n − Zn →p 0, then Z′
n | W0

p−→ G.

Proof. The result follows from the unconditional version of Slutzky’s theorem, by consid-
ering subsequences along which convergence in probability can be replaced by almost-sure
convergence.

Proposition 3. If �(n) → ∞ and (10) holds for a given g, then, for any j ≥ 1, σn(Q
jg) ∼

σn(g) and (10) holds with the same λ when g is replaced by Qjg.

Proof. It suffices to prove the result for j = 1. In this case, the proof follows from
Sn(g) − Sn(Qg) = ∑n

k=1[g(Wk) − Qg(Wk−1)] + Qg(W0) − Qg(Wn), which implies that

|σn(g) − σn(Qg)| ≤ ‖Sn(g) − Sn(Qg)‖
≤ ‖g(W1) − Qg(W0)‖√n + 2‖Qg(W0)‖
= o[σn(g)],

and Lemma 1.

Remark 1. The proof of Proposition 3 does not use the reversibility and, therefore, is valid for
any stationary process.

Remark 2. Proposition 3 illustrates an important difference between the cases �(n) → ∞ and
�(n) → κ , considered in [7]. For if (2) holds then

κ = κ(g) = 2 lim
n→∞

n∑
k=0

(
1 − k

n

)
〈g, Qkg〉 − ‖g‖2. (11)

It is then not difficult to see that (11) holds when g is replaced by Qjg, and that [κ(g) + · · · +
κ(Qng)]/n approaches 0 as n → ∞, by Theorem 2 of [14].
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Remark 3. Kipnis and Varadhan [7] showed that if (2) holds then Dn,k converges in L2(P )

for every k. Clearly, this is impossible if �(n) → ∞. However, if Dn,1/
√

�(n) converged in
L2(P ), then (8) and (9) would follow easily with λ = 1, and the conditional distributions of
Sn/σn would converge to the standard normal distribution, as noted in [13]. This hope cannot be
realized either, however, if limn→∞ �(n) = ∞. For, Dn,1/

√
�(n) cannot be a Cauchy sequence,

in this case. To see this, first observe that

∥∥∥∥ Dn,1√
�(n)

− Dm,1√
�(m)

∥∥∥∥
2

= 1

�(n)
‖Dn,1‖2 + 1

�(m)
‖Dm,1‖2 − 2√

�(m)�(n)
〈Dm,1, Dn,1〉

and

〈Dm,1, Dn,1〉 = 〈V̄ng(w1) − QV̄ng(w0), V̄mg(w1) − QV̄mg(w0)〉
= 〈V̄ng, V̄mg〉 − 〈QV̄ng, QV̄mg〉
= 〈V̄ng, V̄mg〉 − 〈Q2V̄ng, V̄mg〉
= 〈(I − Q2)V̄ng, V̄mg〉
=

〈(
V2 − 1

n
QVnV2

)
g, V̄mg

〉
.

So, for any fixed m,

lim
n→∞

∥∥∥∥ Dn,1√
�(n)

− Dm,1√
�(m)

∥∥∥∥
2

= 1 + 1

�(m)
‖Dm,1‖2,

and, therefore,

lim
m→∞ lim

n→∞

∥∥∥∥ Dn,1√
�(n)

− Dm,1√
�(m)

∥∥∥∥
2

= 2.

3. Examples

For a simple reversible chain, let ν be a probability measure on the Borel sets of R, let
p : R → (0, 1) be a measurable function for which

θ =
∫

R

dν

1 − p
< ∞,

and let
Q(w; B) = p(w)1B(w) + [1 − p(w)]ν{B} (12)

for Borel sets B ⊆ R and w ∈ R. Then Q is a stochastic transition function with stationary
distribution

dπ = dν

θ(1 − p)
,

and (1) is satisfied. Thus, there is a reversible Markov chain . . . , W−1, W0, W1, . . . with
transition functionQ and marginal distributionπ . This construction is classical, and is described
in [11, pp. 134–135].

Now let τ0, τ1, τ2, . . . be the times before the process jumps, where

τ0 = max{n ≥ 0 : Wn = W0} and τk = max{n > τk−1 : Wn = Wτk−1+1}.
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Then Wτk
= Wτk−1+1, and

Sτm = τ0X0 + (τ1 − τ0)Xτ1 + · · · + (τm − τm−1)Xτm.

By the Markov property, (τ0, W0) and [(τj − τj−1), Wτj
], j ≥ 1, are independent random

vectors for which Wτj
∼ ν and

P[τj − τj−1 ≥ k | Wτj
= w] = p(w)k−1

for all w ∈ W , k ≥ 1, and j ≥ 1. It follows that E[τj − τj−1 | Wτj
= w] = 1/[1 − p(w)] and

E[τj − τj−1] =
∫

W

dν

1 − p
= θ.

By way of contrast, Wτ0 = W0 ∼ π , and E[τ0] = ∫
p dπ/(1 − p), possibly infinite. Let

Yj = (τj − τj−1)Xτj
and Tm = Y1 +· · ·+Ym, so that Sτm = τ0W0 + Tm. Then Y1, Y2, . . . are

independent and identically distributed (i.i.d.); moreover, E[Yj ] = 0, since

E[(τj − τj−1)Xτj
] = E

[
g(Wτj

)

1 − p(Wτj
)

]
=

∫
W

g

1 − p
dν = θ

∫
W

g dπ,

and g ∈ L2
0(π). Let

H(y) =
∫

|Yj |≤y

Y 2
j dP,

and recall the following version of the central limit theorem for i.i.d. variables (with possibly
infinite variances); see, for example, [4, pp. 576–578]. If Y1, Y2, . . . are (any) i.i.d. random
variables for which E[Yj ] = 0 and H(y) varies slowly at ∞, then there are γm for which

γ 2
m ∼ mH(γm) and

Tm

γm

d−→ Normal[0, 1].

The following lemma is intuitive, and the proof is presented after Proposition 4 is established.
To state it, define integer-valued random variables mn such that τmn ≤ n < τmn+1 for n =
1, 2 . . ..

Lemma 2. As n → ∞, Sn − Tmn = Op(1). If H varies slowly at ∞ then Tmn − T�n/θ� =
op(γn).

Proposition 4. If H(y) varies slowly and γ 2
m ∼ mH(γm), then

Sn

γn

∣∣∣∣ W0
p−→ Normal

[
0,

1

θ

]
.

Proof. ThatTm/γm
d−→ Normal[0, 1]was noted above. So, sinceγ�n/θ� ∼ γn/

√
θ , T�n/θ�/γn

d−→ Normal[0, 1/θ ], and since W0 and Tm are independent for all m, the conditional distributions
have the same limit. The proposition now follows directly from Lemmas 1 and 2.

Proof of Lemma 2. First observe that Sn − Tmn = τ0W0 + (n − τmn)Wτm+1. It is clear that
τ0W0 is stochastically bounded and that |(n − τmn)Wτmn+1 | ≤ (τmn+1 − τmn)|Wτmn+1 |. To see
that the latter term is stochastically bounded, let f denote the marginal mass function of τj −
τj−1, j = 1, 2, . . .. Then the asymptotic distribution of τmn+1 − τmn has probability mass
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function f̃ (k) = kf (k)/θ , by the renewal theorem, [4, p. 271], and the conditional distribution
of Wτmn+1 given τmn+1 − τmn does not depend on n. That (τmn+1 − τmn)|Wτmn+1 | = Op(1)

follows easily.
The proof of the second assertion uses the following version of Lévy’s inequality [9, p. 259]:

if H varies slowly at ∞ then K−1 := inf{min(P[Tk < 0], P[Tk > 0]) : k ≥ 1} > 0, and

P
[
max
k≤n

|Tk| > t
]

≤ K P[|Tn| > t] (13)

for all t > 0. Observe that

P[|Tmn − T�n/θ�| ≥ εγn] ≤ P

[ ∣∣∣∣mn −
⌊

n

θ

⌋∣∣∣∣ ≥ δn

]

+ P
[

max|kθ−n|≤θδn+θ
|Tk − T�n/θ�| ≥ εγn

]
. (14)

The first term on the right-hand side approaches 0 for any δ > 0 by the law of large numbers.
Letting Nn = �nδ/θ� + 4 and using (13), the second term is at most 2K P[|TNn | ≥ εγn].
So, by the central limit theorem, the limit superior of the right-hand side of (14) is at most
4K[1 − �(ε/

√
δ)], which approaches 0 as δ → 0.

For the example below, observe that if f ∈ L1(π) then Qf (w) = p(w)f (w) + [1 −
p(w)]∫W f dν. So, if W = R, ν is a symmetric measure, p is a symmetric function, and f is
an odd function, then Qnf = pn × f .

Example 1. Consider (12) with p(w) = e−1/|w| and

ν{dz} = e
[1 − p(z)]dz

2z2 for |z| ≥ 1. (15)

In which case θ = e and π{dw} = dw/2w2 for |w| ≥ 1. Let g(w) = sgn(w). Then
g ∈ L∞

0 (π), Qng = pn × g, and

〈g, Qng〉 =
∫

R

pndπ =
∫ ∞

1
e−n/w dw

w2 = 1

n

∫ n

0
e−xdx ∼ 1

n
.

It follows that 〈g, V̄ng〉 ∼ 〈g, Vng〉 ∼ log(n) and σ 2
n = [2〈g, V̄ng〉 − ‖g‖2]n ∼ 2n log(n). So,

(3) is satisfied with �(n) ∼ 2 log(n).
Recall the definition of the τj and the distribution of [τj − τj−1, Wτj

]. Then

P[|(τj − τj−1)Xτj
| > k] = P[(τj − τj−1) > k] =

∫
R

pkdν = e
∫

R

(1 − p)pkdπ.

The last integral in the previous display is just

∫ ∞

1
(1 − e−1/z)e−k/z dz

z2 = 1

k

∫ k

0
(1 − e−y/k)e−ydy ∼ 1

k2

∫ ∞

0
ye−ydy = 1

k2 ;

thus,

P[|(τj − τj−1)Xτj
| ≥ k] ∼ e

k2 . (16)
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It follows easily that H(y) ∼ 2e log(y) = e�(y), γ 2
n = 2en log(γn) ∼ en log(n) = 1

2 eσ 2
n , and,

therefore,
Sn

σn

d−→ Normal

[
0,

1

2

]

(a nonstandard normal distribution).
Since E[σ−2

n S2
n] is bounded, it follows that E |Sn| ∼ π−1/2σn and, therefore, that Sn/ E |Sn|

d−→ Normal[0, 1
2π ]. The latter convergence can also be deduced from Theorem 4 of [10]. To

this end, it suffices to verify Equation (3.2) of that paper. Since |g| ≤ 1, it is not difficult to
see that the term whose limit is taken in [10, Equation (3.2)] is at most σ−2

n

∑n
k=1 kβk , where

βk is the coefficient of absolute regularity. So, it suffices to show that βn is of order 1/n, and
this may be deduced from the equation at the top of page 136 of [11] together with the relation
P[τ0 > n] = ∫

R
pndπ ∼ 1/n. (The τ in [11] is our τ0 + 1.) Conditional convergence is not

asserted in Theorem 4 of [10], but is implicit in the proof; E |Sn| ∼ π−1/2σn is not deducible
from that theorem, however, because Sn is not normalized by σn there.

Example 2. A slight modification of Example 1 produces a very simple bounded stationary
sequence whose normalized partial sums converge in distribution to a stable distribution. Other
examples may be found in [8]. If (15) is changed to

ν{dz} = [1 − p(z)]dz

2γα|z|α
for |z| ≥ 1, where 1 < α < 2 and γα = ∫ 1

0 yα−2(1 − e−y)dy, then π{dz} = (α −1)/(2|z|α)dz

for |z| ≥ 1, and

P[Y > y] ∼ �(α)

γαyα

as y → ∞. It then follows that n−1/αSn
d−→ Z, where Z has a symmetric stable distribution

with characteristic function e−cα |t |α and cα = (α − 1)�(α)
∫ ∞

0 x−α sin(x)dx.
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