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1 Introduction

The other day, over a very pleasant lunch in the restaurant of Oxford’s recently

renovated Ashmolean Museum,1 Oege de Moor gave me a problem about rectangles.

The problem is explained more fully later, but roughly speaking one is given a finite

set of rectangles RS and a rectangle R completely covered by RS . The task is

to construct a single rectangle covering R among the elements of a larger set

of rectangles associated with RS , called the saturation of RS . The saturation

of RS is the closure of RS under so-called consensus operations, a term coined in

(Quine, 1959), in which two rectangles are combined in two distinct ways to form new

rectangles. The rectangle problem is a simplified version of containment-checking,

a crucial component in a type inference algorithm for Datalog programs (Schäfer

& de Moor, 2010). In the Schäfer-de Moor algorithm the problem is generalised to

cubes in n-space rather than rectangles in two-space, the components of each cube

are given by propositional formulae rather than by intervals on the real line, and

certain equality and inhabitation constraints are taken into account. Oege felt that

the central proof, Lemma 15 in (Schäfer & de Moor, 2010), deserved to be simplified

so he posed the rectangle problem as a special case. This pearl was composed in

response to the challenge.

2 The problem

Consider Figure 1, which depicts four rectangles A, B , C and D , covering another

rectangle X framed with dotted lines. It happens in this example that none of the

four rectangles can be removed without uncovering some part of X , but that is

not essential to the problem. Next, consider two binary operations, ⊕0 and ⊕1, on

rectangles. Assuming A and B overlap, the operation A⊕0B forms a new rectangle by

taking the union of the horizontal intervals defining A and B and the intersection of

the vertical intervals. The operation A⊕1 B takes the intersection of the horizontals

1 Well worth a visit if you are ever in Oxford, especially as entry to the museum is free.
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Fig. 1. Four rectangles covering the dotted rectangle.

A ⊕0 D

A ⊕1 D

Fig. 2. The dotted rectangles are A⊕0 D and A⊕1 D .

and the union of the verticals. These two operations are the consensus operations

on A and B . For example, Figure 2 shows the two consensus rectangles for the

rectangles A and D of Figure 1. The consensus operations also apply when the two

rectangles do not overlap, though the result is either the empty rectangle or two

rectangles.

Formally we define a rectangle A to be a pair (XA,YA) of intervals on the real

line.2 The points in A are the elements in the cartesian product XA × YA. The two

consensus operations are defined by

A⊕0 B = (XA ∪XB ,YA ∩ YB )

A⊕1 B = (XA ∩XB ,YA ∪ YB )

Both ⊕0 and ⊕1 are associative, commutative and idempotent; moreover each

operation distributes over the other. These properties follow from the same properties

of union and intersection. By definition, the saturation of a set of rectangles RS is

the least set XS containing RS and containing A ⊕0 B and A ⊕1 B for all A and

B in XS . Assuming RS covers R, our task is to construct a single rectangle X in

the saturation of RS that covers R. We do so by building a consensus expression

that describes X . A consensus expression is a binary tree whose leaves are labelled

with suitable names for the rectangles in RS and whose nodes are labelled with one

or other of the two consensus operations. Failure to construct a consensus means

that the rectangles RS do not cover R. To appreciate the problem, the reader is

invited to construct a consensus expression over the four rectangles A,B ,C ,D of

2 The assumption that XA and YA are intervals is considered further in Section 4.1.
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Figure 1 that covers the fifth rectangle X . The answer is given at the beginning of

the following section.

The rectangle problem admits an immediate generalisation to n-cubes, which

are cubes in n-dimensional space. An n-cube A is defined by an n-tuple of sets

[XA,YA, . . . ,ZA]. The points in A are the elements of XA ×YA × · · · ×ZA, and there

are n consensus operations ⊕j for 0 � j < n . The value of A ⊕j B is the cube in

which the k th component for k �= j is the intersection of the k th components of A

and B for 0 � k < n , and the j th component is the union of the j th components of

A and B .

Finally, let us briefly relate the above consensus operations to those of same name

in the Quine–McCluskey method for finding prime implicants. Consider a boolean

formula in conjunctive normal form over n propositional variables. For example,

taking n = 3 we might have the expression

a ′b ′c + abc′ + a ′bc + abc

in which the propositional variables are a , b and c, and dashed letters denote

negation. By definition, the consensus of a ′b ′c and a ′bc is the formula a ′c,

equivalently a ′(b + b ′)c. If we interpret a term a ′b ′c as a cube [a ′, b ′, c] in which a ′

and b ′ are the complements of a and b with respect to some fixed universe, then the

consensus of a ′b ′c and a ′bc is just [a ′, b ′, c]⊕1 [a ′, b, c].

3 Proof and first construction

One way of covering X in Figure 1 is with the rectangle

(B ⊕0 C )⊕1 (A⊕0 C )⊕1 (A⊕0 D)

but there are many other expressions that also do the job.

Now, generalising from rectangles to n-cubes, how shall we prove that there is a

consensus expression over a set of n-cubes XS that covers a given cube X if and

only if XS does? To answer this question let us first make a simplifying assumption,

namely that each component of each cube is a finite set of integers. We will see

in Section 4 that this assumption entails no loss of generality. Given that each

component has finite size, we can prove the theorem by induction on the size of

X , defined to be the product of the sizes of the components of X . A cube X of

size 1 has singleton components and so contains just a single point. A single point

can clearly be covered by a single cube in XS if and only if XS covers X . This

establishes the base case. Otherwise, by way of induction, assume that all cubes of

size less than s can be covered by a single cube in the saturation of XS . Let X be

a cube of size s > 1, so at least one component of X is a non-singleton set. Say

the k th component is not a singleton. Split X into two cubes Y and Z by splitting

the k th component into two smaller sets, leaving the other components unchanged.

Each of Y and Z has size smaller than s , so by induction there exist cubes A and

B in the saturation of XS that cover Y and Z , respectively. Now X is covered by

A⊕k B .
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The proof easily converts into a constructive procedure for computing the required

expression. Turning to Haskell, we first declare

type Cube = [Component]

type Component = [Int]

A cube is a list of n components and each component is a finite, possibly empty

list of integers in strictly increasing order. We allow empty components because the

result of a consensus operation might be the empty cube. Each cube represents a

set of points in n-space:

type Point = [Int]

points :: Cube → [Point]

points [xs] = [[x ] | x ← xs]

points (xs : xss) = [x : ys | x ← xs , ys ← points xss]

A set xcs of cubes covers a cube xc if for each point of xc there is some member of

xcs that contains it:

covers :: [Cube]→ Cube → Bool

covers xcs xc = and [contains xcs p | p ← points xc]

contains xcs p = or [p ∈ points xc | xc ← xcs]

Any set of cubes trivially covers the empty cube because the empty cube contains

no points.

The operation ⊕k is implemented as a function consensus k :

consensus :: Int → Cube → Cube → Cube

consensus k xc yc = zipWith cap xc1 yc1 ++ [cup xs ys] ++ zipWith cap xc2 yc2

where (xc1, xs : xc2) = splitAt k xc

(yc1, ys : yc2) = splitAt k yc

Definitions of cup and cap, the union and intersection functions on ordered lists,

are omitted.

Next, we declare a suitable type for consensus expressions:

data Exp = Val Label | Op Int Exp Exp

type Label = Int

The evaluation function eval is defined by

eval :: [Cube]→ Exp → Cube

eval xcs (Val j ) = xcs !! j

eval xcs (Op k u v ) = consensus k (eval xcs u) (eval xcs v )

Cubes are labelled by their positions in the given list of cubes.
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The function cover0 is a straightforward implementation of the induction proof

(later on, we consider other versions, cover1, cover2, and so on):

cover0 :: [Cube]→ Cube → Exp

cover0 xcs xc

= if null yss

then Val (head [j | (j , yc)← zip [0 .. ] xcs , covers [yc] xc])

else Op (length xss) (cover0 xcs yc) (cover0 xcs zc)

where

(xss , yss) = span single xc

yc = xss ++ [[head (head yss)]] ++ tail yss

zc = xss ++ [tail (head yss)] ++ tail yss

The test single returns True on a singleton list and False otherwise. The expression

span single xc splits the components of xc into two lists, xss and yss , where xss

consists of singleton sets only and yss is either empty or begins with a non-singleton

set. If yss is empty, then xc consists of a single point. By construction,

covers xcs xc ⇒ covers [eval xcs (cover0 xcs xc)] xc

For example, cover0 xcs [[1, 2, 3], [1, 2], [1, 2]] produces the expression

((111⊕2 112)⊕1 (121⊕2 122))⊕0

((211⊕2 212)⊕1 (221⊕2 222))⊕0

((321⊕2 312)⊕1 (311⊕2 322))

in which the term abc represents the label of the first cube in xcs that covers the

point [a , b, c].

4 Digitization

We now show why we can assume that the components of cubes are finite sets

of integers. An interval on the real line is defined by a pair (a , b) of numbers

representing the set of real numbers x in the range a � x < b. The length of (a , b)

is b − a , so a pair (a , a) denotes an empty interval. There is no loss in generality in

requiring a and b to be integers, but, even so, there is an infinite number of points

in each nonempty interval.

The solution is to digitize real intervals as integer intervals. Consider for example

the three rectangles of Figure 3. Suppose their component intervals are as follows:

A = [(0, 50), (40, 80)], B = [(30, 70), (10, 60)], C = [(40, 80), (0, 50)]

The dotted lines shown in the figure extend each horizontal and vertical line to the

x and y axes and partition the axes into five horizontal segments

H0 = (0, 30), H1 = (30, 40), H2 = (40, 50), H3 = (50, 70), H4 = (60, 80)

and five vertical segments

V0 = (0, 10), V1 = (10, 40), V2 = (40, 50), V3 = (50, 60), V4 = (60, 80)
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Fig. 3. Dividing the axes into segments.

By construction, the components of A, B and C can each be expressed as the union

of segments. For example, XA = H0 ∪H1 ∪H2 and YA = V2 ∪ V3 ∪ V4. Going one

step further, we can now represent each rectangle by the lists of integer labels of

the horizontal and vertical segments that make up its coordinates. That gives new

rectangles

A = [[0 .. 2], [2 .. 4]], B = [[1 .. 3], [1 .. 3]], C = [[2 .. 4], [0 .. 2]]

whose components are intervals of integers. Moreover, containment-checking on

the original problem returns the same result as on the digitized version. However,

digitization is possible only because each cube is assumed to have components that

are intervals.

To implement digitization we first declare the types

type RealCube = [Interval ]

type Interval = (Int , Int)

We digitize each list of corresponding components separately:

digitize :: [RealCube]→ [Cube]

digitize = transpose · map digitizeRow · transpose

The list of cubes is transposed to bring each corresponding component into the

same row. Each row is then digitized and the result is transposed back to give a new

list of cubes. To implement digitizeRow , we first sort the boundaries of each interval

into strictly increasing order, discarding duplicates:

boundaries :: [Interval ]→ [Int]

boundaries = sort · concatMap (λ(a , b)→ [a , b])

The definition of sort is omitted. The function mksegs constructs a new list of

intervals out of the boundaries:

mksegs :: [Int]→ [Interval ]

mksegs xs = zip xs (tail xs)

Each new interval is then encoded as a component:

encode :: [Interval ]→ Interval → Component

encode row (x , y) = [j .. k ]

where j = head [j | (j , (a , b))← jabs , a = x ]

k = head [j | (j , (a , b))← jabs , b = y]

jabs = zip [0 .. ] row
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That gives

digitizeRow row = map (encode (mksegs (boundaries row ))) row

4.1 Propositional components

We mentioned briefly in the Introduction that in Datalog containment-checking the

components of rectangles were propositional formulae rather than intervals. For

example, consider the rectangles

A = (a + c, a + bc)

B = (a , b ′ + c)

C = (bc, a + b ′c)

D = (a + bc, b ′)

X = (a + bc, a + b ′)

over the propositional variables a , b and c. The rectangle X is covered by A, B , C

and D in the sense that

(a + bc) ⇒ (a + c) + a + bc + (a + bc)

a + b ′ ⇒ (a + bc) + (b ′ + c) + (a + b ′c) + b ′

We can convert this version of the rectangle problem into an integer version by

coding formulae using the truth table for a , b and c:

abc abc

0 000 4 100

1 001 5 101

2 010 6 110

3 011 7 111

Using the labels of the entries in this table, the five rectangles above translate to the

integer rectangles

A = ([1, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7])

B = ([4, 5, 6, 7], [0, 1, 3, 4, 5])

C = ([3, 7], [1, 4, 5, 6, 7])

D = ([3, 4, 5, 6, 7], [0, 1, 4, 5])

X = ([3, 4, 5, 6, 7], [0, 1, 4, 5, 6, 7])

Of course, the components are not intervals, but cover0 still works because it did

not assume interval components.

5 Optimisation

Let us now return to cubes whose components are lists of integers. The trouble

with cover0 xcs xc is that each point of xc is associated with a cube in xcs and

these cubes are then assembled into a potentially very large consensus expression.

Because adjacent points of xc may well be associated with the same cube, and each

consensus operation is idempotent, there is room for improvement both in speed

and expression size.
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One way to reduce the size of the final consensus expression is to reduce the

size of the cubes using digitization. For example, consider again the rectangles of

Figure 3, this time as intervals of integers:

A = [[0 .. 49], [40 .. 79]], B = [[30 .. 69], [10 .. 59)], C = [[40 .. 79], [0 .. 49]]

Each of these rectangles is of size 2000, which is quite large. But digitization converts

the problem into one whose rectangles each have size 9, a substantial reduction. The

function cover1 is defined by

cover1 :: [Cube]→ Cube → Exp

cover1 xcs xc = cover0 ycs yc

where yc : ycs = digitize (map (map toPair) (xc : xcs))

toPair xs = (head xs , last xs + 1)

The function cover1, which is a valid optimisation only if the components of the

cubes are contiguous intervals of integers, may reduce the size of the consensus

expression but not necessarily minimize it.

In search of an algorithm that does minimize expression size, let us first recast

cover0 in iterative form. To this end, consider the function expand k that splits a

cube into sk subcubes, where sk is the size of the k th component:

expand :: Int → Cube → [Cube]

expand kxc = [xss ++ [[y]] ++ yss | y ← ys]

where (xss , ys : yss) = splitAt k xc

Using expand we can define

cover2 xcs xc = pcover 0 xc

where

pcover kxc = if k = n

then Val (head [j | (j , yc)← zip [0 .. ] xcs , covers [yc] xc])

else foldr1 (Op k ) (map (pcover (k+1)) (expand k xc))

n = length xc

We omit the proof that cover0 = cover2. The function cover2 is faster than cover0,

though not dramatically so. However, cover2 gets us, quite literally, to the nub of

the problem. Let ⊕ be some associative, commutative and idempotent operation.

The critical fact about ⊕ is that

foldr1 (⊕) = foldr1 (⊕) · nub

where nub is the standard Haskell library function that removes duplicates from a

list. The value of foldr1 (⊕) xs depends only on the set of elements in xs and not on

the order of the elements or on duplications.

We could minimize the size of the final consensus expression simply by inserting a

nub after foldr1 (Op k ) in the definition of pcover , but nub uses a quadratic number

of equality tests and each equality test compares two consensus expressions, so the

new version, cover3 say, may well be slower than cover2.
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Here is a better way to remove duplicates. The idea is to convert the target cube

xc to an n-dimensional array of points, then to replace each point by the label of

the first cube in xcs which covers it. This array of labels is then pruned, dimension

by dimension, by removing all duplicates in each row, then all duplicate rows, all

duplicate planes, and so on. To represent an n-dimensional array in Haskell we need

trees:

data Tree a = Leaf a | Fork [Tree a]

The function convert converts an n-cube into a list of trees of points:

convert :: Cube → [Tree Point]

convert [xs] = [Leaf [x ] | x ← xs]

convert (xs : xss) = [Fork (map (cons x ) ts) | x ← xs]

where ts = convert xss

cons x (Leaf xs) = Leaf (x : xs)

cons x (Fork ts) = Fork (map (cons x ) ts)

The function covering xcs labels a tree of points with the first cube in xcs that covers

each point:

covering :: [Cube]→ Cube → [Tree Label ]

covering xcs xc = map label (convert xc)

where

label (Leaf xs) = Leaf (lookup xs)

label (Fork ts) = Fork (map label ts)

lookup x = head [j | (j , xc)← zip [0 .. ] xcs , member x xc]

The function member is defined by

member xxc = and [a � y ∧ y < b | ((a , b), y)← zip (map toPair xc) x ]

The function prune removes duplicate labels:

prune :: [Tree Label ]→ [Tree Label ]

prune ts@(Leaf : ) = remdups ts

prune ts = remdups [Fork (prune vs) | Fork vs ← ts]

remdups :: Eq a ⇒ [a]→ [a]

remdups = foldr op [ ]

where opx [ ] = [x ]

opx (y : ys) = if x = y then y : ys else x : y : ys

The function remdups removes adjacent duplicates only, but that is sufficient because

in the cubes problem all duplicates will occur together. The function lookup always

returns the first cube in xcs that covers the point x and that fact guarantees that

duplicate cubes occur together.
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Now we can define our final version:

cover4 :: [Cube]→ Cube → Exp

cover4 xcs xc = mkexp 0 (prune (covering ycs yc))

where yc : ycs = digitize (map (map toPair) (xc : xcs))

mkexp k ts@(Leaf : ) = foldr1 (Op k ) [Val x | Leaf x ← ts]

mkexp k ts = foldr1 (Op k ) [mkexp (k+1) vs | Fork vs ← ts]

6 Experimental results

Using ghci we carried out a brief comparison of the five versions of cover . Recall that

cover0 was the divide and conquer version, cover1 the version that reduced problem

size by digitization, cover2 was the linearised form of cover0, cover3 used the Haskell

nub function, and cover4 the super-duper version that used both digitization and

a tailored implementation for removing duplicates. The results, using three sample

sets of cubes, are summarised in the table below. Times are in seconds, and size

refers to the size of the consensus expression. The set xcs0 is a set of rectangles of

total area 525, the set xcs1 a set of rectangles of total area 161, and xcs2 a set of

four-dimensional cubes of area 8097.

xcs0 xcs1 xcs2

time size time size time size

cover0 0.05 241 1.64 503 38.97 1295

cover1 0.00 49 0.02 31 0.06 23

cover2 0.05 241 1.63 503 38.89 1295

cover3 0.05 17 1.59 3 38.75 9

cover4 0.02 17 0.02 3 0.02 9

Clearly cover4 was best by a long way, so it was worth the effort to obtain it.
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