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A UNIVERSAL COEFFICIENT DECOMPOSITION
FOR SUBGROUPS INDUCED
BY SUBMODULES OF GROUP ALGEBRAS

MANFRED HARTL

ABSTRACT. Dimension subgroups and Lie dimension subgroups are known to sat-
isfy a‘universal coefficient decomposition’, i.e. their value with respect to an arbitrary
coefficient ring can be described in terms of their values with respect to the ‘ universal’
coefficient rings given by the cyclic groups of infinite and prime power order. Here
thisfact is generalized to much more general types of induced subgroups, notably cov-
ering Fox subgroups and relative dimension subgroups with respect to group algebra
filtrations induced by arbitrary N-series, as well as certain common generalisations of
these which occur in the study of the former. This result relies on an extension of the
principal universal coefficient decomposition theorem on polynomial ideals (due to
Passi, Parmenter and Seghal), to all additive subgroups of group rings. Thisis possible
by using homological instead of ring theoretical methods.

It was first observed by Sandling [7] that dimension subgroups over an arbitrary
commutative ring of coefficients can be decomposed in terms of the dimension sub-
groups over the ‘universal’ coefficient rings Z and Z / p°Z, where p and e run through all
primes and positive integers, respectively. Borrowing a notion from group cohomology
this property may be conveniently termed by saying that dimension subgroups satisfy
a‘universal coefficient decomposition’. This property was conceptually proved and ex-
tended to Lie dimension subgroups by Parmenter, Passi and Sehgal [5], in developing
a theory of polynomial ideals and their induced subgroups for this purpose. But still,
important classes of induced subgroupsare not covered by thistheory, such asdimension
subgroups with respect to arbitrary N-series, relative dimension subgroups or Fox sub-
groups. So in this paper we prove the universal coefficient decomposition for subgroups
induced by avery general type of suitable submodulesof group algebras (with respect to
subgroups), which includes not only all types of induced subgroups mentioned before,
but a so certain common generalizations of them, such as ‘relative dimension subgroups
with respect to N-series’ or ‘relative Fox dimension subgroups (some of which are
explicitly computed in subsequent work). This result is based on a quite elementary
homological lemmawhich extendsthe universal coefficient decomposition provedin [5]
for polynomial ideals not only to all ideals, but even to all additive subgroups of group
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rings. So, surprisingly enough, it turns out that this nice property depends only on the
ring structure of the coefficient rings, not the one of group algebras.

Throughout in this paper R denotes a commutative ring with identity 1gr. As usual,
the characteristic of Risthe least non-negative integer n such that nlg = 0.

Let G beagroup, R(G) itsgroup algebrawith coefficientsin R, Igr(G) the augmentation
ideal of R(G), I&(G) its n-th associativeand 11 (G) its n-th Lie power, see [6, p. 2]. Write
ir: Z(G) — R(G) for the canonical ring homomorphism extending the identity map on
G.

For an additive subgroup J of Z(G) let Jr denote the R-submodule of R(G) spanned
by ir(J).

THEOREM 1. Let H be a subgroup of G and J C Z(G)l(H) be aright H-submodule,
with thepropertythat for all h € H thereexistssomen = n(h) > 1suchthat (h—1;)" € J.
Then for any commutative ring R with identity 1 the following propertieshold.

(i) If characteristic of Ris zero, then

GN(r+3R = T {HNt(GMod(GN (L +9)) N (GN (L /pez + Iyyper))
pea(R)
where GN (1r +Jgr) and all factorson the right-hand side are subgroupswhich mutually
commute. Here o(R) = {p | p isa prime and p"R = p™!R for some n > 0}, and for
p € o(R), p° is the smallest power of p for which p°R = p**1R. (If o(R) is empty then the
right hand sideisto be interpreted as G N (17 + J)). By definition,

tp(csmod(c;m(lZ +J))) ={ge G| ¢ € GN (1, +J)for somek > 0}
(ii) If characteristicof Risr > 0, then
Gm(1R+‘]R) = Gm(]'Z/I'Z +‘]Z/FZ) = me (1z/pjelz +JZ/pJeJZ)’
j

wherer = Hpﬁ isthe prime factorization of r. ]
Before giving the proof we first discuss some

ExAMPLES 2. The following additive subgroups J of Z(G) satisfy the hypothesis of
the theorem:

(i) associative powers 13(G) for al n > 1 and Lie powers 11(G) for n > 2, taking
H = Gand H = G, respectively; in this case the theorem is due to [7] and [5]. Indeed,
for n > 2 one has 1(G) c 19(G) = 2(G)1(G') and 1771(G) € 11(G) by Sandling’s
formulafor 1©(G), cf. [6, 1.1.8].

(if) subgroupsJ = Ml (H), whereH < G and M is any right H-submodule of 1;(G)
with the property that for al h € H there existssomen > 1 suchthat (h— 1;)" € M. In
this casewe obtain in [3] ahomological construction of aright H-submodule J; C 13(H)
such that

GN (g +MIg(H)) =H'N (1R+ (M N 1r(H))Ir(H) +J,g>.

In theimportant casethat H is free one even has J; = 0. Thisfact is further exploited in

[1].
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Thus we obtain

CoRrOLLARY 3. The following common generalizations of classical types of induced
subgroups satisfy a universal coefficient decomposition:
(1) relative dimension subgroups

DN:(G. K) € G N (1+1r(K)IR(G) + 12y (G))

with respect to a subgroup K < G and an N-seriesN of G; here {liR.N (G)} denotesthe
ideal filtration of R(G) induced by N , cf. [6, 111.1.5].
(2) relative Fox dimension subgroups

GN (1 +Ir(K)IR(H) + 13y (G)|R(H))

with respect to any subgroupsK, H < G and N-seriesN of G.

We remark that such groups with an N-series different from the lower central series
naturally arise in the study of classical Fox subgroups, namely when H isfree (nilpotent)
or is one of the two factors of a semidirect product, asis shown in[1] and in subsequent
work. In [2] also the groupsin (1), (2) above are calculated for n = 3, 2, respectively.

Now weturn to the proof of Theorem 1. As akey step we first obtain ageneralization
of the‘ universal coefficient decomposition’ for polynomial ideals[5] to arbitrary additive
subgroups of Z(G).

THEOREM 4. Let J < Z(G) be any additive subgroup and R any commutative ring
with identity 1g. Then
(1) if characteristic of Ris zero,

iRR= > {to(Z(G)Ymod I) M (i7 ks dz/pe2)}-
pea(R)

If o(R) is empty then the right hand side isto be interpreted as being J.
(i) If characteristicof Risr > 0, then

iEl‘JR = ii/erJZ/rZ = O |£/lpﬁ ZJZ/pJel YA

wherer = Hqu isthe prime factorization of r. ]
Theorem 4 rests on the following crucial homological

LEMMA 5. Let A be an abelian group and R be any ring with identity 1. Consider
the homomorphismjr:A— R® A, a— 1lg® a. Letr = characteristicof R. Then

N Ker(jr) =rA+ > p°tp(A)
pea(R)

for o(R) and e = g, asin Theorem 1. If o(R) is empty then r = O, whence Ker(jr) = O. If
r > Othen Ker(jr) = rA.
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ProoF. Theright hand side of (1) is contained in Ker(jr) sincefor p € o(R), a € A
and some k > e such that p‘a = Owe have I ® pa = p’lr@ a € pP'lR® a = 0.
Conversely, let ur: Z /rZ >— R, ug(1) = 1g. Then the map jr factors as

) RA—A/IA=Z/IZOAYL RO A

Now consider the following part of a six-term exact sequence,

UR®RA

R/(1R) A Z /170 AL R® A— R/(1R) @ A— 0,

where x denotesthe torsion product of abelian groupsand r isthe appropriate connecting
homomaorphism. The inclusions of the torsion subgroupsinduce an isomorphism

t(R/(1r)) * t(A) — R/(1g) * A,

as follows directly from the suitable six-term exact sequences. By the decomposition
t(X) = @{tp(X) | pprime} for any abelian group X and by additivity of the torsion
product we have

M) = > 7(t(R/(1r)) * to(A)).

p prime

Let (x, p¥, a) be acanonical generator of t,(R/(1r)) * tx(A), i.e. X € R, a € A such that
p*x = nlg for someinteger n and p*a = 0, cf. [4, V.6]. Then7(x,p,a) = nl@a = 1®na.
Write n = p'mwith (p, m) = 1. If | > k then 7(x, p¥, ) = 0, so we need only to consider
thecasel < k. Let ', p’ € Z such that mm' +pp’ = 1. Then

p'1r = p'mni1z + plpp'lr
nm’lR + pl+1p/1R
pkmlx + lep/lR

— Al k=11, /
=p (P mx+p'lR),

whencep € o(R)and| > e. ThusT(x, p¥, a) = 1@(p'm)a € 12p°ty(A), and Ker(Ur@A) =
Im(1) C Ypeor) 1 ® Ptp(A). By (2) equality (1) is proved.

Now suppose o(R) = (. Then Ker(jr) = rA. But if r > 0 then any prime not dividing
r belongsto o(R), sor = 0.

Finally supposer > 0. Let p € o(R). If p does not divide r then t,(A) = rty(A).
If p divides r write r = p’ with (p,r’) = 1. Assuming e < s implies r'pS11g =
r'p>=¢1p%1g C r'ps ¢ 1p®*R = rR = 0, which contradicts the fact that characteristic of
R=r.Thuse > s, and p°ty(A) C p°tp(A) = pr'tp(A) = rty(A). Thus Zpeo(r) P°Lp(A) C A,
whence Ker(jr) = rA by (1) which completes the proof. L]

https://doi.org/10.4153/CMB-1997-005-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1997-005-0

UNIVERSAL COEFFICIENT DECOMPOSITION 51

PROOF OF THEOREM 4. Themapir inducesahomomorphismig: Z(G) /J — R(G)/ Jr,
sowecanwriteiz™Jr/J = Ker(ip). But R(G) =~ RoZ(G) and Jr = Im(R2J — R2Z(G)),
S0 by right exactness of the tensor product R(G) /Jr =R @ (Z(G)/J). Thus Ker(ig) =

Ker(jR:Z(G)/J — R® (Z(G)/J)), so we can apply Lemma 5 for A = Z(G)/J. Just

note that
Ptp(A) = tp(A) N P°A
= tp(A) N Ker(z/pez)
= tp(Z(G)/J) N (ii/lpezJZ/pez/J)
= {(Z(G)YModI) N (7 ez Iz pe2) } /-
sinceJ C ty(Z(G)mod J) N (iz/lpez\]z/pez). .

We still need the following useful little lemma which is well-known for J C 1(H),
see[8].

LEMMA 6. Let H bea subgroup of agroup G andJ C R(G)Ir(H) beany subset. Then
GN(lr+J) CH.

PrROCOF. Let T bearight transversal of H in G. Since R(G) is afree right H-module
with basis {[t].t € T} we have a composite isomorphism

¥:R(G)/R(G)Ir(H) 2 R(G) @rHy R tG? R-[t].

Now supposeth € (1g +J) C (1r + R(G)Ir(H)) for somet € T, h € H. Then 0 =

Y(th— 1r) = ¢((t — 1r) + (h— 1r) + (t — 1r)(h — 1r)) = (t — 1r) = [t] — [1], whence
t = 1 aswas to be shown. n

PROOF OF THEOREM 1. Case (ii) follows immediately from Theorem 4(ii). In order
to prove case (i) we shall proceed in several steps. Let us abbreviate

Up = HNt(GMod(GN (1 +3))) N (GN (L /pez + 3/pe2)) C G
Wp = tp(Z(G)mod ) N (i3 fer Iz pez) C Z(G).
SteP 1. For any commutative ring Swith identity 1s, G N (1s + Js) is a subgroup of
H. Infact, wehave GN (1s+ Js) C H by Lemma6. Thisimpliesthat GN (1s+ Js) isa
subgroup of H sincefor g,h € GN (1s+ Jg),
gh™ —1s=(g—1s) — (h— 1dh ™t +(g— 1g)(h™' — 1) € s

since Jsis aright H-submodule of G).
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StEP 2. Let g € GN (1g + Jr). It will be shown that g is contained in the right-
hand side of the decomposition in (i), viewed as an ordered product of subsets of G
for the moment. Indeed, this is proved by a word-for-word copy of the proof of the
corresponding statement for dimension subgroups given on page 17 of [6], replacing the
reference to [6, Chapter |, Theorem 1.12] there by Theorem 4 above. The crucial point
isthat g € H by Lemma 6, so the number n(g) is defined by hypothesiswhich implies

g —1; = rz <ris> 9- 1)
i=1

n(g)—1 /rs i

= > {.]@—-1)" modJ
i=1 \'

=0 modJ

by construction of r and s. Moreover, it has to be noted in addition that the element
g = g4 arising in the cited proof is contained inH and in G N (1 ez + Jz/pez) SiNCE Y
is and since both of these terms are subgroups, cf. step 1 above.

Step 3. Now letg € Up, p € o(R). Then for someu > 0, g € GN(1; + ). For
i > 1let K; be the additive subgroup of Z(G) generated by the elements (g — 1)}, > i.

Now the equation
u s / p k
o —1;= K 9—-1)
=\
shows that
P(g—1y) € Ko +J.
Therefore,

PU'Ki C (K2 +J)Ki_1 C KoKi_1 +J =Kjug +J

asKi_1 C I(H) and Jisaright H-submodule. Thusfor n = n(g),
PG —17) € I+ Ky CI+(g— 12)"Z(H) € J

since (g — 17)" € J. It follows that g — 1; € W,. Henceby Theorem4, g — 17 € iz!Jg,
i.e.g € GN(1g+JR). Sincethelatter termisasubgroup by step 1, we seethat the product
on the right-hand side of the decompositionin (i) is contained in G N (1 + Jr). So still
regarding the right-hand side as an ordered product of subsets, the decomposition (i) is
proved. It remains to show that the factors U, are mutually commuting subgroups.

STEP 4. For proving that each factor U is a subgroup it is sufficient to apply the
decomposition (i) just proved to a coefficient ring Swhich satisfies o(S) = {p} with the
same number e asin R. Indeed, we then get U, = G N (1s+ Js) which is a subgroup by
step 1. Such aring Scan be obtained, for example, as a quotient of the polynomial ring
Z[X], modulo the ideal generated by the element p® — p*1X.
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SteP 5. In order to show that the factors U, mutually commute, let p.q € o(R)
anda € Uy, b € Ug. Thenby step 3, a—1; € Wy, and b — 1; € W, whence also
(a— 1z)b € W, noting that W, is aright H-submodule since J is. Thus

(@b—17) = (a— 1)b+ (b — 17) € W, + W,

Going through step 2 for g = ab and z, = (a — 17)b, z5 = (b — 1;) one finds elements
g1 = gt € Up, g2 = g%* € Uq such that ab = g19» = g»0:. Hence UpUq C UgUp and,
by symmetry, UqUp, = UpUq. Thusthe theorem is proved. "
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