
16

Minkowski-like spacetimes

This chapter studies the existence and stability of Minkowski-like spacetimes,

that is, solutions to the vacuum Einstein field equations with vanishing cos-

mological constant. The main result of this chapter is very similar in spirit to

the main result concerning the global existence and stability of de Sitter-like

spacetimes of Chapter 15. There is, however, a key difference: while the results

in Chapter 15 are global in nature, the ones in the present chapter are semi-

global . More precisely, the spacetimes to be discussed arise as the development

of suitable initial data on hyperboloidal hypersurfaces – an examination of the

Penrose diagram of the Minkowski spacetime in Figure 16.1 reveals that these

hypersurfaces are not Cauchy hypersurfaces of the spacetime. Accordingly, only

a portion of the whole spacetime can be recovered from this type of initial value

problem. The main result of this chapter can be formulated as follows:

Theorem (semiglobal existence and stability of Minkowski-like space-

times). Small enough perturbations of hyperboloidal initial data for the

Minkowski spacetime give rise to solutions to the vacuum Einstein field equations

which exist globally towards the future and have an asymptotic structure similar

to that of the Minkowski spacetime.

This result was first proved in Friedrich (1986b) and subsequently extended

to the Einstein-Yang-Mills equations in Friedrich (1991). The original proof of

the result made use of the standard conformal Einstein field equations and is

similar to the argument given for the de Sitter spacetime in Section 15.3. In

this chapter a proof of the theorem is given which makes use of the extended

conformal field equations and conformal Gaussian systems following the ideas in

Lübbe and Valiente Kroon (2009). This approach allows for a more detailed and

explicit discussion of the structure of the conformal boundary.

The restriction of the analysis of the present chapter to the hyperboloidal

initial value problem may seem mysterious at first sight. As will be discussed

in some detail in Chapter 20, the initial data for the conformal Einstein field
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438 Minkowski-like spacetimes

Figure 16.1 Penrose diagram of the Minkowski spacetime and the regions
that can be recovered from data on the standard hyperboloid H�. The future
and past domains of dependence D+(H�) and D−(H�) are depicted in grey
shading. Observe that H� is not a Cauchy hypersurface as there are portions
of the conformal diagram that cannot be recovered from the data on H�.

equations on an asymptotically Euclidean (Cauchy) hypersurface is generically

singular at spatial infinity – the various issues associated to this singular

behaviour are usually known as the problem of spatial infinity.

Despite the above limitation, hyperboloidal initial value problems arise

naturally in evolution problems in which the behaviour of gravitational radiation

is the main concern; see, for example, Rinne and Moncrief (2013) or Zenginoglu

(2008). While the ADM mass – which is computed on asymptotically flat

hypersurfaces (see Section 11.6.1) – is a conserved quantity, the notion of mass

associated to hyperboloidal hypersurfaces, the so-called Bondi mass, shows

a monotonic behaviour, and so it describes the process of mass loss due to

gravitational radiation; see Section 10.4.

16.1 The Minkowski spacetime and the conformal field equations

The first step of the stability analysis is a study of the Minkowski spacetime in

the gauge used to deduce the conformal evolution equations of Proposition 13.3.

16.1.1 The basic representation

As discussed in Section 6.2, the Minkowski spacetime (R4, η̃) can be conformally

embedded into the expanding Einstein cylinder (R× S3, ḡE ) where

ḡE ≡ dτ̄ ⊗ dτ̄ −
(
1 +

τ̄2

4

)2

h̄,

by means of the conformal rescaling

ḡE = Θ2
M η̃, ΘM ≡ 2 cos2

ψ

2

(
1− 1

4
tan2

ψ

2
τ̄2
)
. (16.1)
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16.1 The Minkowski spacetime and the conformal field equations 439

The coordinate τ̄ is an affine parameter of the conformal geodesics (xE (τ̄), β̄E (τ̄))

with

xE (τ̄) = (τ̄ , xα
� ), x′

E (τ̄) = ∂ τ̄ , β̄E (τ̄) =
2τ̄

4 + τ̄2
dτ̄ .

The underlying geometry of the conformal representation of the Minkowski

spacetime described in the previous paragraph is that of the expanding cylin-

der. Accordingly, the geometric fields for this conformal representation of the

Minkowski spacetime coincide with those of the conformal representation of the

de Sitter spacetime discussed in Section 15.1.2. That is, one has

ē0 = 1, ē(AB)
0 = 0, (16.2a)

ēi = 0, ē(AB)
i =

4

4 + τ̄2
σAB

i, (16.2b)

fAB = 0, (16.2c)

ξ̄ABCD = − 4i

4 + τ̄2
hABCD, (16.2d)

χ̄(AB)CD =
2i

4 + τ̄2
hABCD, (16.2e)

ΘAB = 0, ΘABCD = − 2

4 + τ̄2
hABCD, (16.2f)

φABCD = 0. (16.2g)

It is important to emphasise, however, that the conformal gauge fields ΘM and

dM , relating the conformal representation to the physical Minkowski spacetime,

are different from those of the de Sitter spacetime.

A schematic representation of the conformal boundary associated to the above

conformal representation of the Minkowski spacetime is given in Figure 16.2.

It is observed that, as a consequence of the explicit time symmetry of the

Figure 16.2 Plot of the conformal boundary of the Minkowski spacetime
in the conformal Gaussian gauge given by Equation (16.1). This conformal
representation is explicitly time symmetric and does not contain the points i±

representing future and past null infinity. The image has been cropped. This
figure is a coordinate plot, not a conformal diagram; thus, null geodesics do
not have a slope of 45 degrees.
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440 Minkowski-like spacetimes

representation, the points i± representing future and past timelike infinity are not

included. This representation is not the most convenient one to use in analysing

a hyperboloidal initial value problem. A related, more convenient representation

is given in the next subsection.

16.1.2 A conformal representation adapted to the

standard hyperboloid

As discussed in Section 6.2, the Minkowski spacetime can be embedded into the

Einstein cylinder using the conformal factor

ΞM ≡ cos τ + cosψ.

In the following it will be convenient to shift the above standard embedding

by π/2 to the past with the replacement τ �→ τ̌ + π/2, so that the standard

Minkowski hyperboloid H� which is given by the condition τ = π/2 is now

located at τ̌ = 0; see Equation (6.26). Accordingly, one obtains the shifted

conformal factor

Ξ̌M ≡ cos

(
τ̌ +

π

2

)
+ cosψ = cosψ − sin τ̌ . (16.3)

In particular, the conformal factor embedding the hyperboloidal 3-manifold into

S3 is given by

Ω̄ ≡ cosψ.

One has that Ω̄ = 0 at ψ = π/2. Hence, it is natural to define

∂H� ≡
{
p ∈ S3 | ψ(p) = π

2

}
.

Observe that dΩ̄ �= 0 at ∂H�.

To relate the conformal representation of the Minkowski spacetime given by the

conformal factor in Equation (16.3) to the so-called expanding Einstein cylinder

discussed in Section 16.1.1, it is recalled that gE = Ξ̌2
M η̃ and ḡE = Θ̄2

E gE so that

ḡE = Θ̌2
M η̃, Θ̌ ≡ Θ̄E Ξ̌M .

The relation between the shifted coordinate τ̌ and the affine parameter τ̄ of the

conformal geodesics
(
xE (τ̄),βE (τ̄)

)
in the Einstein cylinder is, formally, the

same as the one between the original coordinate τ and τ̄ ; in particular, one

has that τ̄ = 0 if τ̌ = 0. Thus, using the conformal transformation properties

of conformal geodesics as described in Section 5.5.2, one finds that the pair(
x̌M (τ̌), β̌M (τ̌)

)
with

x̌M ≡ (τ̄ , xα
� ) =

(
cos2

τ̌

2
, xα

�

)
,

β̌M ≡ βE + Ξ̌−1
M dΞ̌M = tan

τ̌

2
dτ̌ +

1

sin τ̌ − cosψ

(
cos τ̌dτ̌ + sinψdψ

)
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16.1 The Minkowski spacetime and the conformal field equations 441

and

τ̌ = 2arctan
τ̄

2
(16.4)

gives rise to a congruence of conformal geodesics in the Minkowski spacetime

adapted to the conformal factor Ξ̌M in Equation (16.3). This congruence can

be used to construct a conformal Gaussian gauge system for the Minkowski

spacetime.

A calculation using standard trigonometric identities and the relation (16.4)

between the parameters τ̌ and τ̄ yields the expression

Θ̌ = cosψ

(
1− secψτ̄ +

τ̄2

4

)
(16.5)

for the conformal factor associated to the new conformal Gaussian gauge system.

This conformal factor vanishes whenever

τ̄ =
2± sinψ

cosψ
.

A plot of this conformal factor can be seen in Figure 16.3. Moreover, the

components of the covector ďM ≡ Θ̌β̌M with respect to a Weyl propagated

frame {ēa} such that ē0 = ˙̌xM are given by

β̌0 = ∂τ̄ Θ̌M , β̌i = ēi(Ω̄).

Finally, it follows from the discussion from the previous paragraphs that the

geometry of the conformal representation of the Minkowski spacetime given by

the conformal factor (16.5) is described by the fields (16.2a)–(16.2g); that is,

the geometry of this representation coincides with that of the expanding Einstein

Figure 16.3 Plot of the conformal boundary for the Minkowski spacetime in
a conformal Gaussian gauge adapted to the standard hyperboloid. In this
particular representation timelike infinity i+ is at a finite location. The set
∂H� denotes the intersection of the conformal boundary I + with the initial
hyperboloid H�. As in the case of Figure 16.2, this plot is not a conformal
diagram.
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442 Minkowski-like spacetimes

cylinder. In particular, a suitable Jacobi field zAB measuring the deviation of

the curves of the congruence of conformal geodesics is given by

z = 0, z(AB) =

(
1 +

τ̄2

4

)
z�(AB),

where z�(AB) is some fiduciary initial value at the standard hyperboloid H�;

compare Equation (15.14).

16.1.3 Initial data for the Minkowski spacetime

on the standard hyperboloid

The congruence of conformal geodesics giving rise to the conformal Gaussian

system is specified on the standard hyperboloid H� by the data

Θ̌� = cosψ, ď0� = −1, ďi� = ci(Ω̄).

On H�, the conformal fields satisfy the conditions

ē0 = 1, ē(AB)
0 = 0, (16.6a)

ēi = 0, ē(AB)
i = σAB

i, (16.6b)

fAB = 0, ξ̄ABCD = −ihABCD, χ̄(AB)CD = 0, (16.6c)

Θ̄AB = 0, Θ̄ABCD = −1

2
hABCD, (16.6d)

φABCD = 0. (16.6e)

16.2 Perturbations of hyperboloidal data for the

Minkowski spacetime

In what follows, it is assumed that one has a solution (H,h,K,Ω,Σ) to the

conformal Hamiltonian and momentum constraints, Equations (11.15a) and

(11.15b), with hyperboloidal boundary conditions as discussed in Section 11.7. It

is convenient to regard the hyperboloidal manifold H as a region of a 3-manifold

S ≈ S3. Following the conventions of the previous chapters, when regarding the

3-manifolds H and S as hypersurfaces of a four-dimensional spacetime one writes

H� and S�, respectively. One can use coordinates (xα) on S3 as coordinates on

H and introduce reference frame and coframe fields {ci} and {αi} by requiring

the identification between S and S3 to be a harmonic map; see the discussion in

Section 15.2.1.

Initial data for the conformal evolution equations can be obtained from the

basic initial data (H,h,K,Ω,Σ) using the procedure described in Section 11.4.3.

It will be assumed that the data can be written on the initial hyperboloid H� in

the form
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16.2 Perturbations of hyperboloidal data for the Minkowski spacetime 443

e0 = 1, e(AB)
0 = 0, (16.7a)

ei = 0, e(AB)
i = σAB

i + ĕ(AB)
i, (16.7b)

fAB = 0, (16.7c)

ξABCD = ξ̄ABCD + ξ̆ABCD, (16.7d)

χ(AB)CD = χ̄(AB)CD, (16.7e)

ΘAB = Θ̆AB, ΘABCD = Θ̄ABCD + Θ̆ABCD, (16.7f)

φABCD = φ̆ABCD, (16.7g)

with

ξ̄ABCD, χ̄(AB)CD, Θ̄ABCD

as given by Equations (16.6a)–(16.6e), while the fields

ĕ(AB)
i, ξ̆ABCD, χ̆(AB)CD, Θ̆AB, Θ̆ABCD, φ̆ABCD

describe the perturbation from standard hyperboloidal Minkowski data and

σAB
i are the spatial Infeld-van der Waerden symbols.

While the background fields σAB
i, ξ̄ABCD, χ̄(AB)CD, Θ̄ABCD are

defined on the whole of S ≈ S3, the perturbation fields ĕ(AB)
i, ξ̆ABCD,

χ̆(AB)CD, Θ̆AB, Θ̆ABCD, φ̆ABCD are defined only on H. To apply the

basic existence and stability result, Theorem 12.4, to the present situation

one extends the hyperboloidal initial data set on H to data on S. Using the

extension theorem, Proposition 12.2, and given m ≥ 4 there exists a linear

operator E : Hm(H,CN ) → Hm(S,CN ) such that for ŭ� ∈ Hm(H,CN ) then

(E ŭ�)(x) = ŭ�(x) almost everywhere in H and

‖ E ŭ� ‖m,S≤ K ‖ ŭ� ‖m,H,

with K a universal constant for fixed m. As in the case of the de Sitter spacetime,

the background initial data ů� is defined on the whole of S so that the extended

data

u� = ů� + E ŭ� (16.8)

is a well-defined function in Hm(S,CN ). The extension of the hyperboloidal

data given by (16.8) is non-unique and, in general, will not satisfy the conformal

constraint equations on S \ H. As the norm ‖ E ŭ� ‖m,S is dominated by the

norm ‖ ŭ� ‖m,H, then ‖ E ŭ� ‖m,S can be made as small as necessary by

making ‖ u� ‖m,H suitably small. In complete analogy to the case of the de

Sitter spacetime, one says that a hyperboloidal initial data set of the form

(16.7a)–(16.7g) is ε-small (in the norm ‖ ‖S,m) if

‖ ĕ(AB)
i ‖S,m + ‖ ξ̆ABCD ‖S,m + ‖ χ̆ABCD ‖S,m

+ ‖ Θ̆AB ‖S,m + ‖ Θ̆ABCD ‖S,m + ‖ φ̆ABCD ‖S,m< ε,
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444 Minkowski-like spacetimes

Figure 16.4 Domain of dependence D+(H�) of data for the conformal evolu-
tion equations on a hyperboloid H�: on the left, a schematic representation of
the setup; on the right, a three-dimensional depiction. To make use of Kato’s
existence theorem, the data have to be extended to S�\H� where S� ≈ S3. The
domain of dependence of the extended data D+(S�) corresponds, in principle,
to the cylinder [0,∞)×S3. The chronological future of the extension on S�\H�,
denoted by I+(S� \ H�), does not intersect the domain of dependence of the
hyperboloidal data D+(H�), and, thus, it is independent of the particular
extension being used.

where it is understood that each of the terms in the above expression comprises

a sum over all the independent components of the spinorial field under

consideration.

The extended data (16.8) is non-unique. This non-uniqueness does not pose

any problem for the considerations of this chapter. While it is true that the

development D+(S�) is clearly dependent on the particular extension of the

initial data, one has

D+(H�) ∩ I+(S� \ H�) = Ø;

compare the Remark at the end of Section 14.2. Thus, the particular choice of

extension of the data on H� has no effect on D+(H�); see Figure 16.4 for further

details.

16.3 A priori structure of the conformal boundary

This section discusses the available a priori knowledge of the structure of the

conformal boundary of the development of hyperboloidal initial data.

In what follows, assume that H� can be regarded as an open subset of a

compact manifold S� ≈ S3. Moreover, assume that ∂H� ≈ S2. On S� one

considers a conformal factor Ω such that Ω > 0 in the interior of H� and Ω = 0

on ∂H�; that is, the conformal factor Ω can be thought of as a boundary-defining

function. Consistent with the hyperbolic reduction procedure for the extended

conformal field equations as described in Section 13.4, it is assumed that the

domain of dependence D+(S�) can be covered by a non-singular congruence of
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16.3 A priori structure of the conformal boundary 445

conformal geodesics with data prescribed on S�. In particular, it is required that

the conformal geodesics are initially orthogonal to S�.

Determining the conformal factor

From Proposition 5.1, it follows that the general form of the conformal factor

associated to the congruence of conformal geodesics is given by

Θ = Θ� + Θ̇�τ̄ +
1

2
Θ̈�τ̄

2, (16.9)

where the coefficients Θ�, Θ̇� and Θ̈� are functions of the spatial coordinates and

are subject to the constraints

Θ̇� = 〈d�, ẋ�〉, Θ�Θ̈� =
1

2
g�(d�,d�). (16.10)

It is convenient to set

Θ� = Ω

and to make the spatial part of d� equal to dΩ. Accordingly, one finds that

d0� = Θ̇�, di� = DiΩ.

Now, letting

α ≡ Ω−1Θ̇�,

one finds from the constraints in (16.10) that

2ΩΘ̈� = h�(dΩ,dΩ) + α2,

where it is recalled that h�(dΩ,dΩ) < 0 as a consequence of the signature

convention. Whenever Ω = 0, it follows from the constraints (16.10) that d�

must be a null covector as dΘ �= 0.

Making use of the above observations, one finds that Equation (16.9) takes

the particular form

Θ = Ω

(
1 + ατ̄ +

(
1

4
α2 − 1

ω2

)
τ̄2
)
,

where

ω ≡ 2Ω√
|h�(dΩ,dΩ)|

.

A calculation shows that Θ = 0 for

τ̄± ≡ 2αω2 ± 4ω

4− α2ω2
. (16.11)
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Accordingly, it is natural to define the future (and, respectively, past) null

infinity of the development associated to the hyperboloid H� as

I ± ≡
{
(τ̄ , x) ∈ R× S3 | τ̄ = τ̄±(x)

}
.

This expression shows how the location of the conformal boundary is prede-

termined by the initial data Ω and d� as long as the underlying congruence

of conformal geodesics remains non-singular. As Ω → 0, one has that either

τ̄± → 0 or τ̄± → −2Θ̇�/Θ̈�. It follows that I + and I − are smooth hypersurfaces

whenever dΘ �= 0. Moreover, ∂H� is the intersection of I ± with H� = {0} ×H
as is to be expected for hyperboloidal data. In analogy to the model case

of the hyperboloids in the Minkowski spacetime, the development of generic

hyperboloidal data has a conformal boundary which corresponds to either I +

or I −, but not both; see Figure 16.5. This information is contained in the sign

of the free datum Θ̇�. By convention, the conformal factor is positive in the

region corresponding to the physical spacetime (M̃, g̃). Accordingly, if Θ̇� > 0

on ∂H�, then M̃ lies to the future of the conformal boundary and one speaks of a

hyperboloid which intersects past null infinity, and, thus, the conformal boundary

is identified with I −. If, by contrast, Θ̇� < 0 on ∂H�, then M̃ lies to the past

of the conformal boundary. In this case, the hyperboloid intersects future null

infinity and I + gives the conformal boundary. Without loss of generality, in

the following, attention will be restricted to hyperboloids intersecting future null

infinity so that Θ̇ < 0 on ∂H�.

Figure 16.5 The two possible configurations of the conformal boundary for
hyperboloidal data as discussed in the main text: on the left, one has the
case Θ̇� < 0 at ∂H� where the conformal boundary given by the conformal
Gaussian gauge system corresponds to I +; on the right, one has the situation
corresponding to Θ̇� > 0 at ∂H� so the realised component of the conformal
boundary is given by I −.
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16.3 A priori structure of the conformal boundary 447

Timelike infinity

To identify the points which can be regarded as representing timelike infinity,

one needs to investigate the critical points of Θ on the conformal boundary, that

is, the points where dΘ = 0 and τ̄ = τ̄±(x). A calculation shows that

dΘ =

(
1 + ατ̄ +

(
1

4
α2 − 1

ω2

)
τ̄2
)
dΩ+ Ω

(
α+ 2τ̄

(
1

4
α2 − 1

ω2

))
dτ̄

+Ωτ̄ dα+Ωτ̄2
(
1

2
αdα+

2

ω3
dω

)
.

Thus, a necessary condition for having a critical point of Θ on I ± is

α+ 2τ̄±

(
1

4
α2 − 1

ω2

)
= 0.

A short computation shows that the above is equivalent to h(dΩ,dΩ) = 0.

That is, the critical points of Θ can occur only along conformal geodesics for

which dΩ = 0 on the initial hypersurface S�. The standard hyperboloid in the

Minkowski spacetime contains precisely one such point. By continuity, suitably

small perturbations of this data will have only one point for which dΩ = 0.

Now, for points lying along a conformal geodesic for which dΩ = 0, Equation

(16.11) yields τ̄± = −2/α. Note that τ̄± > 0 if α < 0, that is, if Θ̇� < 0.

To obtain a conformal representation which includes timelike infinity one needs

to set α �= 0. This condition will be assumed in the remainder of this chapter.

Moreover, one defines

τ̄i+ ≡ −2/α.

In particular, for the conformal representation of the Minkowski spacetime given

by the conformal factor of Equation (16.5) one finds that τ̄i+ = 2.

To conclude the discussion of timelike infinity, it is necessary to analyse the

Hessian of the conformal factor Θ. In what follows it is assumed that one has

obtained a solution to the conformal field equations and that the associated

unphysical metric g has been determined.

From the general discussion of the conformal field equations in Chapter 8 it

follows that Θ satisfies the equations

∇aΘ = Σa, (16.12a)

∇aΣb = sηab −ΘLab, (16.12b)

∇as = −LacΣ
c, (16.12c)

where s denotes the Friedrich scalar, ∇ is the Levi-Civita connection of the

unphysical metric g ≡ Θ2g̃ and Lab are the components of the Schouten tensor

of ∇ with respect to the Weyl propagated frame {ea}. If s and Lab are regular

at the points for which τ̄ = τ̄i+ , one finds that

HessΘ|i+ = s|i+g|i+ .
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If, in addition, s|i+ �= 0 – which, as will be seen, is the case for perturbations

of the Minkowski spacetime – one concludes that the Hessian of the conformal

factor Θ is non-degenerate at i+, and, consequently, the point i+ can be rightfully

regarded as the timelike infinity of the development of the hyperboloidal initial

data prescribed on H�.

The Cauchy horizon of the hyperboloidal data and the conformal boundary

The discussion in the previous two subsections can be further refined to show

that the conformal boundary I + coincides with the Cauchy horizon H+(H�)

of the initial data prescribed on H�. General results of Lorentzian causal

theory as described in Chapter 14 imply that the Cauchy horizon H+(H�) is

generated by null geodesic segments with endpoints on ∂H�; see Proposition

14.4. Since ∂H� is assumed to be a smooth two-dimensional manifold, it follows

that H+(H�) is, in a neighbourhood of ∂H�, a g-null hypersurface.

Setting Σa ≡ ∇aΘ it follows from the initial data on H� that

Ω = 0, and ΣaΣ
a = ηabdadb = 0, on ∂H�,

where the various fields are expressed in terms of their components with respect

to the Weyl propagated frame {ea}. Accordingly, the null directions tangent to

H+(H�) – the so-called null generators of null infinity – are given on ∂H�

by Σa. On ∂H� one can define g-null vectors l and n by requiring

la = Σa, n ⊥ ∂H�, g(l,n) = 1, on ∂H�.

Moreover, on suitable open sets O ⊂ ∂H� one can supplement l and n

with complex vectors m and m̄ tangent to ∂H� with g(m, m̄) = −1. The

resulting Newman-Penrose frame {l, n, m, m̄} can be propagated along the

null generators of H+(H�) which terminate on O ⊂ ∂H� by parallel transport

in the direction of l; that is, one has

la∇al
b = 0, la∇an

b = 0, la∇am
b = 0.

Assuming now that the conformal field equations are satisfied on H+(H�), it

follows from transvecting Equations (16.12a) and (16.12b) with la and ma that

la∇aΘ = laΣa,

la∇a

(
lbΣb

)
= −Θ

(
Lab

)
,

la∇a

(
mbΣb

)
= −Θ

(
Labl

amb
)
.

These equations can be regarded as ordinary differential equations for the scalars

Θ, lbΣb and mbΣb along the generators of I +. By construction, these fields

vanish on O ⊂ ∂H�. Therefore, following a generator on H+(H�) off ∂H�

one finds that Θ = 0, lbΣb = 0, mbΣb = 0 until, possibly, one arrives at a

caustic point. Consequently, there is at least a portion of H+(H�) where the
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conformal factor vanishes. It follows from the above that on O the field Σa must

be proportional to la – more precisely, one can write

Σa =
(
nbΣb

)
la on O ⊂ ∂H�. (16.13)

The portion of the Cauchy horizon where Θ vanishes can be identified with

a portion of I + as given by Equation (16.11). On this part of H+(H�), the

conformal field Equations (16.12b) and (16.12c) imply that

la∇a

(
nbΣb

)
= s,

la∇as = −
(
ncΣc

)
Labl

alb.

Since naΣa = 1 on ∂H� it follows from the homogeneity of the above equations

that s and nbΣb cannot vanish simultaneously. Moreover, contracting ∇aΘ = Σa

with ma, m̄a one obtains

s = −
(
naΣa

)
ρ, (16.14)

where ρ ≡ mam̄b∇bla is the Newman-Penrose spin coefficient associated to the

expansion of the congruence of null generators. Thus, ρ is a measure of its con-

vergence; see, for example, Stewart (1991), section 2.7. It follows from Equation

(16.14) that ρ → ∞ if dΘ = 0 at some point p ∈ H+(H�); see Figure 16.6.

The discussion of the previous subsection shows that the development of

hyperboloidal data suitably close to Minkowski data will contain an isolated

point i+ on the conformal boundary for which dΘ = 0. As I + and H+(H�)

coincide wherever there are no caustics, it follows that the null geodesics on

H+(H�) must converge to i+. Accordingly, H+(H�) is the past light cone of

i+, and the causal past J−(i+) and the future domain of dependence D+(H�)

coincide.

Figure 16.6 Null generators of I + meeting at i+, as discussed in the main
text. The causal past of the caustic point i+ corresponds to the future domain
of dependence of hyperboloidal data; that is, J−(i+) = D+(H+

� ).
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16.4 The proof of the main existence and stability result

Once the background Minkowski spacetime has been analysed in terms of a

conformal Gaussian system adapted to the standard hyperboloid, a proof of

semiglobal existence and stability is obtained by a procedure almost identical to

the one used for the de Sitter spacetime in Section 15.4.

As in the case of the analysis of the de Sitter spacetime, it is convenient to

consider an ansatz for the solutions to the conformal evolution equations of the

form

eAB
0 = ĕAB

0, eAB
α = ēAB

α + ĕAB
α,

ξABCD = ξ̄ABCD + ξ̆ABCD, χABCD = χ̄ABCD + χ̆ABCD, fAB = f̆AB,

ΘABCD = Θ̄ABCD + Θ̆ABCD, φABCD = φ̆ABCD,

where

ēAB
μ, ξ̄ABCD, χ̄ABCD, Θ̄ABCD

are the values of the exact conformal Minkowski spacetime as discussed in Section

16.1. For conciseness, the above ansatz will be written schematically as u =

ū + ŭ. Taking into account that the background fields are also a solution to

the conformal evolution equations and writing the (explicitly known) conformal

gauge fields Θ and da in the form

Θ = Θ̌ + Θ̆, da = ďa + d̆a,

one finds evolution equations for the perturbation fields of the form

∂τ̄ ῠ = Kῠ +Q(Γ̄+ Γ̆)ῠ +Q(Γ̆)ῡ + L(x)φ̆, (16.15a)(
I+A0(ē+ ĕ)

)
∂τ̄ φ̆+Aα(ē+ ĕ)∂αφ̆ = B(Γ̄+ Γ̆)φ̆, (16.15b)

in the conventions of Proposition 13.3. The natural domains for solutions to the

above equations are sets of the form

Mτ̄• ≡ [0, τ̄•]× S3

for some τ̄• > 0.

Using the evolution Equations (16.15a) and (16.15b) one obtains the following

technical version of the main theorem of this chapter:

Theorem 16.1 (semiglobal existence and stability for perturbations of

hyperboloidal data) Let u� = ū� + ŭ� be hyperboloidal initial data for the

conformal Einstein field equations given on a hyperboloidal manifold H. Given

m ≥ 4 and τ̄• > 2 there exists ε > 0 such that:

https://doi.org/10.1017/9781009291347.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.021


16.4 The proof of the main existence and stability result 451

(i) For ‖ ŭ� ‖m< ε there exists a solution u = ū + ŭ to the conformal

propagation equations with a minimal existence interval [0, τ̄•] such that

u ∈ Cm−2([0, τ̄•]× S3),

and the associated congruence of conformal geodesics contains no conjugate

points in [0, τ̄•].

(ii) For every ŭ� with ‖ ŭ� ‖m< ε there is a unique point p+ in the interior of

H such that dΩ = 0 with τi+ ≡ τ̄+(p+) ∈ [0, τ̄•].

The solution u = ū + ŭ is unique on D+(H�) and implies, wherever Θ �=
0, a Cm−2 solution to the vacuum Einstein field equations with a vanishing

cosmological constant for which the set I +, as defined by

I + ≡
{
(τ, p) ∈ R× S3 | τ = τ±(p+)

}
,

represents null infinity, while the point i+ ≡ (τ̄i+ , x
α(p+)) represents timelike

infinity. Moreover, one has

D+(H�) = J−(i+).

Proof The assertion in (i) follows from the general existence result from

symmetric hyperbolic systems in Theorem 12.4 along lines similar to the ones

used in the proofs of Propositions 15.1 and 15.3. The key observation in this

respect is that as (I + A0(ē))|� is positive definite and bounded away from

zero, then
(
I + A0(ē + ĕ)

)
|� can also be made positive definite and bounded

away from zero by choosing ε > 0 small enough. This observation and the

general structure of the evolution Equations (16.15a) and (16.15b) ensure the

existence of Cm−2 solutions ŭ with ‖ ŭ� ‖m< ε on [0, τ̄•] × S3 with τ̄• > 2.

The regularity of the congruence of conformal geodesics defining the gauge is

obtained by supplementing the conformal evolution equations with evolution

equations for the conformal deviation fields, Equations (13.67a) and (13.67b),

and recalling that the deviation fields for the expanding Einstein cylinder are

given by Equation (15.14).

The proof of point (ii) follows from the discussion in Section 16.3 and

by observing that the spatial conformal factor Ω̄ for the exact (background)

hyperboloidal data has an isolated critical point (in fact, a maximum) at ψ = 0.

Accordingly, by continuity, any suitably small perturbations of this data will

also have a unique isolated critical point of its spatial conformal factor. Again,

choosing ε > 0 sufficiently small, one can ensure that τ̄+ < τ̄•.

The final remarks in Theorem 16.1 follow from a propagation of the constraints

argument using the properties of the subsidiary evolution system as given by

Proposition 13.4 and the assumption that the initial data satisfy the conformal

constraint equations on H�. The solution to the conformal field equations

obtained by the above argument implies a solution to the vacuum Einstein field

equations whenever Θ �= 0 as a consequence of Proposition 8.3. Finally, the
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statements about the interpretation of I + as the conformal boundary and the

structure of i+ follow from the analysis in Section 16.3.

Remarks

(i) For conciseness, Theorem 16.1 is restricted to perturbations of the data

implied by the Minkowski spacetime on the standard hyperboloid. An

inspection of the argument, however, shows that this simplifying assumption

is non-essential and that an analogous result can be obtained, at the

expense of some further technical details, for perturbations of Minkowski

data on arbitrary hyperboloids. In other words, the location of the initial

hyperboloid within null infinity is irrelevant. A more subtle consequence of

this observation is that it is, in principle, hard to quantify how far away a

given hyperboloidal initial data set lies from spatial infinity or even whether

there is any (asymptotically Euclidean) Cauchy initial data for the Einstein

field equations whose development contains the hyperboloidal data.

(ii) Theorem 16.1 can be combined with the method of exterior gluing discussed

in Section 11.8.2 to show the existence of a large class of asymptotically

simple spacetimes with a complete conformal boundary, that is, whose null

generators are inextendible geodesics starting at i0 and ending at i+ and,

respectively, i−. These ideas are discussed in more detail in Section 20.5.

(iii) The future domain of dependence D+(H�) as given by Theorem 16.1

provides an infinite portion of spacetime where the framework of asymp-

topia , as discussed in Chapter 10, can be applied; see also, for example,

chapter 3 of Stewart (1991). In particular, if the hyperboloidal initial data

are constructed using the methods of Theorem 11.2, one can obtain a

development which has any desired degree of smoothness and, accordingly,

satisfies the peeling behaviour ; see the discussion in Section 10.2.

16.5 Extensions and further reading

The first semiglobal existence and stability result for hyperboloidal vacuum data

of Minkowski-like spacetimes was obtained in the seminal work by Friedrich

(1986b). This analysis used the standard vacuum conformal field equations

and gauge source functions. The approach adopted in this chapter, employing

the extended conformal field equations and a gauge based on the properties

of conformal geodesics, is adapted from the discussion given in Lübbe and

Valiente Kroon (2009). Similar semiglobal existence and stability results have

been obtained in Anderson and Chruściel (2005) for arbitrary even-dimensional

spacetimes using the conformal equations given by the Graham-Fefferman

obstruction tensor.

The main result of this chapter can be extended to the case of the Einstein-

Maxwell and Einstein-Yang-Mills equations. This was done in Friedrich (1991)
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where the standard conformal field equations and a hyperbolic reduction proce-

dure based on gauge source functions were used. An alternative proof of the semi-

global existence and stability result for the Einstein-Maxwell equations has been

obtained in Lübbe and Valiente Kroon (2012) using an approach similar in spirit

to the one used in this chapter, that is, employing the extended conformal field

equations and a conformal gauge based on the properties of conformal curves.

Conformal curves were preferred in this analysis as they provide an explicit

expression for the conformal factor. In the presence of matter, a standard con-

formal Gaussian system does not provide an explicit expression for the conformal

factor. There is, however, no reason why a semi-global result of the type discussed

in this chapter cannot be obtained using a gauge based on conformal geodesics.

Another way of generalising the main result of this chapter is to consider the

Einstein-conformally invariant scalar field system; see Hübner (1995).

The methods in this chapter can be adapted to analyse semiglobal existence

and stability of asymptotically simple spacetimes with vanishing cosmological

constant which are neither the Minkowski spacetime nor perturbations thereof

– so-called purely radiative spacetimes. These vacuum spacetimes consist of

gravitational radiation (hence the name) which is not necessarily weak, but still

tame enough to not form a black hole; see, for example, Friedrich (1986c) and

the discussion in Chapter 19. Stability of these types of spacetimes from the

perspective of a hyperboloidal initial value problem has been analysed, for the

vacuum case, in Lübbe and Valiente Kroon (2010) and, for the Einstein-Maxwell

case, in Lübbe and Valiente Kroon (2012).

The main theorem of this chapter has been beautifully verified in numerical

simulations in Hübner (2001a). In particular, the numerical results show how

the null generators of the conformal boundary converge, to machine precision,

at timelike infinity. These numerical simulations are further discussed in

Section 21.3.
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