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1. In this note we consider a system of autonomous 
differential equations 

( i . l ) i = f(x) (• ~ ) . 

where f: E -*• E is a continuously differentials Le mapping for 
n > 2. We shall assume that f(0) = 0 and that the origin is 
locally asymptotically stable. 

Suppose f satisfies the above conditions. Under what 
additional assumptions on f is it possible to infer global 
stability ? 

In [1] Hartman and Olech show that if f also satisfies 
the additional conditions: 

(i) f(x) =0 if and only if x = 0 , 

T 
1 3f(x) 3f(x) 

(ii) the symmetric part of the Jacobian — {—T1— + _ ) = H(x) 
Z ax ax 

T 
( denotes transpose) is such that the sum of any two eigenvalues 
of H(x) is £ 0 for all x , 

00 

(iii) J min j|f(x) J[ dp =+co ( ||. || denotes the Euclidean 

norm), then the origin is globally stable. 

Canad. Math. Bull. vol. 9, no. i , 1966 

89 

https://doi.org/10.4153/CMB-1966-012-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-012-0


Hartman and Oiech also consider the problem in a more 
general Riemannian space than E n , but the method of proof is 
not essent ial ly different from that in E n with a flat m e t r i c . 

In section 2 we consider a var iant of this problem which, 
so far as we know, was first considered by Krasovski i [2]. 
Markus and Yamabe [3] have also considered the same problem 
and they infer the global stability of (1. 1) under weaker 
assumptions than Krasovski i ; the most genera l resu l t along 
these lines is that of Hartman and Olech. We show that if the 
local stability of (1. 1) is known, then we can infer global 
stability with weaker assumpt ions than Har tman and Olech 
allow on the number of possible s tat ionary points of (1. 1). 

8f 
However our conditions on the m a t r i x -r- a r e s t ronger than 

ox 
the ones they a s s u m e . 

2. Let 

(2.1) x = f(x) 

be defined for al l x in E and satisfy the conditions: 

(i) f: E -• E is in C for al l x in E ; 

(2.2) 
(ii) f(0) =0 ; 

(iii) the origin is locally asymptot ical ly s table; 

(iv) there exis ts a positive definite m a t r i x A = (a .) 

T 
3f 8f 

such that -r— A + ATT— is negative semi-def ini te for a l l 
ox ox 

x in E . 

THEOREM 1. If (2. 1) sat isf ies (2. 2) then the origin is 
globally stable. 

Proof: Let a denote the set of points a t t rac ted to the 
equilibrium point 0. Because of the conditions (2 .2) , a is 
open and connected. We shall suppose the origin is not globally 
stable. Then the boundary d(a) of {a) is not empty. Since 0 
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is closed and compact and 3(a) is closed, it follows that the re 
exis ts a point x in 3(a) which is a minimal distance from the 

o 

origin. We consider the straight line L joining x to 0. It 

is evident that the relat ive inter ior of L is in a . 

Every point on L has the representa t ion ue , 0 < u < |Jx 

where e = ,,—, 
- !|xol 

On some a r b i t r a r y segment S of L which contains x 

we consider the one pa ramete r family of solutions x(t, u) of (2. 1] 
such that x(o,u) = eu for each u. As t evolves in t ime the 
segment S is t ransformed into a curve S(t). For each fixed 
t > 0 for which the solution x(t, jjx || ) is defined, we consider 

the a r c length s (t) of S(t) which is given by 

( 2 . 3 ) (t) = f 
3 x 

•(t,u) 

1/2 

du . 

Next consider the function 

( 2 . 4 ) »!<*> = / 

u 

3 x . 4 3x, 
— ( t , u ) A — ( t , u ) 
d u o \i 

1/2 
du 

Since A is positive definite, there exists a constant m > 0 
such that 

T 
3 x 3 x 2 ,,3 x , 
du du — "du 

Thus s (t) > m s (t) for all t for which s and s^ a re defined. 
1 — o 1 2 

1 
Moreover, since f is in C , it follows that s and s are 

o 1 
continuously differentiable with respect to t (e. g. , see [6] 
chapter 1). The derivative of s (t) is given by 
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ds 
i 1 r 

x 
a x a f 9f 3 X 

— ( t , u ) - r - ( t , u )A + A ^ - ( ^ ^ ^ - ( t . u ) o L ° u 3 x v du 

[ ] 
1/2 

1/2 
where [ ] is the integrand in (2-4) and is never ze ro , since 
3 x 
—— is the solution of a l inear differential equation whose ini t ial 
à u 

value is 
x 

x 

ds 1 
Because of (2. 2 iv), < 0 for a l l t for which (2. 4) is 

dt — 
defined. Thus we can wri te the following inequality 

s (o) s (t) 
(2. 6) > > s (t) > ||x(t, || x ||) - x( t ,u ) | | . 

m — m — o — o o 

Let z > 0 be a r b i t r a r y except that e < 

such that 

•— . We se lec t u 
2 o 

(2.7) 
s . (o ) 

1 £ 

m 2 

For example, a u satisfying 

(2.8) ( | | x o | | 2 n 2 sup | a . . | ) 1 / 2 ( ||x || - u ) < 2 e m 
i , j 1J o o 

would be sat isfactory. 

Using (2. 7) in (2. 6) we obtain 

(2-9) !*(t. l | x o | | ) | | < | |x(t ,u o) | | + | 
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Since x(t, a ) is defined for all t, so is x(t, J x ) and hence 
o o 

s (t) and s (t) a r e . Also, since x(o, a ) is in a it follows 
o 1 o 

that there is a t > 0 such that j|x(t, u ) II < — for al l t > t . 
1 ! o 2 — 1 

Hence from (2. 9) l|x(t, II x II ) II <z< II x II for t > t , which 
" " o — o — 1 

is impossible since, by our selection of x , it must be t rue 
o 

that ||x(t, || x | | ) | | > || x || for all t > 0 . Thus d (a) = $ 

and hence a - E which proves the theorem. 

COROLLARY 1. If f satisfies the conditions of 
theorem 1 then f(x) =0 if and only if x = 0 . 

Remark. In effect, the proof of theorem 1 consis ts in 
showing that the existence of the Liapunov function 

v ( t * x ) = | ^ A ^ 
O U O U O U 

impl ies the stability of the variat ional sys tem 

d 3 x df 3 x 
dt d a d x ou 

(i. e. the orbi tal stability of 2. 1) which then implies the global 
stability of (2. 1), since it is locally asymptotically stable. 

With this in mind we obtain the following corol lary of 
theorem 1. 

COROLIuARY 2. If (2. 1) satisfies (2. 2i), (2. 2ii), 
(2. 2iv) and the condition 

(2.11) x T 3 f T 

-jT- A + A — l x < 0 

in some neighborhood U of the origin, then the origin is 
globally stable. 

T 
Proof: Let V(x) =x Ax. Then along solutions of (2. 1) 
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dV T T e r 
—- = f Ax + x Af = / 
dt o 

— (ex)A + A r (ex) 
o x ox 

x ck < 0 

Hence V is a Liapunov function for (2. 1) in the neighborhood U-
Thus the origin is locally stable and theorem 1 appl ies . 

Corol lary 2 genera l izes a resul t of Har tman [4] for 
Euclidean spaces with flat m e t r i c s in that Hartman demands 
that (2. 11) hold everywhere in E n . 
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