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Abstract. In this paper, general existence theorems are presented for the singular
equation {

−(ϕp(u′))′ = f (t, u, u′), 0 < t < 1

u(0) = u(1) = 0.

Throughout, our nonlinearity is allowed to change sign. The singularity may occur at
u = 0, t = 0 and t = 1.
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1. Introduction. In this paper, we study the singular boundary value problem{
−(ϕp(u′))′ = f (t, u, u′), 0 < t < 1

u(0) = u(1) = 0
(1.1)

where ϕp(s) = |s|p−2 s, p > 1. The singularity may occur at u = 0, t = 0 and t = 1,

and the function f is allowed to change sign. Note f may not be a Carathéodory
function because of the singular behavior of the u variable. In the literature [6, 7, 10],
(1.1) has been discussed extensively when f (t, u, v) ≡ f (t, u) and f is positive i.e. f :
(0, 1) × (0,∞) → (0,∞). Recently [1, 11], (1.1) was discussed when f (t, u, v) ≡ f (t, u)
and f : (0, 1) × (0,∞) → R. The case when f depends on the u′ variable has received
very little attention in the literature, see [2, 5] and references therein. This paper presents
a new and very general existence result for (1.1) when f : (0, 1) × (0,∞) × R → R.

Equation of the above form occur in the study of the p−Laplace equation, non-
Newtonian fluid theory, and the turbulent flow of a gas in a porous medium [9] . The
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440 HAISHEN LÜ, DONAL O’REGAN AND RAVI P. AGARWAL

case p = 2 and p �= 2 are quite different. For example, (i) there exists a Green’s function
when p = 2 but not if p �= 2; (ii) ϕ−1

p (x) is continuously differentiable for 1 < p ≤ 2
but ϕ−1

p (x) is not continuously differentiable for p > 2. As a result the argument in the
case p �= 2 is more difficult. Other differences between p = 2 and p �= 2, can be found
in [12].

2. General Existence Theorem. First we consider the boundary value problem{
−(ϕp(u′))′ = g(t, u, u′), 0 < t < 1

u(0) = a, u(1) = b

where g : (0, 1) × R2 → R is continuous and suppose that there exist positive
continuous functions q ∈ C(0, 1) and � : [0,+∞) → (0,∞) with

∫ 1

0
q(t) dt < +∞

and

|g(t, u, v)| ≤ q(t)�(|v|) for all (t, u, v) ∈ (0, 1) × R2.

For all ρ ∈ (0, 1], define the operator

Nρ : C [0, 1] → C [0, 1]

by

(
Nρu

)
(t) := ϕ−1

p

(
Au + ρ

∫ t

0
g (τ, (Ju) (τ ) , u (τ )) dτ

)
,

where

J(u) (τ ) = b −
∫ 1

τ

u(s) ds

for all 0 ≤ τ ≤ 1, and Au ∈ (−∞,∞) is such that

∫ 1

0
ϕ−1

p

(
Au + ρ

∫ t

0
g (τ, (Ju) (τ ) , u (τ )) dτ

)
dt = b − a.

LEMMA 2.1. [5] (1) Nρ : C [0, 1] → C [0, 1] is completely continuous.
(2) If � ⊂ {z ∈ C[0, 1] | (Nρz)(t) = z(t)} and sup{sup[0,1] |z(t)| | z ∈ �} < ∞, then

� is a relatively compact set in C[0, 1].

LEMMA 2.2. [11] Let en = [ 1
2n+1 , 1] (n ≥ 1) , e0 = ∅. If there exist a sequence {εn} ↓ 0

and εn > 0 for n ≥ 1, then there exist a function λ ∈ C1 [0, 1] such that
(1) ϕp (λ′) ∈ C1 [0, 1] and max0≤t≤1 |(ϕp(λ′(t)))′| > 0, and
(2) λ(0) = λ(1) = 0 and 0 < λ(t) ≤ εn, t ∈ en\en−1, n ≥ 1.

We next present a general existence theorem for BVP (1.1).
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THEOREM 2.1. Let n0 ∈ {1, 2, . . .} be fixed and suppose the following conditions are
satisfied:

f : (0, 1) × (0,∞) × R → R is continuous (2.1)


let n ∈ {n0, n0 + 1, . . .} ≡ N0 and associated with each n ∈ N0

we have a constant ρn such that {ρn} is a nonincreasing

sequence with limn→∞ ρn = 0 and such that for
1

2n+1 ≤ t ≤ 1 and v ∈ R we have f (t, ρn, v) ≥ 0

(2.2)




∃ α ∈ C [0, 1] ∩ C1 (0, 1) , ϕp (α′) ∈ C1(0, 1), α(0) = 0 = α(1),

α > 0 on (0, 1) such that

−(ϕp(α′))′ ≤ f (t, α(t), v) for (t, v) ∈ (0, 1) × R
(2.3)




∃ β ∈ C1 [0, 1] , (ϕp (β ′))′ ∈ C(0, 1),

with β(t) ≥ α(t), β(t) ≥ ρn0 for t ∈ [0, 1] and

−(ϕp(β ′))′ ≥ f (t, β(t), β ′(t)) for t ∈ (0, 1) and

−(ϕp(β ′))′ ≥ f ( 1
2n0+1 , β(t), β ′(t)) for t ∈ (0, 1

2n0+1 )

(2.4)

and


there exist q ∈ C(0, 1) and

for any 0 < ε < a0 = supt∈[0,1] β (t) , there exists continuous function

�ε : [0,∞) → (0,∞) such that

|f (t, u, v)| ≤ q(t)�ε(|v|) for (t, u, v) ∈ (0, 1) × [ε, a0] × R,∫ 1
0 q(s) ds < ∞ and

∫ 1
0 q (s) ds <

∫ ∞
0

du
�ε(ϕ−1

p (u))

(2.5)

where ϕ−1
p is the inverse function of ϕp. Then (1.1) has a solution u ∈ C [0, 1] ∩

C1(0, 1), (ϕp(u′))′ ∈ C(0, 1) with α (t) ≤ u(t) ≤ β(t) for t ∈ [0, 1] .

Proof. For n = n0, n0 + 1, . . . let

en =
[

1
2n+1

, 1
]

and θn (t) = max
{

1
2n+1

, t
}
, 0 ≤ t ≤ 1

and

fn (t, x, y) = max { f (θn (t) , x, y) , f (t, x, y)} .

Next we define inductively

gn0 (t, x, y) = fn0 (t, x, y)

and

gn (t, x, y) = min
{
fn0 (t, x, y) , . . . , fn (t, x, y)

}
, n = n0 + 1, n0 + 2, . . . .

Notice

f (t, x, y) ≤ . . . ≤ gn+1 (t, x, y) ≤ gn (t, x, y) ≤ . . . ≤ gn0 (t, x, y)

https://doi.org/10.1017/S0017089505002697 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002697
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for (t, x, y) ∈ (0, 1] × (0,∞) × R and

gn (t, x, y) = f (t, x, y) for (t, x, y) ∈ en × (0,∞) × R.

Without loss of generality assume ρn0 ≤ mint∈[ 1
3 , 2

3 ] α(t). Fix n ∈ {n0, n0 + 1, . . .} . Let

tn ∈ [0, 1
3 ] and sn ∈ [ 2

3 , 1] be such that

α (tn) = α (sn) = ρn and α(t) ≤ ρn for t ∈ [0, tn] ∪ [sn, 1] .

Define

αn(t) =
{

ρn if t ∈ [0, tn] ∪ [sn, 1]

α(t) if t ∈ (tn, sn) .

We begin with the boundary value problem

{−(ϕp(u′))′ = g∗
n0

(t, u, u′) , 0 < t < 1

u(0) = u(1) = ρn0

(2.6)

where

g∗
n0

(t, u, v) =




gn0 (t, αn0 , v
∗) + r (αn0 − u) , u(t) ≤ αn0 (t)

gn0 (t, u, v∗) , αn0 (t) ≤ u(t) ≤ β(t)

gn0 (t, β, v∗) + r (β − u) , u(t) ≥ β(t)

with

v∗ =



Mn0 , v > Mn0

v, −Mn0 ≤ v ≤ Mn0

−Mn0 , v < −Mn0

and r : R → [−1, 1] is the radial retraction defined by

r(u) =



u, |u| ≤ 1
u
|u| , |u| > 1,

and Mn0 ≥ sup[0,1] |β ′(t)| is such that (with ε = min[0,1] αn0 (t))

∫ ϕp(Mn0 )

0

du

�ε

(
ϕ−1

p (u)
) >

∫ 1

0
q(s) ds. (2.7)

From [5] , we know problem (2.6) has a solution un0 ∈ C1 [0, 1] with (ϕp(u′
n0

))′ ∈ C(0, 1).
We first show

un0 (t) ≥ αn0 (t) for t ∈ [0, 1] . (2.8)

Suppose (2.8) is not true. Then un0 − αn0 has a negative absolute minimum at τ ∈
(0, 1). Now since un0 (0) − αn0 (0) = 0 = un0 (1) − αn0 (1) there exists τ0, τ1 ∈ [0, 1] with
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τ ∈ (τ0, τ1) and

un0 (τ0) − αn0 (τ0) = un0 (τ1) − αn0 (τ1) = 0

and

un0 (t) − αn0 (t) < 0, t ∈ (τ0, τ1).

We now claim

(ϕp(u′
n0

))′ − (ϕp(α′
n0

))′ < 0 for a.e. t ∈ (τ0, τ1). (2.9)

If (2.9) is true, then (2.8) holds. Let

wn0 (t) = un0 (t) − αn0 (t) < 0 for t ∈ (τ0, τ1).

Then ∫ τ1

τ0

((ϕp(u′
n0

))′ − (ϕp(α′
n0

))′)wn0 (t) dt ≥ 0.

On the other hand, using the inequality

(ϕp(b) − ϕp(a))(b − a) ≥ 0 for a, b ∈ R

and the fact that there exists τ ∗ ∈ (τ0, τ1) with u′
n0

(τ ∗) �= α′
n0

(τ ∗), we have∫ τ1

τ0

((ϕp(u′
n0

))′(t) − (ϕp(α′
n0

))′(t))wn0 (t) dt

=−
∫ τ1

τ0

(ϕp(u′
n0

(t)) − ϕp(α′
n0

(t)))(u′
n0

(t) − α′
n0

(t)) dt

<0,

which is a contradiction. As a result if we show that (2.9) is true then (2.8) will follow.
To see that (2.9) is true we will in fact prove more, i.e., we will prove that

(ϕp(u′
n0

))′(t) − (ϕp(α′
n0

))′(t) < 0 for t ∈ (τ0, τ1) provided t �= tn0 or t �= sn0 .

Fix t ∈ (τ0, τ1) and assume t �= tn0 or t �= sn0 . Then

(ϕp(u′
n0

))′(t) − (ϕp(α′
n0

))′(t)
= − [gn0 (t, αn0 (t), (u′

n0
(t))∗) + r(αn0 (t) − un0 (t)) + (ϕp(α′

n0
))′(t)]

=
{− [gn0 (t, α(t), (u′

n0
(t))∗) + r(α(t) − un0 (t)) + (ϕp(α′))′(t)] if t ∈ (

tn0 , sn0

)
−[gn0 (t, ρn0 , (u′

n0
(t))∗) + r

(
ρn0 − un0 (t)

)
] if t ∈ (0, tn0 ) ∪ (sn0 , 1).

Case (1). t ∈ [ 1
2n0+1 , 1).

Then since gn0 (t, u, v) = f (t, u, v) for (u, v) ∈ (0,∞) × R (note t ∈ en0 ) we have

(ϕp(u′
n0

))′(t) − (ϕp(α′
n0

))′(t)

=
{−[f (t, α(t), (u′

n0
(t))∗) + r(α(t) − un0 (t)) + (ϕp(α′))′(t)] if t ∈ (

tn0 , sn0

)
−[f (t, ρn0 , (u′

n0
(t))∗) + r

(
ρn0 − un0 (t)

)
] if t ∈ (

0, tn0

) ∪ (sn0 , 1)
<0,

from (2.2) and (2.3).
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Case (2). t ∈ (0, 1
2n0+1 ).

Then since

gn0 (t, u, v) = max
{

f
(

1
2n0+1

, u, v

)
, f (t, u, v)

}

we have gn0 (t, u, v) ≥ f (t, u, v) and gn0 (t, u, v) ≥ f ( 1
2n0+1 , u, v) for (u, v) ∈ (0,∞) × R.

Thus we have

(
ϕp

(
u′

n0

))′
(t) − (

ϕp
(
α′

n0

))′
(t)

≤
{−[ f (t, α(t), (u′

n0
(t))∗) + r(α(t) − un0 (t)) + (

ϕp (α′)
)′

(t)] if t ∈ (tn0 , sn0 )

−[ f
( 1

2n0+1 , ρn0 , (u′
n0

(t))∗
) + r (ρn0 − un0 (t))] if t ∈ (0, tn0 ) ∪ (sn0 , 1)

< 0,

from (2.2) and (2.3).
Now case (1) and (2) guarantee that (2.9) holds, so (2.8) is satisfied. Thus

α(t) ≤ αn0 (t) ≤ un0 (t) for t ∈ [0, 1] . (2.10)

Next we show

un0 (t) ≤ β(t) for t ∈ [0, 1] . (2.11)

If (2.11) is not true then un0 − β would have a positive absolute maximum at say
τ0 ∈ (0, 1), in which case (un0 − β)′(τ0) = 0 and

(ϕp(u′
n0

))′(τ0) − (ϕp(β ′))′(τ0) ≤ 0. (2.12)

See the proof in [5].
There are two cases to consider, namely τ0 ∈ [ 1

2n0+1 , 1) and τ0 ∈ (0, 1
2n0+1 ).

Case (1). τ0 ∈ [ 1
2n0+1 , 1).

Then un0 (τ0) > β (τ0) , u′
n0

(τ0) = β ′ (τ0) together with gn0 (τ0, u, v) = f (τ0, u, v) for
(u, v) ∈ (0,∞) × R and Mn0 ≥ sup[0,1] |β ′(t)| gives

(ϕp(u′
n0

))′(τ0) − (ϕp(β ′))′(τ0)

= −[gn0 (τ0, β(τ0), (u′
n0

(τ0))∗) + r(β(τ0) − un0 (τ0))] − (ϕp(β ′))′(τ0)

= −[(ϕp(β ′))′(τ0) + f (τ0, β(τ0), β ′(τ0))] − r(β(τ0) − un0 (τ0))

> 0

from (2.4), which is a contradiction.

Case (2). τ0 ∈ (0, 1
2n0+1 ).

Then un0 (τ0) > β (τ0) together with

gn0 (τ0, u, v) = max
{

f
(

1
2n0+1

, u, v

)
, f (τ0, u, v)

}
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for (u, v) ∈ (0,∞) × R gives(
ϕp

(
u′

n0

))′
(τ0) − (ϕp(β ′))′(τ0)

= −
[

max
{

f
(

1
2n0+1

, β(τ0), β ′(τ0)
)

, f
(
τ0, β (τ0) , β ′ (τ0)

)} + r (β (τ0) − un0 (τ0))
]

− (ϕp(β ′))′(τ0) > 0

from (2.4), which is a contradiction.
Thus (2.11) holds. Next we show that∣∣u′

n0

∣∣
∞ = sup

t∈[0,1]

∣∣u′
n0

(t)
∣∣ ≤ Mn0 . (2.13)

Suppose that (2.13) is false. Let ε = min[0,1] αn0 (t). Without loss of generality assume
u′

n0
(t) �≤ Mn0 for some t ∈ [0, 1] . Then since un0 (0) = un0 (1) = ρn0 there exists τ1 ∈ (0, 1)

with u′
n0

(τ1) = 0 and so there exists τ2, τ3 ∈ (0, 1) with u′
n0

(τ3) = 0, u′
n0

(τ2) = Mn0 and
0 ≤ u′

n0
(s) ≤ Mn0 for s between τ3 and τ2. Without loss of generality assume τ3 < τ2.

Now since αn0 (t) ≤ un0 (t) ≤ β(t) for t ∈ [0, 1] and

gn0 (t, u, v) = max
{

f
(

1
2n0+1

, u, v

)
, f (t, u, v)

}

for (t, u, v) ∈ (0, 1) × (0,∞) × R, we have for s ∈ (τ3, τ2) that

(ϕp(u′
n0

))′(τ0) ≤ q(s)�ε(u′
n0

(s)),

and so ∫ ϕp(Mn0 )

0

du

�ε

(
ϕ−1

p (u)
) =

∫ τ2

τ3

(
ϕp

(
u′

n0

))′

�ε

(
u′

n0
(s)

)ds ≤
∫ 1

0
q(s) ds.

This contradicts (2.7). The other cases are treated similarly. As a result α(t) ≤ un0 (t) ≤
β(t) for t ∈ [0, 1] and

∣∣u′
n0

∣∣
∞ ≤ Mn0 . Thus un0 satisfies

− (
ϕp

(
u′

n0

))′ = gn0+1
(
t, un0 , u′

n0

)
, 0 < t < 1

Next we consider the boundary value problem{−(ϕp(u′))′ = g∗
n0+1(t, u, u′), 0 < t < 1

u(0) = u(1) = ρn0+1

(2.14)

where

g∗
n0+1(t, u, v) =




gn0+1 (t, αn0+1, v
∗) + r (αn0+1 − u) , u(t) ≤ αn0+1(t)

gn0+1 (t, u, v∗) , ρn0+1 ≤ u (t) ≤ un0 (t)
gn0+1 (t, un0 , v

∗) + r (un0 − u) , u(t) ≥ un0 (t)

with

v∗ =



Mn0+1, v > Mn0+1

v, −Mn0+1 ≤ v ≤ Mn0+1

−Mn0+1, v < −Mn0+1;
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here Mn0+1 ≥ Mn0 is such that (with ε = min[0,1] αn0+1(t)) and �ε and q are as described
in (2.5))

|f (t, u, v)| ≤ q(t)�ε(|v|) for (t, u, v) ∈ (0, 1) × [ε,∞) × R

and ∫ 1

0
q(s) ds <

∫ ϕp(Mn0+1)

0

du

�ε

(
ϕ−1

p (u)
) . (2.15)

From [5] we know there exists a solution un0+1 ∈ C1[0, 1] with (ϕp(u′
n0+1))′ ∈ C(0, 1) to

(2.14). We first show that

un0+1(t) ≥ αn0+1(t), t ∈ [0, 1]. (2.16)

Suppose that (2.16) is not true. Then there exists τ0, τ1 ∈ [0, 1] with

un0+1 (τ0) − αn0+1 (τ0) = un0+1 (τ1) − αn0+1 (τ1) = 0

and

un0+1(t) − αn0+1(t) < 0, t ∈ (τ0, τ1) .

If we show (
ϕp

(
u′

n0

))′ − (
ϕp

(
α′

n0

))′
< 0 for a.e. t ∈ (τ0, τ1) , (2.17)

then as before (2.16) is true. Fix t ∈ (τ0, τ1) and assume t �= tn0 or t �= sn0 . Then(
ϕp

(
u′

n0

))′
(t) − (

ϕp
(
α′

n0

))′
(t)

=
{− [

gn0+1
(
t, α(t),

(
u′

n0+1(t)
)∗) + r (α(t) − un0+1(t)) + (ϕp(α′))′(t)

]
if t ∈ (tn0+1, sn0+1)

− [
gn0+1

(
t, ρn0+1,

(
u′

n0+1(t)
)∗) + r (ρn0+1 − un0+1(t))

]
if t ∈ (0, tn0+1) ∪ (sn0+1, 1) .

Case (1). t ∈ [ 1
2n0+2 , 1).

Then since gn0+1(t, u, v) = f (t, u, v) for (u, v) ∈ (0,∞) × R (note t ∈ en0+1) we have(
ϕp

(
u′

n0+1

))′
(t) − (

ϕp
(
α′

n0+1

))′
(t)

=



−
[
f

(
t, α(t),

(
u′

n0+1(t)
)∗) + r (α (t) − un0+1(t)) + (

ϕp(α′)
)′

(t)
]

if t ∈ (tn0+1, sn0+1)

− [
f

(
t, ρn0+1,

(
u′

n0+1 (t)
)∗) + r

(
ρn0+1 − un0+1(t)

)]
if t ∈ (0, tn0+1) ∪ (

sn0+1, 1
)

< 0,

from (2.2) and (2.3).

Case (2). t ∈ (0, 1
2n0+2 ).

Then since gn0+1(t1, u, v) equals

min
{

max
{

f
(

1
2n0+1

, u, v

)
, f (t, u, v)

}
, max

{
f

(
1

2n0+2
, u, v

)
, f (t, u, v)

}}

we have

gn0+1(t, u, v) ≥ f (t, u, v)
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and

gn0+1(t, u, v) ≥ min
{

f
(

1
2n0+1

, u, v

)
, f

(
1

2n0+2
, u, v

)}

for (u, v) ∈ (0,∞) × R. Thus we have(
ϕp

(
u′

n0+1

))′
(t) − (

ϕp
(
α′

n0+1

))′
(t)

≤




−
[
f

(
t, α(t),

(
u′

n0+1(t)
)∗) + r (α (t) − un0+1(t)) + (

ϕp (α′)
)′

(t)
]

ift ∈ (
tn0+1, sn0+1

)
−

[
min

{
f

(
1

2n0+1 , ρn0+1,
(
u′

n0+1(t)
)∗)

, f
(

1
2n0+2 , ρn0+1,

(
u′

n0+1(t)
)∗)}

+ r (ρn0+1 − un0+1(t))
]

if t ∈ (
0, tn0+1

) ∪ (
sn0+1, 1

)
< 0,

from (2.2) and (2.3) since

f
(

1
2n0+1

, ρn0+1,
(
u′

n0+1(t)
)∗

)
≥ 0 and f

(
1

2n0+2
, ρn0+1,

(
u′

n0+1 (t)
)∗

)
≥ 0

because

f
(
t, ρn0+1,

(
u′

n0+1(t)
)∗) ≥ 0 for t ∈

[
1

2n0+2
, 1

]

and 1
2n0+1 ∈ [ 1

2n0+2 , 1].
Consequently (2.16) is true. Thus

α(t) ≤ αn0+1(t) ≤ un0+1(t) for t ∈ [0, 1] . (2.18)

Next we show that

un0+1(t) ≤ un0 (t) for t ∈ [0, 1] . (2.19)

If (2.19) is not true then un0+1 − un0 would have a positive absolute maximum at say
τ0 ∈ (0, 1) , in which case (un0+1 − un0 )′(τ0) = 0 and

(
ϕp

(
u′

n0+1

))′
(τ0) − (

ϕp
(
u′

n0

))′
(τ0) ≤ 0. (2.20)

The proof is as above. Then un0+1 (τ0) > un0 (τ0) together with gn0 (τ0, u, v) ≥
gn0+1 (τ0, u, v) for (u, v) ∈ (0,∞) × R gives (note (u′

n0+1(τ0))∗ = (u′
n0

(τ0))∗ = u′
n0

(τ0)
since Mn0+1 ≥ Mn0 and |u′

n0
|∞ ≤ Mn0 )

(
ϕp

(
u′

n0+1

))′
(τ0) − (

ϕp
(
u′

n0

))′
(τ0)

= − [
gn0+1

(
τ0, un0 (τ0) ,

(
u′

n0+1 (τ0)
)∗) + r (un0 (τ0) − un0+1 (τ0))

] − (
ϕp

(
u′

n0

))′
(τ0)

≥ −[(
ϕp

(
u′

n0

))′
(τ0) + gn0

(
τ0, un0 (τ0) , u′

n0
(τ0)

)] − r (un0 (τ0) − un0+1 (τ0))

= −r (un0 (τ0) − un0+1 (τ0))

> 0,
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which is a contradiction. Thus (2.19) holds. Next we show that∣∣u′
n0+1

∣∣
∞ ≤ Mn0+1. (2.21)

Essentially the same argument as before guarantees that (2.21) holds. As a result

− (
ϕp

(
u′

n0+1

))′ = gn0+1
(
t, un0+1, u′

n0+1

)
on (0, 1).

Now proceed inductively to construct un0+2, un0+3, · · · as follows. Suppose we have uk

for some k ∈ {n0 + 1, n0 + 2} with α(t) ≤ αk(t) ≤ uk(t) ≤ uk−1 (t) (≤ β(t)) for t ∈ [0, 1] .
Then consider the boundary value problem{− (

ϕp (u′)
)′ = g∗

k+1 (t, u, u′) (0 < t < 1),

u(0) = u(1) = ρk+1,
(2.22)

where

g∗
k+1(t, u, v) =




gk+1(t, ρk+1, v
∗) + r(ρk+1 − u), u(t) ≤ ρk+1

gk+1(t, u, v∗), ρk+1 ≤ u(t) ≤ uk(t)

gk+1(t, uk, v
∗) + r(uk − u), u(t) ≥ uk(t)

with

v∗ =



Mk+1, v > Mk+1

v, −Mk+1 ≤ v ≤ Mk+1

−Mk+1, v < −Mk+1;

here Mk+1 ≥ Mk is such that (with ε = min[0,1] αk+1(t) and �ε and q are as described
in (2.5))

|f (t, u, v)| ≤ q(t)�ε(|v|) for (t, u, v) ∈ (0, 1) × [ε,∞) × R

and ∫ 1

0
q(s) ds <

∫ ϕp(Mk+1)

0

du

�ε

(
ϕ−1

p (u)
) .

There exists a solution uk+1 ∈ C1[0, 1] with (ϕp(u′
k))′ ∈ C(0, 1) to (2.22) and essentially

the same reasoning as above yields

α(t) ≤ αk+1(t) ≤ uk+1(t) ≤ uk(t),
∣∣u′

k+1(t)
∣∣ ≤ Mk+1 for t ∈ [0, 1] (2.23)

with

−(ϕp(u′
k+1))′ = gk+1(t, uk+1, u′

k+1) for 0 < t < 1.

Now consider the interval
[

1
2n0+1 , 1 − 1

2n0+1

]
. We claim that




{u(j)
n }∞n=n0+1, j = 0, 1, is a bounded, equicontinuous

family on
[

1
2n0+1 , 1 − 1

2n0+1

]
.

(2.24)
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First note that

|un|∞ ≤ ∣∣un0

∣∣
∞ ≤ sup

[0,1]
β(t) = a0 for t ∈ [0, 1] and n ≥ n0 + 1. (2.25)

Let

ε = min
t∈

[
1

2n0+1 ,1− 1

2n0+1

] α(t).

Then (2.5) guarantees the existence of �ε and q (as described in (2.5)) with

|f (t, u, v)| ≤ q(t)�ε(|v|) for (t, u, v) ∈ (0, 1) × [ε,∞) × R.

This implies that

|gn(t, un(t), u′
n(t))| ≤ q(t)�ε(|u′

n(t)|) for t ∈ [a, b] =
[

1
2n0+1

, 1 − 1
2n0+1

]
⊆ en0

and n ≥ n0 + 1. As a result

|(ϕp(u′
n))′| ≤ q(t)�ε(|u′

n(t)|) for t ∈ [a, b] and n ≥ n0 + 1. (2.26)

The mean value theorem implies that there exists τ1,n ∈ (a, b) with

|u′(τ1,n)| = |u(b) − u(a)|
b − a

≤ 2a0

b − a
= dn0 for n ≥ n0.

Fix n ≥ n0 + 1 and let t ∈ [a, b] . Without loss of generality assume that u′
n(t) > dn0 .

Then there exists τ1 ∈ (a, b) with u′
n (τ1) = dn0 and u′

n(s) > dn0 for s between τ1 and t.
Without loss of generality assume that τ1 < t. From (2.26) we have

(ϕp(u′
n(s)))′

�ε(|u′
n(s)|) ≤ q(s) for s ∈ (τ1, t),

so integration from τ1 to t yields

∫ ϕp(u′
n(t))

ϕp(dn0 )

du

�ε

(
ϕ−1

p (u)
) ≤

∫ 1

0
q(s) ds.

Let In0 (z) = ∫ ϕp(z)

ϕp(dn0 )
du

�ε(ϕ−1
p (u)) , so

∣∣u′
n(t)

∣∣ ≤ I−1
n0

(∫ 1

0
q(s) ds

)
≡ Rn0 . (2.27)

A similar bound is obtained for the other cases, so

|u′
n(s)| ≤ Rn0 for s ∈ [a, b] =

[
1

2n0+1
, 1 − 1

2n0+1

]

and n ≥ n0 + 1. Now (2.25), (2.26) and (2.27) guarantee that (2.24) holds. The Arzela-
Ascoli theorem guarantees the existence of a subsequence Nn0 of integers and a function
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zn0 ∈ C1[ 1
2n0+1 , 1 − 1

2n0+1 ] with u(j)
n , j = 0, 1, converging uniformly to z(j)

n0 on [ 1
2n0+1 , 1 −

1
2n0+1 ] as n → ∞ through Nn0 . Similarly

{
{u(j)

n }∞n=n0+2, j = 0, 1, is a bounded, equicontinuous

family on [ 1
2n0+2 , 1 − 1

2n0+2 ],

so there is a subsequence Nn0+1 of Nn0 and a function

zn0+1 ∈ C1
[

1
2n0+2

, 1 − 1
2n0+2

]

with u(j)
n , j = 0, 1, converging uniformly to z(j)

n0+1 on [ 1
2n0+2 , 1 − 1

2n0+2 ] as n → ∞ through
Nn0+1. Note zn0+1 = zn0 on [ 1

2n0+1 , 1 − 1
2n0+1 ] since Nn0+1 ⊆ Nn0 . Proceed inductively to

obtain subsequences of integers

Nn0 ⊇ Nn0+1 ⊇ . . . . . . ⊇ Nk ⊇ . . . . . .

and functions

zk ∈ C1
[

1
2n0+1

, 1 − 1
2n0+1

]

with

u(j)
n , j = 0, 1, converging uniformly to z(j)

k on
[

1
2n0+1

, 1 − 1
2n0+1

]

as n → ∞ through Nk, and

zk = zk−1 on
[

1
2k

, 1 − 1
2k

]
.

Define a function u : [0, 1] → [0,∞) by u(t) = zk(t) on
[ 1

2k+1 , 1 − 1
2k+1

]
and u(0) =

u(1) = 0. Notice u is well defined and

α(t) ≤ u(t) ≤ un0 (t) ≤ β(t) for t ∈ (0, 1) .

Now let [a, b] ⊂ (0, 1), be a compact interval. There is an index n∗ such that [a, b] ⊂[ 1
2n+1 , 1 − 1

2n+1

]
for all n > n∗ and therefore, for all n > n∗

−(ϕp(u′
n))′ = f (t, un, u′

n) for a ≤ t ≤ b.

On the other hand, α ∈ C [0, 1] , α(t) > 0 for all 0 < t < 1 so let r = mina≤t≤b α(t) > 0.

Moreover, (2.5) guarantees that there exists q and �ε(|v|) (with ε = r) such that

|f (t, u, v)| ≤ q(t)�ε(|v|), (t, u, v) ∈ (0, 1) × [ε,∞) × R.

It is easy to see that there exists a continuous function f : (0, 1) × R2 → R such that

|f (t, u, v)| ≤ q(t)�ε(|v|), (t, u, v) ∈ (0, 1) × R2
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and

f (t, u, v) = f (t, u, v) for all (t, u, v) ∈ (0, 1) × [ε,∞) × R.

It is clear that un(t) ≥ ε, a ≤ t ≤ b for all n ≥ n0. Moreover

− (
ϕp

(
u′

n

))′ = f
(
t, un, u′

n

)
for a ≤ t ≤ b.

There exists a subsequence S of {n∗ + 1, n∗ + 2, · · ·} with

max
a≤t≤b

|un(t) − u(t)| → 0 and max
a≤t≤b

∣∣u′
n (t) − u′(t)

∣∣ → 0 as n → ∞.

Now (ϕp (u′))′ ∈ C [a, b] and

−(ϕp(u′))′ = f (t, u, u′) for a ≤ t ≤ b.

Since [a, b] ⊂ (0, 1) is arbitrary, we find that

(ϕp(u′))′ ∈ C(0, 1) and − (ϕp(u′))′ = f (t, u, u′) for 0 < t < 1.

It remains to show u is continuous at 0 and 1. Let ε > 0 be given. Now since
limn→∞ un(0) = 0 there exists n1 ∈ {n0, n0 + 1, . . .} with un1 (0) < ε

2 . Next since un1 ∈
C [0, 1] there exists δn1 > 0 with

un1 (t) <
ε

2
for t ∈ [

0, δn1

]
.

Now for n ≥ n1 we have, since {un(t)}n∈N0
is nonincreasing for each t ∈ [0, 1] ,

α(t) ≤ un(t) ≤ un1 (t) <
ε

2
for t ∈ [

0, δn1

]
.

Consequently

α(t) ≤ u(t) ≤ ε

2
< ε for t ∈ (0, δn1 ]

and so u is continuous at 0. Similarly u is continuous at 1. As a result u ∈ C [0, 1] .

Suppose that (2.1)–(2.3), (2.5) hold and in addition assume the following
conditions are satisfied:

−(ϕp(α′))′ < f (t, u, α′(t)) for (t, u) ∈ (0, 1) × {u ∈ (0,∞) : u < α(t)} (2.28)

and 


∃ β ∈ C1[0, 1], (ϕp(β ′))′ ∈ C(0, 1),
with β(t) ≥ ρn0 for t ∈ [0, 1] and
−(ϕp(β ′))′ ≥ f (t, β(t), β ′(t)) for t ∈ (0, 1) and

−(ϕp(β ′))′ ≥ f
(

1
2n0+1 , β(t), β ′(t)

)
for t ∈ (

0, 1
2n0+1

)
.

(2.29)

Then the result in Theorem 2.1 is again true. This follows immediately from
Theorem 2.1 once we show that (2.5) holds i.e. once we show that β(t) ≥ α (t) for
t ∈ [0, 1] . Suppose it is false. Then α − β would have a positive absolute maximum
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at say τ0 ∈ (0, 1), so (α − β)′ (τ0) = 0 and
(
ϕp (α′)

)′
(τ0) − (

ϕp (β ′)
)′

(τ0) ≤ 0. Now
α (τ0) > β (τ0) and (2.28) implies that

f (τ0, β(τ0), β ′(τ0)) + (ϕp(α′))′(τ0) = f (τ0, β(τ0), α′(τ0)) + (ϕp(α′))′(τ0) > 0,

and this together with (2.29) yields the inequality

(ϕp(α′))′(τ0) − (ϕp(β ′))′(τ0) ≥ (ϕp(α′))′(τ0) + f (τ0, β(τ0), β ′(τ0)) > 0,

which is a contradiction. Thus we have the following result.

COROLLARY 2.2. Let n0 ∈ {1, 2, . . .} be fixed and suppose (2.1)–(2.3) , (2.5) , (2.28)
and (2.29) hold. Then (1.1) has a solution u ∈ C [0, 1] ∩ C1(0, 1) with (ϕp (u′))′ ∈ C(0, 1)
and with α(t) ≤ u (t) ≤ β(t) for t ∈ [0, 1] .

REMARK 2.1. (i) If in (2.2) we replace 1
2n+1 ≤ t ≤ 1 with 0 ≤ t ≤ 1 − 1

2n+1 then one
would replace (2.4) with




∃ β ∈ C1 [0, 1] , (ϕp (β ′))′ ∈ C(0, 1),
with β(t) ≥ α(t), β(t) ≥ ρn0 for t ∈ [0, 1] and
− (

ϕp (β ′)
)′ ≥ f (t, β(t), β ′(t)) for t ∈ (0, 1) and

− (
ϕp (β ′)

)′ ≥ f
(

1 − 1
2n0+1 , β(t), β ′(t)

)
for t ∈

(
1 − 1

2n0+1 , 1
)

.

(2.30)

(ii) If in (2.2) we replace 1
2n+1 ≤ t ≤ 1 with 1

2n+1 ≤ t ≤ 1 − 1
2n+1 then one would replace

(2.4) with


∃ β ∈ C1 [0, 1] , (ϕp (β ′))′ ∈ C(0, 1),
with β(t) ≥ α(t), β(t) ≥ ρn0 for t ∈ [0, 1] and
− (

ϕp (β ′)
)′ ≥ f (t, β(t), β ′(t)) for t ∈ (0, 1) and

− (
ϕp (β ′)

)′ ≥ f
(

1
2n0+1 , β(t), β ′ (t)

)
for t ∈

(
0, 1

2n0+1

)
− (

ϕp (β ′)
)′ ≥ f

(
1 − 1

2n0+1 , β(t), β ′(t)
)

for t ∈
(

1 − 1
2n0+1 , 1

)
.

(2.31)

This is clear once one change the definition of en and θn. For example in case (ii) , take

en =
[

1
2n+1

, 1 − 1
2n+1

]
and θn(t) = max

{
1

2n+1
, min

{
t, 1 − 1

2n+1

}}
.

3. Construction of α and β. Suppose the following condition is satisfied:


let n ∈ {n0, n0 + 1, . . .} and associated with each n we
have a constant ρn such that {ρn} is a decreasing
sequence with limn→∞ ρn = 0 and there exists a constant
k0 > 0 such that for 1

2n+1 ≤ t ≤ 1, 0 < u ≤ ρn and v ∈ R we have
f (t, u, v) > k0.

(3.1)

We will show if (3.1) holds then (2.3) (and of course (2.2)) and (2.28) are satisfied.
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Using Lemma 2.2, we know there exists a function λ ∈ C1 [0, 1] such that ϕp(λ′) ∈
C1[0, 1], λ(0) = λ(1) = 0, M = max0≤t≤1 |(ϕp(λ′(t)))′| > 0 and

0 < λ(t) ≤ ρn, t ∈ en\en−1 for n ≥ 1.

Let r = sup[0,1]

∣∣λ′ (t)
∣∣ . From (3.1) there exists k0 > 0 with

f (t, u, v) > k0 for t ∈ (0, 1), 0 < u < λ(t) and v ∈ R.

Let

m = min

{
1,

(
k0

M

) 1
p−1

}
.

Let α(t) ≡ mλ(t) for t ∈ [0, 1]. Then

|(ϕp(α′))′| = ϕp(m)|(ϕp(λ′))′|
≤ ϕp(m)M

≤ k0

M
M = k0,

so

(ϕp(α′))′ + f (t, α(t), v) ≥ k0 − k0 = 0 for (t, v) ∈ (0, 1) × R (3.2)

i.e. (2.3) is satisfied. On the other hand

(ϕp(α′))′ + f (t, u, α′(t)) ≥ f (t, u, α′(t)) − k0

> k0 − k0

= 0 for (t, u) ∈ (0, 1) × {u ∈ (0,∞) : u < α(t)},
so (2.28) is satisfied.

Now we discuss the existence of an upper solution β.

Consider the following conditions:


there exist continuous functions q : (0, 1) → [0,∞), � : [0,∞) → (0,∞) and
there exist h > 0 continuous and nondecreasing on [0,∞) such that
|f (t, u, v)| ≤ q(t)h (u) �(|v|) for (t, u, v) ∈ (0, 1] × [ρn0 ,∞) × R

(3.3)




there exist M > ρn0 and N > 0 such that

h (M)
∫ 1

0 q(s) ds <
∫ ϕp(N)

0
du

�
(
ϕ−1

p (u)
) (3.4)

M − ρn0 > ϕ−1
p (Ch(M))b0 (3.5)

where 
 b0 = max

{∫ 1
2

0 ϕ−1
p

(∫ 1
2

s q (r) dr
)

ds,
∫ 1

1
2
ϕ−1

p

(∫ s
1
2

q (r) dr
)

ds
}

and

C = max−N≤v≤N �(|v|)
(3.6)
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for any ε > 0, there exists a continuous function
�ε : [0,∞) → (0,∞) such that
|f (t, u, v)| ≤ q(t)�ε (|z|) for (t, u, v) ∈ (0, 1) × [ε, M] × R,∫ 1

0 q(s)ds < ∞ and
∫ 1

0 q (s) ds <
∫ ∞

0
du

�ε(ϕ−1
p (u))

(3.7)

and

f (t, u, v) is nonincreasing on
(

0,
1

2n0+1

)
for each fixed (u, v) ∈ [ρn0 , M] × [−N, N].

(3.8)

We show if conditions (3.3)–(3.5), (3.7), (3.8) (here b0 and C are as in (3.6)) hold then
(2.4) and (2.5) hold.

Consider the problem{−(ϕp(u′))′ = f ∗(t, u, u′), 0 < t < 1

u(0) = u(1) = ρn0

(3.9)

where

f ∗(t, u, v) =



f (t, ρn0 , v
∗) + r (ρn0 − u) , u ≤ ρn0

f (t, u, v∗), ρn0 ≤ u ≤ M
f (t, M, v∗) + r(M − u), u ≥ M

with

v∗ =



N, v > N
v, −N ≤ v ≤ N
−N, v < −N.

From [5] we know that (3.9) has a solution u ∈ C1 [0, 1] with (ϕp (u′))′ ∈ C(0, 1). We
first show that

u(t) ≥ ρn0 , t ∈ [0, 1] . (3.10)

Suppose that (3.10) is not true. Then there exists a t0 ∈ (0, 1) with u (t0) < ρn0 , u′ (t0) = 0
and

(ϕp(u′))′(t0) ≥ 0.

However note

(ϕp(u′))′(t0) = −[ f (t0, ρn0 , (u′(t0))∗) + r(ρn0 − u(t0))]

= − [
f (t0, ρn0 , 0) + r (ρn0 − u (t0))

]
< 0,

a contradiction.
Consequently (3.10) is true. Next we show

u(t) ≤ M for t ∈ [0, 1] . (3.11)

Suppose (3.11) is false. Now since u (0) = u(1) = ρn0 there exists either (i) t1, t2 ∈
(0, 1) with ρn0 ≤ u(t) ≤ M for t ∈ [0, t2), u (t2) = M and u(t) > M on (t2, t1) with
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u′ (t1) = 0; or (ii) t3, t4 ∈ (0, 1), t4 < t3 with ρn0 ≤ u ≤ M for t ∈ (t3, 1], u (t3) = M
and u (t) > M on (t4, t3) with u′ (t4) = 0.

We can assume without loss of generality that either t1 ≤ 1
2 or t4 ≥ 1

2 . Suppose
that t1 ≤ 1

2 . Notice that for t ∈ (t2, t1) we have

(ϕp(u′))′ = f ∗(t, u, u′) ≤ Cq(t)h (M) (C is defined in (3.6) ). (3.12)

Integrate (3.12) from t2 to t1 to obtain

ϕp(u′(t2)) ≤ Ch(M)
∫ t1

t2

q(s) ds

and this together with the fact that u (t2) = M yields

ϕp(u′(t2)) ≤ Ch(M)
∫ t1

t2

q(s) ds. (3.13)

Also for t ∈ (0, t2) we have

−(ϕp(u′))′ = f ∗(t, u, u′)
≤ Cq(t)h(u(t))

≤ Cq(t)h(M).

Integrate from t (t ∈ (0, t2)) to t2 to obtain

−ϕp(u′(t2)) + ϕp(u′(t)) ≤ Ch(M)
∫ t2

t
q(s) ds,

so

ϕp(u′(t)) ≤ Ch(M)
∫ t2

t
q(s) ds + ϕp(u′(t2)).

This together with (3.13) yields

ϕp(u′(t)) ≤ Ch(M)
∫ t1

t
q(s) ds for t ∈ (0, t2).

Thus

u′(t) ≤ ϕ−1
p (Ch(M))ϕ−1

p

(∫ t1

t
q(s) ds

)
for t ∈ (0, t2) .

Integrate from 0 to t2 to obtain

M − ρn0 ≤ ϕ−1
p (Ch(M))

∫ t2

0
ϕ−1

p

(∫ t1

t
q(s) ds

)
.

That is

M − ρn0 ≤ ϕ−1
p (Ch(M))

∫ 1
2

0
ϕ−1

p

(∫ 1
2

t
qρn0

(s) ds

)
dt

≤ ϕ−1
p (Ch (M)) b0.

This contradicts (3.5) so (3.11) holds (a similar argument yields a contradiction if
t4 ≥ 1

2 ).
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Thus we have

ρn0 ≤ u(t) ≤ M for t ∈ [0, 1] .

Next we show that

|u′|∞ = sup
t∈[0,1]

|u′(t)| ≤ N. (3.14)

Suppose (3.14) is false. Without loss of generality assume u′(t) �≤ N for some t ∈ [0, 1].
Then since u(0) = u(1) = ρn0 there exists τ1 ∈ (0, 1) with u′(τ1) = 0, and so there exists
τ2, τ3 ∈ (0, 1) with u′(τ3) = 0, u′(τ2) = N and 0 ≤ u′(s) ≤ N for s between τ3 and τ2.

Without loss of generality assume that τ3 < τ2. Now since ρn0 ≤ u(t) ≤ M for t ∈ [0, 1]
and (with ε = ρn0 )

(ϕp(u′))′ ≤ q(t)h(M)�ε(ϕp(u′(t))),

and so ∫ ϕp(N)

0

du

�ε(ϕ−1
p (u))

=
∫ τ2

τ3

(ϕp(u′))′

�ε(u′(s))
ds ≤ h (M)

∫ 1

0
q(s) ds.

This contradicts (3.4). The other cases are treated similarly. As a result ρn0 ≤ u(t) ≤ M
for t ∈ [0, 1] and |u′|∞ ≤ N.

Let β(t) = u(t) for t ∈ [0, 1]. Then


β ∈ C1[0, 1], (ϕpβ
′))′ ∈ C(0, 1),

with β(t) ≥ ρn0 for t ∈ [0, 1] and
−(ϕp(β ′))′ = f (t, β(t), β ′(t)) for t ∈ (0, 1)

and

− (
ϕp

(
β ′))′ = f

(
t, β(t), β ′ (t)

) ≥ f
(

1
2n0+1

, β (t) , β ′(t)
)

for t ∈
(

0,
1

2n0+1

)
.

As a result (2.4) and (2.5) are satisfied.

THEOREM 3.1. Suppose (2.1), (3.1) and (3.3) − (3.5), (3.7), (3.8) (here b0 and C
are as in (3.6)) hold. Then problem (1.1) has a solution u ∈ C[0, 1] ∩ C1(0, 1) with
(ϕp(u′))′ ∈ C(0, 1).

4. Examples.

EXAMPLE 1. Consider the boundary value problem{−u′′ = 1√
t

( 1
u2 − 1

)
h(u)(|u′| + 1), 0 < t < 1

u(0) = u(1) = 0
(4.1)

with

h(u) =



√
2u

40 + 0.05 for 0 ≤ u ≤ √
2

u2 − 1.9 for
√

2 < u.

Then (4.1) has a solution u ∈ C [0, 1] ∩ C1(0, 1) with (ϕp (u′))′ ∈ C(0, 1).
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To see that (4.1) has a solution we will apply Theorem 3.1. Let n ∈ {1, 2, · · ·} ,

p = 2 and ρn = 1√
n+1

. Let k0 = 0.05. Then, for 1
2n+1 ≤ t ≤ 1, 0 < u ≤ ρn and v ∈ R we

have

f (t, u, v) = 1√
t

(
1
u2

− 1
)

h(u)(|v| + 1)

≥ h(u) ((n + 1) − 1) ≥ 0.05 = k0,

so (3.1) is satisfied.
Let n0 = 1 so ρn0 =

√
2

2 , and let M = √
2 and N = 10. Let q(t) = 1√

t and �(v) =
|v| + 1. Then

C = max
v∈[−N,N]

�(v) = 11,

∫ 1

0

dt√
t

= 2, b0 =
∫ 1

2

0

∫ 1
2

s

dt√
t

ds =
√

2
6

,

so

|f (t, u, v)| ≤ q(t)h (u) �(|v|) for (t, u, v) ∈ (0, 1] × [ρ1,∞) × R.

Also notice that

h(M)
∫ 1

0
q(t) dt = 0.2,

∫ N

0

du
�(v)

= ln 10 ∼= 2.3026,

M − ρ1 =
√

2 −
√

2
2

=
√

2
2

and

Ch(M)b0 = 11 × 0.1 ×
√

2
6

= 11
√

2
60

.

As a result (3.3)–(3.5) are satisfied. We next establish (3.7).
Let �ε(v) = ( 1

ε2 + 1
)

(|v| + 1) . Then

|f (t, u, v)| ≤ q(t)�ε(|v|) for (t, u, v) ∈ (0, 1) × [ε, M] × R.

Also ∫ K

0

dv

�ε(v)
= ε2

1 + ε2

∫ K

0

dv

v + 1

≥ ε2

1 + ε2
ln (K + 1) → ∞ (as K → ∞)

i.e. ∫ ∞

0

dv

�ε

(
ϕ−1

p (v)
) = ∞

and ∫ 1

0

dt√
t

= 2.
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Then ∫ 1

0
q(s) ds < ∞ and

∫ 1

0
q (s) ds <

∫ ∞

0

du

�ε

(
ϕ−1

p (u)
) ,

so (3.7) holds. Finally f (t, u, v) is nonincreasing on
(
0, 1

4

)
for each fixed (u, v) ∈[

ρn0 , M
] × [−N, N], so (3.8) is satisfied. Theorem 3.1 guarantees that (4.1) has a

solution u ∈ C [0, 1] ∩ C1(0, 1) with (ϕp (u′))′ ∈ C (0, 1) .

EXAMPLE 2. Consider the boundary value problem{−(|u′|p−2u′)′ = 1√
tuα + |u′|β − r(t), 0 < t < 1

u(0) = u(1) = 0
(4.2)

with p > 1, α > 0, r ∈ C [0, 1] and β > 0 is such that∫ ∞

0

dv(
v

1
p−1 + 1

)β
= ∞.

Then (4.2) has a solution u ∈ C [0, 1] ∩ C1(0, 1).
Let n ∈ {1, 2, · · ·} and ρn = 1

n(1+C1)1/α where C1 = maxt∈[0,1] |r(t)| . Also let k0 = 1,

so for 1
2n+1 ≤ t ≤ 1, 0 < u ≤ ρn and v ∈ R we have

f (t, u, v) = 1√
tuα + |v|β − r(t)

≥ 1√
tuα − C1

≥ 1
uα − C1 ≥ 1 = k0

and so (3.1) holds. Next let

h(u) = 1 + 1
ρα

1
+ C1, q(t) = 1√

t

and �(v) = (v + 1)β for v ∈ [0,∞).

For (t, u, v) ∈ (0, 1] × [ρ1,∞) × R, we have

|f (t, u, v)| ≤ 1√
tρα

1
+ C1 + �(|v|)

≤ 1√
t

[
1
ρα

1
+ C1 + �(|v|)

]
≤ 1√

t

(
1 + 1

ρα
1

+ C1

)
�(|v|).

Let N > 0 be such that∫ ϕp(N)

0

dv(
v

1
p−1 + 1

)β
> 2

(
1 + 1

ρα
1

+ C1

)
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and M > 0 be such that

M > ρ1 + b0 (N + 1)
β

p−1

(
1 + 1

ρα
1

+ C1

) 1
p−1

where

b0 = max

{∫ 1
2

0

(√
2 − 2

√
s
) 1

p−1
ds,

∫ 1

1
2

(
2
√

s −
√

2
) 1

p−1
ds

}

Then (3.3)–(3.5) are satisfied. We next establish (3.7).
For any ε > 0, let

�ε(v) =
(

1 + 1
εα

+ C1

)
(v + 1)β for v ∈ [0,∞).

Now for (t, u, v) ∈ (0, 1] × [ε, M] × R, we have,

|f (t, u, v)| ≤ 1√
tεα + C1 + (|v| + 1)β

≤ 1√
t

( 1
εα + C1 + (|v| + 1)β

)
≤ q(t)

(
1 + 1

εα + C1
)

(|v| + 1)β

= q(t)�ε(|v|).
Also ∫ K

0

dv

�ε

(
ϕ−1

p (v)
) = εα

1 + (1 + C1)εα

∫ K

0

dv(
v

1
p−1 + 1

)β
→ ∞ (as K → ∞)

so ∫ ∞

0

dv

�ε

(
ϕ−1

p (v)
) = ∞.

As a result ∫ 1

0
q(s) ds < ∞ and

∫ 1

0
q(s) ds <

∫ ∞

0

du

�ε(ϕ−1
p (u))

,

so (3.7) holds. Finally f (t, u, v) is nonincreasing on
(
0, 1

4

)
for each fixed (u, v) ∈

[ρ1, M] × [−N, N], so (3.8) is satisfied. Theorem 3.1 guarantees that (4.2) has a solution
u ∈ C [0, 1] ∩ C1(0, 1) with (ϕp (u′))′ ∈ C(0, 1).
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