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NOTE ON BURDE'S RATIONAL BIQUADRATIC 
RECIPROCITY LAW 

KENNETH S. WILLIAMS 

A short proof is given of a biquadratic reciprocity law proved by Burde in 1969. 

Let p and q be primes = 1 (mod 4) such that (p | q) = (q \ p) = 1. Then there 
are integers a, fo, c, d with 

p = a2 + fo2, a = 1 (mod 2), b - 0 (mod 2), 
q = c

2 + d2, c s 1 (mod 2), d = 0 (mod 2). 

Set 

>-ft " . . . . . A ^ p a biquadratic residue (mod q), 
( p k ) 4 = < ! ' otherwise. 

Burde [2] proved using the law of biquadratic reciprocity that 

(1) (p I q)M I p)4= (~ D ( q-1 ) / 4(ad- foc | q). 

Lehmer [4, 5] has given two proofs of (1) using results from cyclotomy. In this 
note we put together two classical results ((2) and (4) below) to give a short 
proof of (1). 

It is easy to show that (±ad ± be | q) = {ad - be | q) for any choice of signs so 
that (1) is independent of the particular choices made of a, fo, c, d. We choose 
a, fo to satisfy a - fo + 1 = 0 (mod 4) and set TT = a + bi so that TTTT = p. For any 
integer JC#0 (mod p) we define a biquadratic character by 

(JC | TT)4 = ie if x ( p '1 ) / 4 s r (mod ir), 0 < t < 3. 

The Gauss sum corresponding to this character is 

p - i 

G= X (* I /7r)4exp(27r â/p). 
x=0 

It is well-known that (see for example [1]) 

(2) G2 = (-l)(p-1)/4p1/27T. 

Raising G to the qth power we obtain by a familiar argument 

G« = (q\ir)?G = (q\p)4G(modq) 

that is 

(3) Gq-* = (q\p)4{m°&q). 
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Taking the (q - l)/2th power of (2) and using (3) we obtain 

(q | p ^ ^ p ^ " ^ V ^ ^ d n o d q ) . 
or 

(p \qUq I P)A - (a + ibfq~1)/2(mod q). 

It follows from an old result of Dôrrie [3] that 

(4) (a + ib)(q-l)/2^(-l)(q~1),4(ad -bc\q) (mod q) 
which completes the proof of (1). For completeness we give a proof of (4). We 
have 

d(a + 60 ^ad-bc (mod c + di) 

so that 

(5) (a + bi)(q-1)/2^(-l)iq-1)/4(ad -bc\q) (mod c + di) 

as it is well known that (d \ q)^d(q~1)/2^(- l)(q~1)/4(mod q). 
Also 

d (a + bi) =• ad + fee (mod c - di) 

so that 

(6) (a + £>i)(q-1)/2 s ( - l) (q-1) /4(ad + 6c | <j) 
= (-l) (q~1/4(ad - be | q)(mod c - di). 

(4) now follows from (5) and (6). 
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