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A UNIVERSAL COEFFICIENT DECOMPOSITION
FOR SUBGROUPS INDUCED

BY SUBMODULES OF GROUP ALGEBRAS

MANFRED HARTL

ABSTRACT. Dimension subgroups and Lie dimension subgroups are known to sat-
isfy a ‘universal coefficient decomposition’, i.e. their value with respect to an arbitrary
coefficient ring can be described in terms of their values with respect to the ‘universal’
coefficient rings given by the cyclic groups of infinite and prime power order. Here
this fact is generalized to much more general types of induced subgroups, notably cov-
ering Fox subgroups and relative dimension subgroups with respect to group algebra
filtrations induced by arbitrary N-series, as well as certain common generalisations of
these which occur in the study of the former. This result relies on an extension of the
principal universal coefficient decomposition theorem on polynomial ideals (due to
Passi, Parmenter and Seghal), to all additive subgroups of group rings. This is possible
by using homological instead of ring theoretical methods.

It was first observed by Sandling [7] that dimension subgroups over an arbitrary
commutative ring of coefficients can be decomposed in terms of the dimension sub-
groups over the ‘universal’ coefficient rings Z and ZÛpeZ, where p and e run through all
primes and positive integers, respectively. Borrowing a notion from group cohomology
this property may be conveniently termed by saying that dimension subgroups satisfy
a ‘universal coefficient decomposition’. This property was conceptually proved and ex-
tended to Lie dimension subgroups by Parmenter, Passi and Sehgal [5], in developing
a theory of polynomial ideals and their induced subgroups for this purpose. But still,
important classes of induced subgroups are not covered by this theory, such as dimension
subgroups with respect to arbitrary N-series, relative dimension subgroups or Fox sub-
groups. So in this paper we prove the universal coefficient decomposition for subgroups
induced by a very general type of suitable submodules of group algebras (with respect to
subgroups), which includes not only all types of induced subgroups mentioned before,
but also certain common generalizations of them, such as ‘relative dimension subgroups
with respect to N-series’ or ‘relative Fox dimension subgroups’ (some of which are
explicitly computed in subsequent work). This result is based on a quite elementary
homological lemma which extends the universal coefficient decomposition proved in [5]
for polynomial ideals not only to all ideals, but even to all additive subgroups of group
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rings. So, surprisingly enough, it turns out that this nice property depends only on the
ring structure of the coefficient rings, not the one of group algebras.

Throughout in this paper R denotes a commutative ring with identity 1R. As usual,
the characteristic of R is the least non-negative integer n such that n1R = 0.

Let G be a group, R(G) its group algebra with coefficients in R, IR(G) the augmentation
ideal of R(G), In

R(G) its n-th associative and I(n)
R (G) its n-th Lie power, see [6, p. 2]. Write

iR:Z(G) ! R(G) for the canonical ring homomorphism extending the identity map on
G.

For an additive subgroup J of Z(G) let JR denote the R-submodule of R(G) spanned
by iR(J).

THEOREM 1. Let H be a subgroup of G and J ² Z(G)IZ(H) be a right H-submodule,
with the property that for all h 2 H there exists some n = n(h) ½ 1 such that (h�1Z)n 2 J.
Then for any commutative ring R with identity 1R the following properties hold.

(i) If characteristic of R is zero, then

G \ (1R + JR) =
Y

p2õ(R)

²
H \ tp

�
G mod

�
G \ (1Z + J)

��
\
�
G \ (1ZÛpeZ + JZÛpeZ)

�¦

where G\ (1R + JR) and all factors on the right-hand side are subgroups which mutually
commute. Here õ(R) = fp j p is a prime and pnR = pn+1R for some n ½ 0g, and for
p 2 õ(R), pe is the smallest power of p for which peR = pe+1R. (If õ(R) is empty then the
right hand side is to be interpreted as G \ (1Z + J)). By definition,

tp
�

G mod
�
G \ (1Z + J)

��
= fg 2 G j gpk

2 G \ (1Z + J) for some k ½ 0g

(ii) If characteristic of R is r Ù 0, then

G \ (1R + JR) = G \ (1ZÛrZ + JZÛrZ) =
\
j

G \ (1
ZÛp

ej
j Z

+ J
ZÛp

ej
j Z

)Ò

where r =
Q

pej

j is the prime factorization of r.

Before giving the proof we first discuss some

EXAMPLES 2. The following additive subgroups J of Z(G) satisfy the hypothesis of
the theorem:

(i) associative powers In
Z(G) for all n ½ 1 and Lie powers I(n)

Z
(G) for n ½ 2, taking

H = G and H = G0, respectively; in this case the theorem is due to [7] and [5]. Indeed,
for n ½ 2 one has I(n)

Z
(G) ² I(2)

Z
(G) = Z(G)IZ(G0) and In�1

Z (G0) ² I(n)
Z

(G) by Sandling’s
formula for I(n)

R (G), cf. [6, I.1.8].
(ii) subgroups J = MIZ(H), where H � G and M is any right H-submodule of IZ(G)

with the property that for all h 2 H there exists some n ½ 1 such that (h � 1Z)n 2 M. In
this case we obtain in [3] a homological construction of a right H-submodule J0R ² I2

R(H)
such that

G \
�
1R + MIR(H)

�
= H0 \

�
1R +

�
M \ IR(H)

�
IR(H) + J0R

�


In the important case that H is free one even has J0R = 0. This fact is further exploited in
[1].
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Thus we obtain

COROLLARY 3. The following common generalizations of classical types of induced
subgroups satisfy a universal coefficient decomposition:

(1) relative dimension subgroups

DN
nÒR(GÒK)

def
= G \

�
1 + IR(K)IR(G) + In

RÒN (G)
�

with respect to a subgroup K � G and an N-series N of G; here fIi
RÒN (G)g denotes the

ideal filtration of R(G) induced by N , cf. [6, III.1.5].
(2) relative Fox dimension subgroups

G \
�
1 + IR(K)IR(H) + In

RÒN (G)IR(H)
�

with respect to any subgroups KÒH � G and N-series N of G.

We remark that such groups with an N-series different from the lower central series
naturally arise in the study of classical Fox subgroups, namely when H is free (nilpotent)
or is one of the two factors of a semidirect product, as is shown in [1] and in subsequent
work. In [2] also the groups in (1), (2) above are calculated for n = 3Ò 2, respectively.

Now we turn to the proof of Theorem 1. As a key step we first obtain a generalization
of the ‘universal coefficient decomposition’ for polynomial ideals [5] to arbitrary additive
subgroups of Z(G).

THEOREM 4. Let J � Z(G) be any additive subgroup and R any commutative ring
with identity 1R. Then

(1) if characteristic of R is zero,

i�1
R JR =

X
p2õ(R)

n
tp
�
Z(G) mod J

�
\ (i�1

ZÛpeZJZÛpeZ)
o


If õ(R) is empty then the right hand side is to be interpreted as being J.
(ii) If characteristic of R is r Ù 0, then

i�1
R JR = i�1

ZÛrZJZÛrZ =
\
j

i�1
ZÛp

ej
j Z

J
ZÛp

ej
j Z

where r =
Q

pej

j is the prime factorization of r.

Theorem 4 rests on the following crucial homological

LEMMA 5. Let A be an abelian group and R be any ring with identity 1R. Consider
the homomorphism jR: A ! R 
 A, a 7! 1R 
 a. Let r = characteristic of R. Then

Ker(jR) = rA +
X

p2õ(R)
petp(A)(1)

for õ(R) and e = ep as in Theorem 1. If õ(R) is empty then r = 0, whence Ker(jR) = 0. If
r Ù 0 then Ker(jR) = rA.
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PROOF. The right hand side of (1) is contained in Ker(jR) since for p 2 õ(R), a 2 A
and some k ½ e such that pka = 0 we have 1R 
 pea = pe1R 
 a 2 pkR 
 a = 0.
Conversely, let uR:ZÛrZ >! R, uR(1) = 1R. Then the map jR factors as

jR: A !! AÛrA ≤ZÛrZ 
 A
uR
A
�! R 
 A(2)

Now consider the following part of a six-term exact sequence,

RÛh1Ri Ł A
ú

�! ZÛrZ
 A
uR
A
�! R 
 A ! RÛh1Ri 
 A ! 0Ò

where Ł denotes the torsion product of abelian groups and ú is the appropriate connecting
homomorphism. The inclusions of the torsion subgroups induce an isomorphism

t(RÛh1Ri) Ł t(A)
≤

�! RÛh1Ri Ł AÒ

as follows directly from the suitable six-term exact sequences. By the decomposition
t(X) =

L
ftp(X) j p primeg for any abelian group X and by additivity of the torsion

product we have

Im(ú) =
X

p prime
ú
�
tp(RÛh1Ri) Ł tp(A)

�


Let hxÒ pkÒ ai be a canonical generator of tp(RÛh1Ri) Ł tp(A), i.e. x 2 R, a 2 A such that
pkx = n1R for some integer n and pka = 0, cf. [4, V.6]. Then úhxÒ pkÒ ai = n1
a = 1
na.
Write n = plm with (pÒm) = 1. If l ½ k then úhxÒ pkÒ ai = 0, so we need only to consider
the case l Ú k. Let m0Ò p0 2 Z such that mm0 + pp0 = 1. Then

pl1R = plmm01R + plpp01R

= nm01R + pl+1p01R

= pkm0x + pl+1p01R

= pl+1(pk�l�1m0x + p01R)Ò

whence p 2 õ(R) and l ½ e. Thus úhxÒ pkÒ ai = 1
(plm)a 2 1
petp(A), and Ker(uR
A) =
Im(ú) ²

P
p2õ(R) 1 
 petp(A). By (2) equality (1) is proved.

Now suppose õ(R) = ;. Then Ker(jR) = rA. But if r Ù 0 then any prime not dividing
r belongs to õ(R), so r = 0.

Finally suppose r Ù 0. Let p 2 õ(R). If p does not divide r then tp(A) = rtp(A).
If p divides r write r = psr0 with (pÒ r0) = 1. Assuming e Ú s implies r0ps�11R =
r0ps�e�1pe1R ² r0ps�e�1pe+1R = rR = 0, which contradicts the fact that characteristic of
R = r. Thus e ½ s, and petp(A) ² pstp(A) = psr0tp(A) = rtp(A). Thus

P
p2õ(R) petp(A) ² rA,

whence Ker(jR) = rA by (1) which completes the proof.
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PROOF OF THEOREM 4. The map iR induces a homomorphism i0R:Z(G)ÛJ ! R(G)ÛJR,
so we can write i�1

R JRÛJ = Ker(i0R). But R(G) ≤R
Z(G) and JR = Im
�
R
J ! R
Z(G)

�
,

so by right exactness of the tensor product R(G)ÛJR ≤R 

�
Z(G)ÛJ

�
. Thus Ker(i0R) =

Ker
�

jR:Z(G)ÛJ ! R 

�
Z(G)ÛJ

��
, so we can apply Lemma 5 for A = Z(G)ÛJ. Just

note that

petp(A) = tp(A) \ peA

= tp(A) \ Ker(jZÛpeZ)

= tp
�
Z(G)ÛJ

�
\ (i�1

ZÛpeZJZÛpeZÛJ)

=
n

tp
�
Z(G) mod J

�
\ (i�1

ZÛpeZJZÛpeZ)
o
ÛJÒ

since J ² tp
�
Z(G) mod J

�
\ (i�1

ZÛpeZ
JZÛpeZ).

We still need the following useful little lemma which is well-known for J ² IZ(H),
see [8].

LEMMA 6. Let H be a subgroup of a group G and J ² R(G)IR(H) be any subset. Then
G \ (1R + J) ² H.

PROOF. Let T be a right transversal of H in G. Since R(G) is a free right H-module
with basis f[t]Ò t 2 Tg we have a composite isomorphism

†: R(G)ÛR(G)IR(H) ≤R(G) 
R(H) R ≤
M
t2T

R Ð [t]

Now suppose th 2 (1R + J) ²
�
1R + R(G)IR(H)

�
for some t 2 T, h 2 H. Then 0 =

†(th � 1R) = †
�
(t � 1R) + (h � 1R) + (t � 1R)(h � 1R)

�
= †(t � 1R) = [t] � [1], whence

t = 1 as was to be shown.

PROOF OF THEOREM 1. Case (ii) follows immediately from Theorem 4(ii). In order
to prove case (i) we shall proceed in several steps. Let us abbreviate

Up = H \ tp
�

G mod
�
G \ (1Z + J)

��
\
�
G \ (1ZÛpeZ + JZÛpeZ)

�
² GÒ

Wp = tp
�
Z(G) mod J

�
\ (i�1

ZÛpeZJZÛpeZ) ² Z(G)

STEP 1. For any commutative ring S with identity 1S, G \ (1S + JS) is a subgroup of
H. In fact, we have G \ (1S + JS) ² H by Lemma 6. This implies that G \ (1S + JS) is a
subgroup of H since for gÒ h 2 G \ (1S + JS),

gh�1 � 1S = (g � 1S)� (h � 1S)h�1 + (g � 1S)(h�1 � 1S) 2 JS

since JS is a right H-submodule of S(G).
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STEP 2. Let g 2 G \ (1R + JR). It will be shown that g is contained in the right-
hand side of the decomposition in (i), viewed as an ordered product of subsets of G
for the moment. Indeed, this is proved by a word-for-word copy of the proof of the
corresponding statement for dimension subgroups given on page 17 of [6], replacing the
reference to [6, Chapter I, Theorem 1.12] there by Theorem 4 above. The crucial point
is that g 2 H by Lemma 6, so the number n(g) is defined by hypothesis which implies

grs
� 1Z =

rsX
i=1

0
@rs

i

1
A(g � 1Z)i

�
n(g)�1X

i=1

0
@rs

i

1
A(g � 1Z)i mod J

� 0 mod J

by construction of r and s. Moreover, it has to be noted in addition that the element
gi = gqiui arising in the cited proof is contained in H and in G \ (1ZÛpeZ + JZÛpeZ) since g
is and since both of these terms are subgroups, cf. step 1 above.

STEP 3. Now let g 2 Up, p 2 õ(R). Then for some u ½ 0, gpu
2 G \ (1Z + JZ). For

i ½ 1 let Ki be the additive subgroup of Z(G) generated by the elements (g� 1Z)j, j ½ i.
Now the equation

gpu
� 1Z =

puX
k=1

0
@pu

k

1
A(g � 1Z)k

shows that

pu(g � 1Z) 2 K2 + J

Therefore,

puKi ² (K2 + J)Ki�1 ² K2Ki�1 + J = Ki+1 + J

as Ki�1 ² I(H) and J is a right H-submodule. Thus for n = n(g),

p(n�1)u(g � 1Z) 2 J + Kn ² J + (g � 1Z)nZ(H) ² J

since (g � 1Z)n 2 J. It follows that g � 1Z 2 Wp. Hence by Theorem 4, g � 1Z 2 i�1
R JR,

i.e. g 2 G\ (1R +JR). Since the latter term is a subgroup by step 1, we see that the product
on the right-hand side of the decomposition in (i) is contained in G \ (1R + JR). So still
regarding the right-hand side as an ordered product of subsets, the decomposition (i) is
proved. It remains to show that the factors Up are mutually commuting subgroups.

STEP 4. For proving that each factor Up is a subgroup it is sufficient to apply the
decomposition (i) just proved to a coefficient ring S which satisfies õ(S) = fpg with the
same number e as in R. Indeed, we then get Up = G \ (1S + JS) which is a subgroup by
step 1. Such a ring S can be obtained, for example, as a quotient of the polynomial ring
Z[X], modulo the ideal generated by the element pe � pe+1X.
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STEP 5. In order to show that the factors Up mutually commute, let pÒ q 2 õ(R)
and a 2 Up, b 2 Uq. Then by step 3, a � 1Z 2 Wp and b � 1Z 2 Wq, whence also
(a � 1Z)b 2 Wp, noting that Wp is a right H-submodule since J is. Thus

(ab � 1Z) = (a � 1Z)b + (b � 1Z) 2 Wp + Wq

Going through step 2 for g = ab and zp = (a � 1Z)b, zq = (b � 1Z) one finds elements
g1 = gq1u1 2 Up, g2 = gq2u2 2 Uq such that ab = g1g2 = g2g1. Hence UpUq ² UqUp and,
by symmetry, UqUp = UpUq. Thus the theorem is proved.
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