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Abstract

We study the growth of X and p∞-Selmer groups for isogenous abelian varieties in
towers of number fields, with an emphasis on elliptic curves. The growth types are
usually exponential, as in the ‘positive µ-invariant’ setting in the Iwasawa theory of
elliptic curves. The towers we consider are p-adic and l-adic Lie extensions for l 6= p, in
particular cyclotomic and other Zl-extensions.

1. Introduction

The algebraic side of the Iwasawa theory of elliptic curves is concerned with the study of the
structure of Selmer groups in cyclotomic Zp-extensions of Q, as well as other towers of number
fields. The aim of the present paper is to systematically study the behaviour of Selmer groups for
isogenous elliptic curves E and E′ or abelian varieties. The isogeny makes it possible to bypass
Iwasawa theory and, in particular, to avoid any assumptions on the reduction types. Moreover,
it allows us to work with p∞-Selmer groups in general l-adic towers, for both l = p and l 6= p.
For instance, we construct elliptic curves whose p-primary part of the Tate–Shafarevich group
goes off to infinity in all l-cyclotomic extensions of Q, in contrast to Washington’s theorem which
says that the p-part of the ideal class group is bounded in these extensions for l 6= p.

We show that in the nth layer of the p-cyclotomic tower of Q, the quotient

|XE [p∞]|/|XE′ [p
∞]|

(if finite) is pµp
n+O(1), as though it came from an Iwasawa module with λ-invariant 0 and µ-

invariant µ, except that µ may be fractional when E has potentially supersingular reduction
at p. Our formula for µ is explicit and surprisingly simple, and there is similar behaviour in
other p-adic and l-adic towers. It would be interesting to understand the structure theory of the
associated Selmer groups that gives rise to such growth.

Our main results for Zl-extensions (Theorems 1.1 and 1.2) and general Lie groups
(Theorem 1.3) are as follows.

Theorem 1.1. Let
⋃
nQ(ln) be the l-cyclotomic tower, p a prime, and E and E′ two isogenous

elliptic curves over Q. Then for all large enough n,

|X◦
E/Q(ln)[p

∞]|
|X◦

E′/Q(ln)[p∞]| = pµl
n+ν+ε(n)

for some ν ∈ Z, some |ε(n)| 6 81
2 and µ ∈ 1
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µ = ordp
ΩE′

ΩE
+

0 if l 6= p or ordp(jE) < 0,
1

12
ordp

(
∆E′

∆E

)
if l = p and ordp(jE) > 0.

If l 6= p or l does not divide the degree of the isogeny E → E′, then ε(n) = 0.

Here and throughout the paper, Q(ln) denotes the degree-ln extension of Q in the cyclotomic
Zl-extension. We write ∆E and ∆E′ for the minimal discriminants1 of the two curves, jE and jE′

for the j-invariants, ΩE and ΩE′ for the Birch–Swinnerton-Dyer periods (see § 2), and X◦ for
the Tate–Shafarevich group X modulo its divisible part Xdiv. We also write Selp∞ for the
p∞-Selmer group, Seldiv

p∞ for its divisible part, rkp for its Zp-corank,2 cv for the Tamagawa number
at v, and fKv/Qp for the residue degree of Kv/Qp. The big-O notation refers to the parameter n.

Theorem 1.2. Let K be a number field, p a prime number, and K∞ =
⋃
nKn a Zl-extension

of K, with [Kn : K] = ln. Let φ : E → E′ be an isogeny of elliptic curves over K, with dual
isogeny φt. Then

|Seldiv
p∞(E/Kn)[φ]|

|Seldiv
p∞(E′/Kn)[φt]|

|X◦
E/Kn [p∞]|

|X◦
E′/Kn [p∞]| = pµl

n+O(1), µ = ordp

(
ΩE′/K

ΩE/K

)
+
∑
v

µv,

where the sum is taken over primes v of bad reduction for E/K and

µv =


ordp

cv(E
′/K)

cv(E/K)
if v is totally split in K∞/K,

fKv/Qp
12

ordv

(
∆E′

∆E

)
if l = p, v | p is ramified in K∞/K and ordv jE > 0,

0 otherwise.

If rkpE/Kn is bounded, then |X◦
E/Kn

[p∞]|/|X◦
E′/Kn

[p∞]| = pµl
n+O(1) as well.

Theorem 1.3. Suppose that K is a number field and K∞/K is a Galois extension whose Galois
group is a d-dimensional l-adic Lie group; write Kn/K for its nth layer in the natural l-adic Lie
filtration. Let p be a prime number and φ : A → A′ an isogeny of abelian varieties over K, with
dual φt : A′t → At.

(i) If A is an elliptic curve, then there is µ ∈ Q such that

|Seldiv
p∞(A/Kn)[φ]|

|Seldiv
p∞(A′/Kn)[φt]|

|X◦
A/Kn [p∞]|

|X◦
A′/Kn [p∞]| = pµl

dn+O(l(d−1)n).

(ii) If A and A′ are either semistable abelian varieties or elliptic curves that do not have
additive potentially supersingular reduction at primes v | p that are infinitely ramified in K∞/K,
then there are constants µ1, . . . , µd−1 ∈ Q such that for all sufficiently large n,

|Seldiv
p∞(A/Kn)[φ]|

|Seldiv
p∞(A′t/Kn)[φt]|

|X◦
A/Kn [p∞]|

|X◦
A′/Kn [p∞]| = pµl

dn+µ1l(d−1)n+···+µd−1l
n+O(1).

If A(Kn)[p∞] is bounded, O(1) may be replaced by a constant µd ∈ Q.

(iii) If rkpA/Kn is O(l(d−1)n) in (i) or O(1) in (ii), then all the conclusions of (i) or (ii),
respectively, hold for |X◦

A/Kn
[p∞]|/|X◦

A′/Kn
[p∞]| as well.

1 If the base field is not Q, there may be no global minimal model. We then regard ∆E and ∆E′ as ideals that
have minimal valuation at every prime.
2 Thus, rkpA/K = rkA/K+ t if Xdiv

A/K
∼= (Qp/Zp)t. Of course, conjecturally, t = 0, X = X◦ and Seldivp∞(A/K) ∼=

A(K) ⊗Qp/Zp. In any case, X◦ is a torsion abelian group all of whose p-primary parts are finite.

1982

https://doi.org/10.1112/S0010437X15007423 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007423


Growth of X in towers for isogenous curves

Remarks 1.4. (1) If p - deg φ, then the p∞-Selmer groups and the p-part of X cannot have

φ-torsion, so the corresponding quotients in Theorems 1.1–1.3 are trivial. The results can be

reduced to those for isogenies of p-power degree.

(2) In Theorems 1.1 and 1.2, the quotient ΩE′/ΩE is a rational number (Lemma 2.3). For

p-isogenous curves over Q it is 1 or p±1; see [DD15, Theorem 8.2]. The term 1
12ordp(∆E′/∆E)

is 0 unless E has additive potentially supersingular reduction at p; see [DD15, Table 1]. In this

exceptional case, µ does not have to be an integer; see Example 1.6.

(3) Suppose that Gal(K∞/K) = Γ ∼= Zp. If the dual p∞-Selmer group of E/K∞ is a torsion

Zp[[Γ]]-module, then the invariant µ of Theorem 1.2 is µ(E)−µ(E′), the difference of the classical

µ-invariants of the two Selmer groups over K∞. In this setting, Theorem 1.2 is equivalent to a

theorem of Schneider (for odd p); see [Sch87] and [Per87, Appendix].

(4) Suppose that E/Q has good ordinary reduction at p. Then the dual p∞-Selmer group

of E over the p-cyclotomic extension over Q is a torsion Iwasawa module, by Kato’s theorem

[Kat04]. A conjecture of Greenberg [Gre99, Conjecture 1.11] asserts that the isogeny class of E

contains a curve of µ-invariant 0. Granting the conjecture, Theorem 1.1 implies that:

(a) in the isogeny class of E/Q, the curve Em with the largest period ΩEm has µ-invariant 0 at

all primes of good ordinary reduction;

(b) E has µ-invariant ordp (ΩEm/ΩE) at p.

Thus, the theorem provides a conjectural formula for the µ-invariant. We note here that

Greenberg’s conjecture is known not to hold in general over number fields; see [Dri03].

(5) Greenberg (see [Gre01, Exercises 4.3–4.5]) has observed that if φ : E → E′ is a p-isogeny

over K whose kernel is �p, then the map

K×/K×p ∼= H1(Gal(K̄/K),�p) −→ H1(Gal(K̄/K), E[p])

induced by the inclusion �p ⊂ E[p] provides a way to construct classes in the p-Selmer group of E.

The units of K contribute to the Selmer group, and the rank of the unit group is roughly [K : Q].

In particular, one can exhibit µ-like growth of Selp(E) in towers Kn/K. It would be interesting

to similarly explain the Selmer growth in Theorems 1.1–1.3 for p-power isogenies with arbitrary

kernels.

(6) By a theorem of Washington [Was78], for p 6= l the p-part of the ideal class group

is bounded in the l-cyclotomic tower. Theorem 1.2 provides examples of elliptic curves over

Q for which the analogous statement for the Tate–Shafarevich group fails; see, for instance,

Example 1.5.

In the opposite direction, Lamplugh [Lam] has recently proven the following analogue

of the theorem of Washington for elliptic curves E/Q with complex multiplication by the ring of

integers of an imaginary quadratic field K. Let p > 3 and l > 3 be distinct primes of good

reduction of E that split in K/Q. Lamplugh proved that if Kn is the nth layer of the unique

Zl-extension of K unramified outside one of the factors of l in K, then the p∞-Selmer group of

E over Kn stabilises as n →∞.

(7) The constants µ and µ1, . . . , µd in Theorem 1.3 can be made explicit, as in Theorem 1.2.

Following the proof of Theorem 8.7, this requires knowledge of the decomposition and inertia

groups at bad primes; the other ingredients are computed in Proposition 8.5.
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Example 1.5 (Ordinary reduction). Let us show that the curves 11a1 and 11a2 have unbounded
5-primary part of X in the cyclotomic Zl-extension of Q for every prime l. There are 5-isogenies

11a2 −→ 11a1 −→ 11a3,

and Ω11a3 = 5Ω11a1 = 25Ω11a2 = 6.34604 . . . . So, by Theorem 1.1, for every l there exist νl, ν
′
l ∈ Z

such that
|X11a2/Q(ln)[5

∞]| > 25l
n−νl , |X11a1/Q(ln)[5

∞]| > 5l
n−ν′l .

A standard computation with cyclotomic Euler characteristics (as in [DD06, § 3.11], for
example) shows that for every ordinary prime l for which al 6= 1 (e.g. l = 3, 7, 13, 17, . . .), the
curves have rank 0 over Q(ln) for all n > 1. For such primes, νl and ν ′l can be taken to be 1 and
the number of primes above 11 in

⋃
nQ(ln), respectively.3 For l = 5, these bounds are exact, as

X11a3/Q(5n) is known to have trivial 5-primary part for all n > 1.

Example 1.6 (Potentially supersingular reduction). Let E/Q be an elliptic curve with good
supersingular reduction at p, and let Kn = Q(pn), the nth layer in the p-cyclotomic tower. By a
theorem of Kurihara [Kur02], under suitable hypotheses,

|XE/Kn [p∞]| = pbµp
n−1/2c, µ =

p

p2 − 1
.

Note that such curves cannot have a p-isogeny, by a result of Serre [Ser72, Proposition 12]. In
contrast, elliptic curves over Q with additive potentially supersingular reduction at p can have
a p-isogeny, and there are examples for which

|XE/Kn [p∞]| > pµp
n+ν

with µ > 1. For instance, there is a 9-isogeny φ : 54a2 → 54a3. These curves have potentially
supersingular reduction at p = 3, and

Ω54a3 = 9Ω54a2, ∆54a2 = −29311, ∆54a3 = −2 · 33.

By Theorem 1.1, there is a constant ν such that for all large enough n,

|X54a2/Kn [3∞]| >
|X54a2/Kn [3∞]|
|X54a3/Kn [3∞]| = 33nµ+ν , µ = 2− 11− 3

12
=

4

3
.

Example 1.7 (False Tate curve tower). To illustrate Theorem 1.3 for a higher-dimensional l-
adic Lie group, let Kn = Q(ζ3n ,

3n
√

7), a ‘false Tate curve tower’ in the terminology of [HV03,
DD06]. Let E = 11a1 and E′ = 11a3, as in Example 1.5. We find (see Example 3.3) that either
XE/Kn [5∞] is infinite or

|XE/Kn [5∞]|
|XE′/Kn [5∞]| = 532n−1−3n .

Example 1.8. Let K∞ be the unique Z2
5-extension of Q(i) and let Kn be its nth layer; thus

Gal(Kn/Q) ∼= C5n ×D2·5n . If we take the 5-isogenous curves E = 75a1 and E′ = 75a2 over Q,
with additive potentially supersingular reduction at 5, we find that (see Example 3.4)

|Seldiv
5∞(E/Kn)[φ]|

|Seldiv
5∞(E′/Kn)[φt]|

|X◦
E/Kn [5∞]|

|X◦
E′/Kn [5∞]| = 5µ52n+µ1(n)5n+µ2(n)

3 So ν′l is almost always 1 as well; for l < 107 the only exception is l = 71.
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with

µ = −1
3 , µ1(n) = 1− 2

3(−1)n, µ2(n) = 0.

So the assumption in Theorem 1.3(ii) that E does not have potentially supersingular reduction
cannot be removed, as the µi may fluctuate with n.

Example 1.9. As opposed to the cyclotomic extensions, for general Zl-extensions of number
fields there is an extra term in µ coming from the Tamagawa numbers (compare Theorem 1.2
with Theorem 1.1). For example, consider the 5-isogeny 11a1 → 11a3, as in Example 1.5, in
the 5-anticyclotomic tower K∞ of K = Q(i). Because 11 is inert in Q(i) and so totally split in
K∞/K, there is a µ-contribution from the Tamagawa numbers (5 and 1) in this Z5-extension,
but not in the cyclotomic one.

Remark 1.10 (CM curves with µ > 0). If K∞/K is a Zp-extension and Selp∞(E/K∞) is cotorsion
over the Iwasawa algebra of Gal(K∞/K), then it has a well-defined µ-invariant as in classical
Iwasawa theory. Theorem 1.2 gives a formula for its change under isogenies in terms of elementary
invariants, and allows us to generate examples with positive µ-invariant.

Consider, for instance, elliptic curves with complex multiplication and good ordinary
reduction at p. Such examples over Q with a p-isogeny are almost non-existent: there are 13
CM j-invariants over Q, and there is only one with a p-isogeny that admits good reduction at p.
It is j = −3353 (CM by Z[(1 +

√
−7)/2]), 2-isogenous to j = 3353173 (CM by Z[

√
−7]). (This

is easy to check from the table of CM j-invariants [Sil94, Appendix A] and by computing the
isogenous curves, e.g. using Magma [BCP97].) The simplest example with these j-invariants is

φ : 49a1 −→ 49a2.

Here Ω49a1/Ω49a2 = 2, and so 49a2 does have positive µ-invariant for p = 2 as well as unbounded
2-part of X in every cyclotomic Zl-extension of Q, by Theorem 1.1. Assuming Greenberg’s
conjecture (Remark 1.4(4)), the curve 49a2 and p = 2 is the unique example (up to quadratic
twists) of a good ordinary CM curve over Q with positive µ-invariant.

Over larger number fields, other examples are easy to construct. For instance, the curve

E : y2 = x3 − 24z7
√
z + 3x2 + zx, z =

√
5− 1

2

is defined over K = Q(ζ20)+ = Q(
√
z + 3) and has CM by Z + 5iZ. It has good ordinary

reduction at the prime above 5, and is 5-isogenous to y2 = x3 + zx. Upon computing the
periods and applying Theorem 1.2, we find that it should have positive µ-invariant both over
the Z5-cyclotomic extension of K and over every Z5-extension of K(i) = Q(ζ20).

Let F∞ be the composite of all Z5-extensions of K(i), so that G = Gal(F∞/K) ∼= Z5
5. The 5∞-

Selmer group of E over F∞ is conjectured to satisfy theMH(G)-conjecture of non-commutative
Iwasawa theory [CFKSV05]. As John Coates remarked to us, this example provides evidence
for the conjecture as follows. Similar arguments to those given in [CS12] would show that the
MH(G)-conjecture implies that the µG-invariant of the Selmer group over F∞ has to be equal
to the usual µ-invariant of the Selmer group over the cyclotomic Z5-extension of K(i), which
we have shown to be non-zero. Thus, granted the MH(G)-conjecture, it would follow that the
µG-invariant of the Selmer group over F∞ has to be positive, and then an easy further argument
shows that the µ-invariant over every Z5-extension of K(i) would also be positive, in accord with
what we have proven.
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Brief overview of the paper. To control the change of Selmer groups, we invoke the theorem by
Cassels and Tate [Cas65, Tat65/66] on the invariance of the Birch–Swinnerton-Dyer conjecture
under isogeny. This is recalled in Theorem 3.1 in § 3, after we introduce a convenient choice of
periods in § 2. Most of the rest of the paper studies how the terms of the Birch–Swinnerton-Dyer
formula behave in towers of local fields and number fields: minimal differentials in § 4, Tamagawa
numbers in § 5, torsion in § 6, and the divisible part of Selmer in § 7. At the end of § 3 we also
give some examples of how this procedure works. Theorems 1.1–1.3 are proved in § 8. In §§ 4 and
5 we rely on the results of [DD15] that describe how local invariants of elliptic curves change
under isogeny.

The Appendix concerns the behaviour of conductors of elliptic curves and Galois
representations in field extensions. There is no assumption on the existence of an isogeny here,
and the results may be of independent interest.

Notation. We write E and E′ for elliptic curves and A and A′ for abelian varieties. We usually
have an isogeny E → E′ or A → A′, denoted by φ. Its dual E′ → E or (A′)t → At is denoted
by φt. Number fields are denoted by K,F, . . . , and l-adic fields (finite extensions of Ql) are
denoted by K,F , . . . . We also use the following notation:

| · |v normalised absolute value at a prime v;

v(·), ordv(·) normalised valuation in a local field or at v;

jE j-invariant of an elliptic curve E;

∆E ,∆E/K minimal discriminant of an elliptic curve over K;

δ, δ′ v(∆E/K), v(∆E′/K) when K is local;

fE/K conductor exponent of E/K when K is local;

Omφ(F) see Definition 4.1;

ωmin
v = ωmin

A,v Néron minimal exterior form of an abelian variety

at a prime v (minimal differential for an elliptic curve);

cA/K , cv(A/K) Tamagawa number over a local/global field at v;

Ω,Ω∗ infinite periods (see Definition 2.1);

X,Xdiv,X◦ Tate–Shafarevich group, its divisible part, X◦= X/Xdiv;

Selp∞(A/K) lim−→ Selpn(A/K), the p-infinity Selmer group;

rkp(A/K) Zp-corank of Selp∞(A/K);

Q(ln) the nth layer of the cyclotomic Zl-extension of Q,

i.e. the unique totally real degree-ln subfield of Q(ζln+2);

X[φ], X[p∞] φ-torsion, p-primary component of an abelian group X;

b·c, {·} integer part (floor) and fractional part {x} = x− bxc.
Any two non-zero invariant exterior forms ω1 and ω2 on an abelian variety A/K are multiples

of one another, i.e. ω1 = αω2 with α ∈ K. We will write ω1/ω2 for the scaling factor α.
When K is an l-adic field, recall that an elliptic curve E/K has additive reduction if and only

if it has conductor exponent fE/K > 2, and that fE/K = 2 if and only if the `-adic Tate module
of E is tamely ramified for some (any) ` 6= l. We call the reduction tame in the latter case, and
wild if fE/K > 2. If l > 5, the reduction is always tame. We remind the reader that E/K has
potentially good reduction if v(jE) > 0 and potentially multiplicative reduction if v(jE) < 0.

Finally, an l-adic Lie group G is a closed subgroup GLk(Zl) for some k; it has a natural
filtration by open subgroups, the kernels of the reduction maps mod ln.
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We use Cremona’s notation (such as 11a1) for elliptic curves over Q.

2. Periods

We introduce a convenient form of periods of abelian varieties over number fields, which are
model-independent and well-suited for the Birch–Swinnerton-Dyer conjecture.

Definition 2.1. An abelian variety A/K has a non-zero invariant exterior form ω, unique up
to K-multiples. If K = C, we define the local period

ΩA/C,ω =

∫
A(C)

2dimA|ω ∧ ω|.

If K = R, define

ΩA/R,ω =

∫
A(R)
|ω| and Ω∗A/R =

ΩA/C,ω

Ω2
A/R,ω

.

If K is a number field, define the global period

ΩA/K =
∏
v-∞

|ω/ωmin
v |v

∏
v|∞

ΩA/Kv ,ω.

Here v runs through places of K, and the term at v in the first product is the normalised v-adic
absolute value of the quotient of ω by the Néron minimal form at v.

Remark 2.2. Note that both Ω∗A/Kv and ΩA/K are independent of the choice of ω, by the product
formula for the second one.

An elliptic curve E/Q can be put in minimal Weierstrass form, with the global minimal
differential ω = dx/(2y + a1x+ a3). Then ΩE/Q = ΩE/R,ω, which is the traditional real period
Ω+ or 2Ω+, depending on whether or not E(R) is connected. If E(C) = C/Zτ + Z under the
usual complex uniformisation, then Ω∗E/R = Im τ .

Lemma 2.3. Let φ : A → A′ be an isogeny of abelian varieties over a number field K. Then both
ΩA′/K/ΩA/K and, for real places v, Ω∗A′/Kv/Ω

∗
A/Kv

are positive rational numbers. They have

trivial p-adic valuation for all p - deg φ.

Proof. Fix a non-zero invariant exterior form ω′ on A′, and set ω = φ∗ω′. For v |∞,

ΩA′/Kv ,ω′

ΩA/Kv ,ω
=
|cokerφ : A(Kv) → A′(Kv)|
|kerφ : A(Kv) → A′(Kv)|

.

This is a positive rational, and considering the conjugate isogeny φ′ : A′ → A (so that φ′ ◦ φ
and φ ◦ φ′ are the multiplication-by-deg φ maps), we see that the only prime factors of |ker| and
|coker| are those dividing deg φ. The claim for Ω∗ now follows.

As for the global periods,

ΩA′/K

ΩA/K
=
∏
v-∞

|ω′/ωmin
A′,v|v

|ω/ωmin
A,v |v

∏
v|∞

ΩA′/Kv ,ω′

ΩA/Kv ,ω

is a positive rational. If v - deg φ, then φ∗(ωmin
A′,v) is a unit multiple of ωmin

A,v , and so

|ω′/ωmin
A′,v|v/|ω/ωmin

A,v |v = 1. Thus ΩA′/K/ΩA/K has trivial p-adic valuation at primes p - deg φ. 2
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Lemma 2.4. Let A be an abelian variety over a number field K, and let F/K be a finite extension.

Then

ΩA/F = Ω
[F :K]
A/K

∏
v real

(Ω∗A/Kv)
#{w|v complex}

∏
v,w|v

∣∣∣∣ωmin
v

ωmin
w

∣∣∣∣
w

,

where v runs over places of K and w over places of F above v.

Proof. Choose an invariant exterior form ω for A/K. We compute the terms in ΩA/F using ω.

Let v be a place of K. If v is complex, then
∏
w|v ΩA/Fw,ω = Ω

[F :K]
A/Kv ,ω

. If v is real, then,

writing Σ+ and Σ− for the sets of real and complex places w | v in F , we have∏
w|v

ΩA/Fw,ω =
∏
w∈Σ+

ΩA/Kv ,ω

∏
w∈Σ−

Ω2
A/Kv ,ω

Ω∗A/Kv = Ω
[F :K]
A/Kv ,ω

(Ω∗A/Kv)
|Σ−|.

If v -∞, then

∏
w|v

∣∣∣∣ ω

ωmin
w

∣∣∣∣
w

=
∏
w|v

∣∣∣∣ ω

ωmin
v

∣∣∣∣
w

∣∣∣∣ωmin
v

ωmin
w

∣∣∣∣
w

=

∣∣∣∣ ω

ωmin
v

∣∣∣∣[F :K]

v

∏
w|v

∣∣∣∣ωmin
v

ωmin
w

∣∣∣∣
w

.

Multiplying the terms over all places v of K gives the claim. 2

Remark 2.5. For elliptic curves, the term ωmin
v /ωmin

w relates to the behaviour of the minimal

discriminant of E in Fw/Kv (cf. [Sil86, Table III.1.2]),

ordw

(
ωmin
w

ωmin
v

)
=

1

12
ordw

(
∆E/K

∆E/F

)
.

3. BSD invariance under isogeny

We now state a version of the invariance of the Birch–Swinnerton-Dyer conjecture under isogeny

for Selmer groups (see p. 1986 for the notation).

Theorem 3.1. Let φ : A → A′ be a isogeny of abelian varieties over a number field K, and let

φt : A′t → At be the dual isogeny. If the degree of φ is a power of p, then

|Seldiv
p∞(A/K)[φ]|

|Seldiv
p∞(A′t/K)[φt]|

|X◦
A/K [p∞]|

|X◦
A′/K [p∞]| =

|A(K)[p∞]| |At(K)[p∞]|
|A′(K)[p∞]| |A′t(K)[p∞]|

ΩA′/K

ΩA/K

∏
v-∞

cv(A
′/K)

cv(A/K)
.

Otherwise, the left-hand side and right-hand side have the same p-part.

Proof. This is essentially [DD10, Theorem 4.3], which says that

|Seldiv
p∞(A/K)[φ]|

|Seldiv
p∞(A′t/K)[φt]|

∏
p|deg φ

|X◦
A/K [p∞]|

|X◦
A′/K [p∞]| =

|A(K)tors| |At(K)tors|
|A′(K)tors| |A′t(K)tors|

ΩA′/K

ΩA/K

∏
v-∞

cv(A
′/K)

cv(A/K)
.

The term Q(φ) in [DD10] is exactly Seldiv
p∞(A/K)[φ]. 2
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Corollary 3.2. Let φ : A → A′ be an isogeny of abelian varieties over a number field K with
dual φt : A′t → At, and let F/K be a finite extension. If the degree of φ is a power of p, then

|Seldiv
p∞(A/F )[φ]|

|Seldiv
p∞(A′t/F )[φt]|

|X◦
A/F [p∞]|

|X◦
A′/F [p∞]| =

|A(F )[p∞]| |At(F )[p∞]|
|A′(F )[p∞]| |A′t(F )[p∞]|

(
ΩA′/K

ΩA/K

)[F :K]

×
∏
v real

(Ω∗A′/Kv
Ω∗A/Kv

)#{w|v complex}∏
v-∞

cv(A
′/F )

cv(A/F )

∏
v,w|v

∣∣∣∣ωmin
A′,v/ω

min
A′,w

ωmin
A,v /ω

min
A,w

∣∣∣∣
w

,

where v ranges over places of K and the w | v are places of F . If φ has arbitrary degree, then the
left-hand side and right-hand side have the same p-part.

Proof. Combine Theorem 3.1 with Lemma 2.4. 2

Corollary 3.2 is our main tool for studying the Selmer growth in towers in § 8. As we now
illustrate, it already enables us to construct explicit examples of interesting growth of Selmer and
X. The general behaviour of the Tamagawa number quotient will be discussed in § 5, the torsion
quotient in § 6, and the contribution from exterior forms in § 4, under the name of Omφ(Fw).

Example 3.3. Let Kn = Q(ζ3n ,
3n
√

7), a ‘false Tate curve tower’ in the terminology of [HV03,
DD06], and let φ : E = 11a1 → E′ = 11a3 be the 5-isogeny as in Example 1.5. A result of
Hachimori and Matsuno [HM99, Theorem 3.1] and a cyclotomic Euler characteristic computation
as in [DD06, § 3.11] show that rkE/Kn = rk3E/Kn = 0 for all n > 1. Therefore

Sel5∞(E/Kn) = XE/Kn [5∞],

and similarly for E′.
The periods of the two curves are

ΩE/Q = 1.2692 . . . = 1
5ΩE′/Q, Ω∗E/R = 1.1493 . . . = 5Ω∗E′/R,

and both curves have torsion of size 5 over all Kn. Applying Corollary 3.2, we find that either
XE/Kn [5∞] is infinite for some n, or

|XE/Kn [5∞]|
|XE′/Kn [5∞]| =

52

52
·
(

ΩE′/Q

ΩE/Q

)2·32n−1

·
(Ω∗E′/R

Ω∗E/R

)32n−1

·
∏
v|11

cv(E
′/Kn)

cv(E/Kn)
· 1

=
52·32n−1

532n−1 · 53n
= 532n−1−3n .

Example 3.4 (Fluctuation in Selmer growth). In the previous example, the quotient of the

Tate–Shafarevich groups grew like 532n−1−3n . Theorem 1.3 shows that such growth of the
form ppolynomial in ln is a general phenomenon. However, the assumption on primes of additive
potentially supersingular reduction is essential, as we now illustrate.

Let K = Q and let K∞ be the unique Z2
5-extension of Q(i), so that

Gal(K∞/Q) ∼= Z5 × (Z5 o C2).

Write Kn for the nth layer of K∞/K, so Gal(Kn/Q) ∼= C5n ×D2·5n .
Consider the following curves over Q, which are connected by a 5-isogeny φ : E → E′:

E : y2 + y = x3 − x2 − 8x− 7 (75a1, ∆E/Q = −3 · 54),

E′ : y2 + y = x3 − x2 + 42x+ 443 (75a2, ∆E′/Q = −35 · 58).
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They have non-split multiplicative reduction at p= 3, of Kodaira types I1 and I5, respectively, and
additive potentially supersingular reduction at p = 5, of Kodaira types IV and IV∗, respectively.
Their periods are

ΩE/Q = 1.4025 . . . = ΩE′/Q, Ω∗E/R = 1.6646 . . . = 5Ω∗E′/R.

Both curves have trivial torsion over Q(i) and therefore no 5-torsion over Kn, by Nakayama’s
lemma.

By Corollary 3.2,

|Seldiv
5∞(E/Kn)[φ]|

|Seldiv
5∞(E′/Kn)[φt]|

|X◦
E/Kn [5∞]|

|X◦
E′/Kn [5∞]| =

(
ΩE′/K

ΩE/K

)2·52n(Ω∗E′/R

Ω∗E/R

)52n

×
∏
v|3

cv(E
′/Kn)

cv(E/Kn)

∏
v|5

cv(E
′/Kn)

cv(E/Kn)

∏
v|5

∣∣∣∣ωmin
E′,5/ω

min
E′,v

ωmin
E,5 /ω

min
E,v

∣∣∣∣
v

.

The prime p = 3 is inert in Q(i) and in the 5-cyclotomic tower, and the prime above it in Q(i)
is totally split in the 5-anticyclotomic tower of Q(i). So there are 5n primes above 3 in Kn. The
curves E and E′ have split multiplicative reduction at each of them (of types I1 and I5), and so∏

v|3

cv(E
′/Kn)

cv(E/Kn)
= 55n .

The Tamagawa numbers at v | 5 in Kn are coprime to 5 (potentially good reduction), but they
do contribute to the quotient of ω terms. Specifically, there are two primes v+

n and v−n above 5 in
Kn (one above 2 + i and one above 2− i in Q(i)), both with residue degree 5n and ramification
degree 5n.

Remark 2.5 lets us the compute the ω term. For v = v±n ,

ordv

(
ωmin
E,v

ωmin
E,5

)
=

1

12
ordv

(
∆E/Q

∆E/Kn

)
.

The valuation ordv(∆E/Kn) ∈ {0, 1, . . . , 11} is uniquely determined by the congruence

ordv(∆E/Kn) ≡ ordv(∆E/Q) ≡ ordv(5
4) mod 12.

Therefore
1

12
ordv

(
∆E/Q

∆E/Kn

)
=

⌊
4 · 5n

12

⌋
.

Similarly, the corresponding term for E′ is b(8 · 5n)/12c, and we find that∣∣∣∣ωmin
E′,5/ω

min
E′,v

ωmin
E,5 /ω

min
E,v

∣∣∣∣
v

= (55n)b(8·5
n)/12c−b(4·5n)/12c = (55n)(1/3)5n−(1/3)(−1)n = 5(1/3)52n−(1/3)(−1)n5n .

Putting everything together, we deduce that

|Seldiv
5∞(E/Kn)[φ]|

|Seldiv
5∞(E′/Kn)[φt]|

|X◦
E/Kn [5∞]|

|X◦
E′/Kn [5∞]| = 12·52n · 5−52n · 55n · [5(1/3)52n−(1/3)(−1)n5n ]2

= 5−(1/3)52n+(1−(2/3)(−1)n)·5n .
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4. Minimal differentials

In this section we investigate the behaviour of the last term in Corollary 3.2 (the contribution
from the exterior forms) in towers of local fields. We study its valuation, denoted by Omφ(F)
below, and how it changes with F .

Definition 4.1. Let F/K be a finite extension of l-adic fields, and write vF and vK for their
valuations. For an isogeny φ : A → A′ of abelian varieties over K, define

Omφ(F) = vF

(ωmin
A′/F

ωmin
A′/K

)
− vF

(ωmin
A/F

ωmin
A/K

)
,

so that

|kF |Omφ(F) =

∣∣∣∣ωmin
A′/K/ω

min
A′/F

ωmin
A/K/ω

min
A/F

∣∣∣∣
F
,

where kF is the residue field of F and | · |F the normalised absolute value.

Lemma 4.2. (i) If A,A′/K are semistable, then Omφ(F) = 0 for every F/K.

(ii) If F ′/F/K are finite and F ′/F is unramified, then Omφ(F) = Omφ(F ′).

Proof. (i) The minimal models of A and A′ and the minimal exterior forms over K stay minimal
over F .

(ii) Ditto for F ′/F . 2

We now restrict our attention to elliptic curves. The term vF (ωmin
E/F/ω

min
E/K) measures the

extent to which the minimal Weierstrass model of E/K fails to stay minimal over F , and
Omφ(F) is zero if the models of E and E′ change by the same amount. The relation to minimal
discriminants is as follows.

Notation 4.3. Let φ : E → E′ be an isogeny of elliptic curves over K. Write

δ = vK(∆E/K), δ′ = vK(∆E′/K), δF = vF (∆E/F ), δ′F = vF (∆E′/F )

for the valuations of the minimal discriminants.

Lemma 4.4. If F/K has ramification degree e, then

Omφ(F) =
eδ′ − δ′F

12
− eδ − δF

12
=
e(δ′ − δ)

12
− δ′F − δF

12
.

Proof. Using [Sil86, Table III.1.2], we find that

vF

(ωmin
E/F

ωmin
E/K

)
=

1

12
vF

(
∆E/K

∆E/F

)
=
eδ − δF

12
,

and similarly for E′. 2

Theorem 4.5. Let F/K be a finite extension of l-adic fields of ramification degree e, and let
φ : E → E′ be an isogeny of elliptic curves over K. Then

Omφ(F) = eµ+ ε(F)

and
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(i) µ = ε(F) = 0 if l - deg φ, or E/K has good, potentially ordinary or potentially multiplicative
reduction.

Suppose that E has additive potentially good reduction. Write δ = vK(∆E/K) and δ′ =
vK(∆E′/K). Write4 ð = 0, 2, 3, 4, 6, 8, 9 or 10 if E has Kodaira type I0, II, III, IV, I∗n>0, IV∗,
III∗ or II∗, respectively, and similarly ð′ for E′. Then:

(ii) µ = (δ′ − δ)/12 and ε(F) = {eδ/12} − {eδ′/12} if E has tame reduction;

(iii) µ = (ð′ − ð)/12 and ε(F) = {eð/12} − {eð′/12} if F/K is tamely ramified;

(iv) µ = (δ′ − δ)/12 and |ε(F)| 6 2
3 if l 6= 2; if, moreover, 3 | e, then |ε(F)| 6 1

2 ;

(v) µ = (δ′ − δ)/12 and |ε(F)| < (reL/K + 1)/2 if l = 2; here r is any real number satisfying
r > fE/K/2− 1, where fE/K is the conductor exponent of E, and L is the subfield of F cut
out by the upper ramification group IrK.

Proof. By Lemma 4.4,

Omφ(F) =
eδ′ − δ′F

12
− eδ − δF

12
=
e(δ′ − δ)

12
+
δF − δ′F

12
. (†)

The claims are trivial if φ is an endomorphism E → E. Decomposing the isogeny if necessary, it
is clear that in (i)–(iii) we may assume that deg φ = p is prime.

(i) [DD15, Theorem 5.1] (or [DD15, Table 1]) describes the change in the discriminant under
isogenies of prime degree. If E has potentially good reduction, and if either l 6= p or E has good
or potentially ordinary reduction, then δ = δ′ and δF = δ′F . If E has potentially multiplicative
reduction, then δ′− δ = vK(jE)− vK(jE′), and similarly δ′F − δF = e(vK(jE)− vK(jE′)). In both
cases the right-hand side of (†) is 0.

(ii) If E/K has tame reduction, the reduction stays tame over F . Furthermore, we have that
0 6 δ, δ′, δF , δ

′
F < 12 by [DD15, Theorem 3.1]. Because the discriminant changes by 12th powers

when the model is changed,

δF = 12

{
eδ

12

}
, δ′F = 12

{
eδ′

12

}
,

and (†) implies the asserted formula.
(iii) By [DD13, Theorem 3],

δF = eδ − 12

⌊
eð
12

⌋
, δ′F = eδ′ − 12

⌊
eð′

12

⌋
,

and the claim follows from (†).
(iv) Write m and m′ for the numbers of components of the Néron minimal models of E/F

and E′/F , respectively. As l 6= 2, by [Sil94, § IV.9, Table 4.1] the curves E and E′ do not have
Kodaira type I∗n>0, and 1 6 m,m′ 6 9. Since E and E′ have the same conductor exponent (over
F), by Ogg’s formula [Sil94, IV.11.1] we have that

|δF − δ′F | = |m−m′| 6 8.

Therefore, by (†),
Omφ(F) =

e(δ′ − δ)
12

+ ε(F), |ε(F)| 6 2

3
.

If, moreover, 3 | e, then 3 | δF , δ′F . In this case |δF − δ′F | 6 6 and |ε(F)| 6 1
2 .

4 We use ð (Icelandic letter ‘eth’) as it is a relative of the letter δ.
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(v) By Ogg’s formula and [Pap93, Theorem 2], we have fE/F 6 δF 6 4fE/F . As E and E′ have
the same conductor, the same bounds hold for δ′F , and so |δF − δ′F | 6 3fE/F . By Theorem A.4
in the Appendix,

fE/F = fE/L 6 eL/K(fE/K − 2) + 2.

Therefore
|δF − δ′F |

12
6
eL/K

4
(fE/K − 2) +

1

2
<
eL/K

4
· 2r +

1

2
=
reL/K + 1

2
.

The claim follows from (†), with ε(F) = (δF − δ′F )/12. 2

Remark 4.6. Note that in Theorem 4.5(iii), the formula µ = (ð′ − ð)/12 may not be replaced by
(δ′ − δ)/12. For example, the 2-isogenous curves 64a1 and 64a4 over Q2 have type I∗2, δ = 12,ð = 6
and type II, δ′ = 6, ð′ = 2, respectively, and δ′− δ 6= ð′−ð. If E/K has tame reduction, e.g. when
K has residue characteristic at least 5, then δ = ð and the two formulae are the same.

Corollary 4.7. Let Kn = Ql(p
n) be the completion of the nth layer of the p-cyclotomic tower

at a prime above l, and let φ : E → E′ be an isogeny of elliptic curves over Ql. Then

Omφ(Kn) = pnµ+ ε(n),

and µ = ε(n) = 0 unless l = p | deg φ and E has additive potentially supersingular reduction. In
this exceptional case, writing δ = ordl ∆E/Ql and δ′ = ordl ∆E′/Ql , we have

µ =
δ′ − δ

12
, |ε(n)| 6



2

3
if l > 5,

1

2
if l = 3,

6
1

2
if l = 2.

If, moreover, E has tame reduction, then ε(n) = {pnδ/12} − {pnδ′/12}.

Proof. If l 6= p, then Omφ = 0 by Lemma 4.2(ii). If l - deg φ, or if E/K has good, potentially
ordinary or potentially multiplicative reduction, then Omφ = 0 as well, by Theorem 4.5(i).
Assume henceforth that l = p | deg φ and E has additive potentially supersingular reduction.

The last claim for ε(n) is contained in Theorem 4.5(ii), and the assertion for l > 3 was proved
in Theorem 4.5(iv).

Finally, suppose l = 2. By Theorem 4.5(v), the asserted equality holds with |ε(n)| <
(re+ 1)/2, where r > fE/Q2

/2 − 1 and e is the ramification degree of the field cut out by IrQ2
.

By [LRS93] we have fE/Q2
6 2 + 6vQ2(2) = 8. So we can take 3 < r < 4, L = Q2(22) and e = 4

(or L = Q2(2) and e = 2 if n = 1). Then |ε(n)| < (re+ 1)/2 6 (4r + 1)/2, which gives the bound
of 6.5 as r → 3. 2

Remark 4.8. If l = p > 3, then every curve over K with potentially good reduction is tame, so
ε(n) in Corollary 4.7 is explicit. If l 6= p, it is zero, and for l = p = 3 it can be made explicit as
well by using Ogg’s formula as follows.

Suppose that E/Kn has wild reduction for all n. The conductor exponent of E/Kn stabilises
by Corollary A.6 in the Appendix, and the number of components m on the Néron minimal model
satisfies 1 6 m 6 9 (cf. the proof of Theorem 4.5(iv)). Therefore the congruence δKn ≡ eKn/Qlδ
mod 12 determines both m and δKn uniquely. The same is true for E′, and we get an explicit
formula for ε(n) = (δKn − δ′Kn)/12 for large n.
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Let us also observe that ε(n) ∈ {−1
2 , 0,

1
2} for large n in this case. Indeed, the ramification

degree eKn/Ql is divisible by 3, and so δKn − δ′Kn is also divisible by 3. By Lemma 2.4 and

Theorem 4.5(iv), ∣∣∣∣δKn − δ′Kn12

∣∣∣∣ = |ε(n)| 6 1

2
,

and so |δKn − δ′Kn | 6 6. Moreover, δKn − 3δ′Kn ≡ 0 mod 4 (see [DD15, Theorem 1.1]), so δKn and

δ′Kn have the same parity, whence δKn − δ′Kn ∈ {−6, 0, 6}.

5. Tamagawa numbers

We now turn to the behaviour of the Tamagawa number quotient from Corollary 3.2 in towers

of l-adic fields.

Theorem 5.1. Let K = K0 ⊂ K1 ⊂ K2 ⊂ · · · be a tower of l-adic fields, and let φ : E → E′ be

an isogeny of elliptic curves over K. Then the sequence

cE′/K0

cE/K0

,
cE′/K1

cE/K1

,
cE′/K2

cE/K2

, . . .

stabilises unless l | deg φ, eKn/K →∞ and E/K has wild potentially supersingular reduction (in

particular l = 2, 3). In this exceptional case, and in all other cases where E has potentially good

reduction, all terms in the sequence lie in {1, 2, 3, 4, 1
2 ,

1
3 ,

1
4}.

Proof. First, if eKn/K 6→ ∞, then the extensions Kn+1/Kn are eventually unramified, so the

Tamagawa numbers of E and E′ stabilise.

Next, suppose that either l - deg φ or E is not wild potentially supersingular. If E = E′, there

is nothing to prove. Otherwise, by decomposing φ into endomorphisms and isogenies of prime

degree if necessary, we may assume that deg φ = p is prime. Now apply the classification for the

quotient c/c′ from [DD15, Table 1]. All the conditions in the table that determine c/c′ (i.e. that

E is good, ordinary, additive, split multiplicative, has non-trivial 3-torsion, v(jE) = pv(jE′), etc.)

stabilise in the tower Kn, and hence so does the quotient.

Now suppose that E and E′ have potentially good reduction. In particular, the reduction is

good or additive over all Kn, and so 1 6 cE/Kn , cE′/Kn 6 4 (see [Sil94, § IV.9, Table 4.1]). To prove

the claim, it suffices to check that if one of them, say cE/Kn , is 3, then the other cannot be 2 or 4.

Indeed, cE/Kn = 3 implies that E has Kodaira type IV or IV∗ and cE′/Kn ∈ {2, 4} implies that E′

has type III, III∗, I∗0 or I∗n (see [Sil94, § IV.9, Table 4.1]). Such curves cannot be isogenous, because:

(a) for l = 2 the former types are tame and the latter are wild [KT82, Proposition 8.20]; (b) for

l = 3 the former types are wild and the latter are tame [Kra90, Theorem 1]; and (c) for l > 3

the curve E′ also has type IV or IV∗, e.g. from [DD15, Table 1] or by considering the valuations

of minimal discriminants and the smallest fields where the curves acquire good reduction. 2

Remark 5.2. If deg φ is a prime p > 5, then the quotient c(E′/Kn)/c(E/Kn) is particularly

simple. It stabilises to:

• p if E/Kn has split multiplicative reduction for some n, and vK(jE′)/vK(jE) = p;

• 1/p if E/Kn has split multiplicative reduction for some n, and vK(jE′)/vK(jE) = 1/p;

• 1 in all other cases.
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Corollary 5.3. If φ : E → E′ is an isogeny of elliptic curves over Q and Q(ln) is the nth layer
in the l-cyclotomic tower, then the sequence∏

v

cv(E
′/Q(ln))

cv(E/Q(ln))

stabilises, unless l | deg φ and E has wild potentially supersingular reduction at l (in particular,
l = 2, 3). In this exceptional case, for all sufficiently large n, the terms are of the form C ·αn for
some constant C and some αn ∈ {1, 2, 3, 4, 1

2 ,
1
3 ,

1
4}.

Remark 5.4. For elliptic curves with wild potentially supersingular reduction, the quotient of
Tamagawa numbers might not stabilise.

As an example, take the 3-isogeny E = 243a1 → 243a2 = E′ over Q(3n), and consider
the Tamagawa numbers at primes above 3. As in Remark 4.8, one may compute the minimal
discriminants and the number of components of the Néron minimal model (and thus the Kodaira
types). We find that the Kodaira types of E,E′ alternate between IV∗, II and II∗, IV. The
Tamagawa numbers for types II and II∗ are always 1 (see [Sil94, § IV.9, Table 4.1]), and they turn
out to be 3 for the IV and IV∗ cases, so that the Tamagawa quotient alternates between 3 and 1

3 .
(To see that the Tamagawa numbers are 3, we use the fact that over a local field K/Q3, the parity
of ord3 (c(E′/K)/c(E/K)) can be recovered from Omφ(K), the local root number w(E/K), and
the Artin symbol (−1,K(kerφt)/K); see [DD11, Theorem 5.7]. In our case, Omφ(K) is computed
as in Remark 4.8, the local root number is +1 over Q3 and is unchanged in odd-degree Galois
extensions, and the points in kerφt are defined over Q, so that the Artin symbol is trivial.)

Finally, we record the fact that Theorem 5.1 also holds for semistable abelian varieties.

Theorem 5.5. Let K ⊂ K1 ⊂ K2 ⊂ · · · be a tower of l-adic fields, and let φ : A → A′ be
an isogeny of semistable abelian varieties over K. Then the quotient of Tamagawa numbers
c(A′/Kn)/c(A/Kn) stabilises as n →∞.

Proof. By [BD14, Corollary 3.2.8], for sufficiently large n,

c(A/Kn) = C · erKn/K and c(A′/Kn) = C ′ · erKn/K

for some constants C and C ′. Here e is the ramification degree, and r denotes the rank of the
split toric part of A/Kn (and of A′/Kn) for large enough n. The claim follows. 2

6. Torsion

To deduce the exact growth of X from the isogeny invariance of the Birch–Swinnerton-Dyer
conjecture, we need to control torsion in the Mordell–Weil group in towers of number fields. This
is the purpose of this section.

Proposition 6.1. Let K ⊂ K1 ⊂ K2 ⊂ · · · be a tower of number fields, and let φ : A → A′ be
an isogeny of abelian varieties over K of degree pkm, with p - m. Then for every n > 1,

|A(Kn)[p∞]|
|A′(Kn)[p∞]| = pan with k(1− 2 dimA) 6 an 6 k.

If A has finite p-power torsion over
⋃
nKn, then the quotient stabilises.
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Proof. Because φ : A(Kn)[p∞] → A′(Kn)[p∞] has kernel of size at most pk, the left-hand side

quotient is at most pk. The same argument applied to the conjugate isogeny φ′ : A′ → A (with

φ ◦ φ′ the multiplication-by-pk map) gives the first claim. The second claim is clear, as both

A(Kn)[p∞] and A′(Kn)[p∞] stabilise. 2

Corollary 6.2. Let K be a number field, K∞ =
⋃
nKn its cyclotomic Zl-extension, and A,

A′/K isogenous abelian varieties. Then for every prime p the sequence |A(Kn)[p∞]|/|A′(Kn)[p∞]|
stabilises as n →∞.

Proof. By the Imai–Serre theorem (see, e.g., [Rib81]), A has finite torsion over K∞. 2

Remark 6.3. If A = E is an elliptic curve over K = Q and the Kn/Q are Galois, the assumption

that E has finite p-power torsion over K∞ =
⋃
nKn simply means that K∞ does not contain

the full p-division tower Q(E[p∞]). Indeed, if E/K∞ has infinite p-power torsion and K∞/Q is

Galois but does not contain Q(E[p∞]), then E[pn] has a Galois stable cyclic subgroup of order pn

and hence a cyclic pn-isogeny for every n > 1. Since E cannot have CM over Q, this is impossible

by Shafarevich’s theorem on the finiteness of isogeny classes.

7. Divisible Selmer

The ultimate global invariant that we need to control is the divisible part of the p∞-Selmer group.

Its Zp-corank rkpA/K is conjecturally the Mordell–Weil rank, which is hard to bound in general

towers of number fields Kn/K. As a result, we only give elementary bounds on |Seldiv
p∞(A/Kn)[φ]|

in terms of rkpA/Kn and prove some stabilisation results that we will need in § 8.

Lemma 7.1. Let φ : A → A′ be an isogeny of abelian varieties over a number field K, and let p

be a prime number. Then

|Seldiv
p∞(A/K)[φ]| 6 prkp A/K·ordp deg φ.

Proof. Let d = deg φ, and let φ′ be the conjugate isogeny, so that φ′ ◦ φ is multiplication by d.

Then it is clear that

Seldiv
p∞(A/K)[φ] ⊂ Seldiv

p∞(A/K)[d].

The right-hand side has size prkp A/K·ordp d, since Seldiv
p∞(A/K) is isomorphic to (Qp/Zp)rkp A/K .

2

Corollary 7.2. Let K ⊂ K1 ⊂ K2 ⊂ · · · be a tower of number fields, φ : A → A′ an isogeny

of abelian varieties over K, and p a prime number. Then

ordp
|Seldiv

p∞(A/K)[φ]|
|Seldiv

p∞(A′t/K)[φt]|
= O(rkpA/Kn).

Proof. Apply Lemma 7.1 to φ and φt. 2

Lemma 7.3. Let F/K be a Galois extension of number fields and A/K an abelian variety. Then

|ker(Res : Seldiv
p∞(A/K) → Seldiv

p∞(A/F ))| 6 |A(F )[p∞]|rkp A/K .
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Proof. First observe that for every n > 1,

ker(Res : Selpn(A/K) → Selpn(A/F ))

is killed by M = |A(F )[p∞]|. Indeed, Selpn(A/K) ⊂ H1(K,A[pn]), and the kernel of

Res : H1(K,A[pn]) → H1(F,A[pn])

is H1(Gal(F/K), A(F )[pn]) by the inflation–restriction sequence, and so is clearly killed by M .

Because Selp∞ is the injective limit of the Selpn , the asserted kernel on Selp∞ and on Seldiv
p∞ is

also killed by M . As Seldiv
p∞(A/K) ∼= (Qp/Zp)rkp A/K , the result follows. 2

Theorem 7.4. Let K be a number field, A/K an abelian variety, p a prime number and K ⊂
K1 ⊂ K2 ⊂ · · · a tower of Galois extensions of K. Suppose that both A(Kn)[p∞] and rkpA/Kn

are bounded as n →∞.

(i) There exists n0 such that the restriction maps

Jn,n′ : Seldiv
p∞(A/Kn) −→ Seldiv

p∞(A/Kn′)

are isomorphisms for all n0 6 n 6 n′.

(ii) If φ : A → A′ is an isogeny, then |Seldiv
p∞(A/Kn)[φ]| is eventually constant, equal to pλ for

some 0 6 λ 6 ordp deg φ · limn→∞ rkpA/Kn.

Proof. (i) Because rkpA/Kn 6 rkpA/Kn′ for n 6 n′, the p∞-Selmer rank eventually stabilises.

Replacing K by some Km, we may thus assume that rkpA/Kn is independent of n. The maps

Jn,n′ have finite kernels by Lemma 7.3, so they must then be surjective.

By assumption, A has finite p-power torsion over
⋃
Kn, say of order M . The (increasing)

sequence |ker J0,n| is bounded by Lemma 7.3, so it stabilises, say at n0. Now suppose n0 6 n 6 n′.

The map Jn,n′ cannot have non-trivial kernel because J0,n′ = Jn,n′ ◦ J0,n, the kernels of J0,n and

J0,n′ are of the same size, and J0,n is surjective. Thus the Jn,n′ are both surjective and injective,

as required.

(ii) Take n0 as above, so that rkpA/Kn is constant and the Jn0,n are isomorphisms for n > n0.

Then, by Lemma 7.1, |Seldiv
p∞(A/Kn0)[φ]| = pλ for some 0 6 λ 6 ordp deg φ · rkpA/Kn0 . Now the

maps Jn0,n are isomorphisms and commute with φ, and the result follows. 2

Corollary 7.5. Let K∞ =
⋃
nKn be the l-cyclotomic tower of a number field K, and let

φ : A → A′ be an isogeny of abelian varieties over K. If rkpA/Kn is bounded as n → ∞, then

|Seldiv
p∞(A/Kn)[φ]| is eventually constant.

Proof. For cyclotomic towers, torsion in A(Kn) is bounded by the Imai–Serre theorem (see, e.g.,

[Rib81]). 2

Corollary 7.6. Let Q∞ =
⋃
nQ(ln) be the l-cyclotomic tower of Q, and let φ : E → E′ be an

isogeny of elliptic curves over Q. Then |Seldiv
p∞(E/Q(ln))[φ]| is eventually constant.

Proof. By Kato’s theorem [Kat04], the p∞-Selmer rank of E is bounded in the cyclotomic tower.

2
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8. Selmer growth in towers

In this section we prove Theorems 1.1–1.3. The proofs rely on the invariance of the Birch–
Swinnerton-Dyer conjecture under isogeny (as in § 3) and the explicit computations of the periods
ΩA and ΩA′ , the exterior form contributions Omφ, and the Tamagawa numbers and torsion from
§§ 2, 4, 5 and 6. In fact, Theorem 8.2 and Proposition 8.5 give an explicit description of the
Selmer quotient in almost completely general towers of number fields. To obtain the statements
for X, we also bound the contributions from the divisible part of Selmer using the results of § 7.

Notation 8.1. Let F/K be a Galois extension of number fields, and let φ : A → A′ be an isogeny
of abelian varieties over K. For a place v of K and a place w | v of F write

γv =



Ω∗A′/Kv
Ω∗A/Kv

if Kv
∼= R, Fw ∼= C,

1 in all other Archimedean cases,
cw(A′/F )

cw(A/F )
|kw|Omφ(Fw) if v -∞,

where kw is the residue field at w and Omφ is as in Definition 4.1. Note that γv = 1 for primes
of v of good reduction; see Lemma 4.2.

If K ⊂ K1 ⊂ K2 ⊂ · · · is a tower of Galois extensions of K, we write ev,n, fv,n and nv,n for
the ramification degree of v, the residue degree of v and the number of places above v in Kn/K,
respectively. In this setting, we also write γv,n for the γv for F = Kn.

Theorem 8.2. Let F/K be a Galois extension of number fields, and let φ : A→ A′ be an isogeny
of abelian varieties over K. If the degree of φ is a power of p, then

|Seldiv
p∞(A/F )[φ]|

|Seldiv
p∞(A′t/F )[φt]|

|X◦
A/F [p∞]|

|X◦
A′/F [p∞]| =

|A(F )[p∞]| |At(F )[p∞]|
|A′(F )[p∞]| |A′t(F )[p∞]|

(
ΩA′/K

ΩA/K

)[F :K]∏
v

γnvv ,

where nv is the number of places of F above v. If φ has arbitrary degree, then the left-hand side
and right-hand side have the same p-part.

Proof. This is a rephrasing of Corollary 3.2. 2

Theorem 8.3. Let Q∞ =
⋃
nQ(ln) be the l-cyclotomic tower, p a prime, and φ : E → E′ an

isogeny of elliptic curves over Q. Then for all large enough n,

|Seldiv
p∞(E/Q(ln))[φ]|

|Seldiv
p∞(E′/Q(ln))[φt]|

|X◦
E/Q(ln)[p

∞]|
|X◦

E′/Q(ln)[p∞]| = pµl
n+κ+ε(n),

with µ ∈ 1
12Z given by

µ = ordp
ΩE′

ΩE
+


0 if l 6= p or ordp(jE) < 0,

1

12
ordp

(
∆E′

∆E

)
if l = p and ordp(jE) > 0,

some κ ∈ Z, and |ε(n)| 6 2
3 for p > 3, |ε(n)| 6 3

2 for p = 3 and |ε(n)| 6 81
2 for p = 2. If l 6= p or

l - deg φ, then ε(n) = 0.
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Proof. To find the Selmer quotient, we apply Theorem 8.2. The torsion contribution is eventually

constant by Corollary 6.2. Now compute the γv,n (see Notation 8.1) for Kn = Q(ln) and all primes

v of Q. By Corollary 5.3, the product of Tamagawa quotients stabilises unless l 6 3, l | deg φ

and E has wild potentially supersingular reduction at l. In that case, the term is of the form

lξ(n) with |ξ(n)| 6 1 when l = 3 and |ξ(n)| 6 2 when l = 2. By Corollary 4.7, the Omφ term is 1

unless l = p and E has additive potentially supersingular reduction at l, in which case it is

p(ln/12)ordp(∆E′/∆E)+η(n),

with |η(n)| bounded by 2
3 ,

1
2 and 61

2 for p > 3, p = 3 and p = 2, respectively. The claim follows,

with the asserted bounds for ε(n) = ξ(n) + η(n). 2

Corollary 8.4. Theorem 1.1 holds.

Proof. Combine Theorem 8.3 and Corollary 7.6. 2

Proposition 8.5. Let K ⊂ K1 ⊂ K2 ⊂ · · · be a tower of Galois extensions of K, and let

φ : A → A′ be an isogeny of abelian varieties over K. For a prime v of K and a rational prime p,

(i) if v - p, or A is semistable at v, or A is an elliptic curve which does not have additive

potentially supersingular reduction at v, then ordp γv,n is constant for sufficiently large n.

Suppose that v | p and that A = E and A′ = E′ are elliptic curves with potentially good reduction

at v. Write δ = δE/Kv , δ
′ = δE′/Kv ,ð = ðE/Kv and ð′ = ðE′/Kv as in Theorem 4.5. Then, for all

sufficiently large n,

ordp γv,n = µvev,nfv,n + εv,nfv,nfKv/Qp + zn,

with:

(ii) µv = fKv/Qp(δ
′ − δ)/12, εv,n = {ev,nδ/12} − {ev,nδ′/12}, and zn constant if E has tame

reduction at v;

(iii) µv = fKv/Qp(ð′ − ð)/12, εv,n = {ev,nð/12}−{ev,nð′/12}, and |zn| 6 2 if all Kn/K are tamely

ramified at v;

(iv) µv = fKv/Qp(δ
′ − δ)/12, |εv,n| 6 2

3 , and |zn| 6 1 if p = 3;

(v) µv = fKv/Qp(δ
′ − δ)/12, εv,n = O(1), and |zn| 6 2 if p = 2 and all upper ramification

subgroups of the inertia group I⋃Kn/K at v have finite index.

Proof. Combine Lemma 4.2(i) with Theorems 4.5 and 5.1. 2

Remark 8.6. For sufficiently large n, the constants ordp γv,n in (i) and zn in (ii) are just

ordp (cw(A′/Kn)/cw(A/Kn)), where w is a prime of Kn above v. If K∞/Kn is unramified at

primes above v for n sufficiently large, then zn = ordp (cw(A′/Kn)/cw(A/Kn)) and the εv,n are

constants in (iii)–(v) as well, by Lemma 4.2(ii) and Theorem 5.1.

Theorem 8.7. Let K be a number field, p a prime, and K∞ =
⋃
nKn a Zl-extension of K with

[Kn : K] = ln. Let φ : E → E′ be an isogeny of elliptic curves over K. Then

|Seldiv
p∞(E/Kn)[φ]|

|Seldiv
p∞(E′/Kn)[φt]|

|X◦
E/Kn [p∞]|

|X◦
E′/Kn [p∞]| = pµl

n+O(1), µ = ordp

(
ΩE′/K

ΩE/K

)
+
∑
v

µv,
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where the sum is taken over the primes v of bad reduction for E/K and

µv =


ordp

cv(E
′/K)

cv(E/K)
if v is totally split in K∞/K,

fKv/Qp
12

ordv

(
∆E′/K

∆E/K

)
if l = p, v | p is ramified in K∞/K and ordv jE > 0,

0 otherwise.

Proof. We apply Theorem 8.2. The torsion contribution is O(1) by Proposition 6.1. All
Archimedean places are totally split in K∞/K, since Zl has no elements of order 2, so γv,n = 1

for v |∞. It remains to show that ordp(γ
nv,n
v,n ) = µvl

n +O(1) for primes v of K of bad reduction
for E and E′. Because the inertia and the decomposition subgroups at v are closed subgroups of
Zl, the possible local behaviours of K∞/K at v are:

(1) K∞/K is totally split at v, so nv,n = ln, ev,n = 1 and fv,n = 1;

(2) K∞/K is not totally split but unramified at v, so nv,n = c, ev,n = 1 and fv,n = ln/c for
some constant c and all large enough n;

(3) K∞/K is ramified at v, so nv,n = c1, ev,n = ln/c1c2 and fv,n = c2 for some constants c1 and
c2 and all large enough n; here necessarily v | l.

In the first case, Omφ(Kn,w) = 0 for w | v since Kn,w = Kv, and hence ordp(γ
nv,n
v,n ) = µvl

n. In

the second case, Omφ is still 0 by Lemma 4.2(ii), so γ
nv,n
v,n is a finite product of bounded quotients

of Tamagawa numbers, which is O(1).
Assume we are in the third case.
If v - p or E does not have additive potentially good reduction at v, then ordp γv,n is eventually

constant by Proposition 8.5(i), and hence so is ordp(γ
nv,n
v,n ); in particular, it is again O(1). Also

µv = 0: either v - p, or E and E′ have good reduction at v and ordv ∆E/K = ordv ∆E′/K = 0, or
E and E′ have potentially multiplicative reduction (i.e. ordv jE < 0).

Suppose that v | p and E has additive potentially good reduction at v. Now apply
Proposition 8.5(ii) for p > 3, (iv) for p = 3, and (v) for p = 2 (noting that by class field theory,
all upper ramification groups in the inertia group of Gal(K∞/K) = Zl are of finite index) to find
that

ordp(γ
nv,n
v,n ) =

(
fKv/Qp

δ′ − δ
12

ev,nfv,n + εv,nfv,nfKv/Qp + zn

)
nv,n = µvl

n +O(1). 2

Corollary 8.8. Theorem 1.2 holds.

Proof. Combine Theorem 8.7 and Corollary 7.2. 2

Theorem 8.9. Suppose that K is a number field and K∞/K a Galois extension whose Galois
group is a d-dimensional l-adic Lie group; write Kn/K for its nth layer in the natural Lie
filtration. Let p be a prime number and φ :A→A′ aK-isogeny of abelian varieties. If eitherA and
A′ are semistable or they are elliptic curves that do not have additive potentially supersingular
reduction at primes v | p that are infinitely ramified in K∞/K, then there are constants µ1, . . . ,
µd ∈ Q such that for all sufficiently large n,

|Seldiv
p∞(A/Kn)[φ]|

|Seldiv
p∞(A′t/Kn)[φt]|

|X◦
A/Kn [p∞]|

|X◦
A′/Kn [p∞]|

|A′(Kn)[p∞]| |A′t(Kn)[p∞]|
|A(Kn)[p∞]| |At(Kn)[p∞]|

= pµl
dn+µ1l(d−1)n+···+µd−1l

n+µd .
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If A is a general elliptic curve, then there is µ ∈ Q such that for all sufficiently large n,

|Seldiv
p∞(A/Kn)[φ]|

|Seldiv
p∞(A′/Kn)[φt]|

|X◦
A/Kn [p∞]|

|X◦
A′/Kn [p∞]| = pµl

dn+O(l(d−1)n).

Proof. We will apply Theorem 8.2. Note that the torsion contribution is O(1) by Proposition 6.1,

so we can ignore it for the second claim.
Fix a prime v of K. The decomposition group Dv and the inertia group Iv are closed Lie

subgroups. So, for all sufficiently large n,

ev,n = C1l
n(dim Iv),

fv,n = C2l
n(dimDv−dim Iv),

nv,n = C3l
n(d−dimDv)

for some constants C1, C2 and C3 (that depend on v). If v - l, then the tower K∞/Kn is eventually

tamely ramified at v, and dim Iv 6 1. If v | l, then, on the contrary, all the upper ramification

subgroups of Iv are of finite index by Sen’s theorem [Sen72, § 4, main theorem].

We now compute ordp(γ
nv,n
v,n ) for every place v of K.

• v is Archimedean. If v is real and stays real in the tower, or if v is complex, then γv,n = 1.

Otherwise, γv,n ∈Q stabilises for large enough n, so ordp(γ
nv,n
v,n ) grows like Cldn for a suitable

C ∈ Q.

• v - p or A/Kv is semistable or A/Kv is an elliptic curve that is not additive potentially

supersingular. Again, ordp γv,n is constant for large n, by Proposition 8.5(i), so ordp(γ
nv,n
v,n )

grows like Cln(d−dimDv) for some C ∈ Q.

• v | p and A/Kv is an elliptic curve. By Proposition 8.5, for large n,

ordp γv,n = µvev,nfv,n + εv,nfv,nfKv/Qp + zn,

with zn, µv and εv,n as in the proposition. (The proposition applies because either v | l and

the upper ramification groups at v have finite index in Iv, or v - l and K∞/Kn are eventually

tamely ramified.) If ev,n →∞, then dim Iv > 1 and ordp(γ
nv,n
v,n ) = Cldn+O(l(d−1)n) for some

C ∈ Q. Otherwise, ev,n is eventually constant, as are zn and εv,n by Remark 8.6. In that

case, ordp(γ
nv,n
v,n ) = Cldn + C ′ln(d−dimDv) for some C,C ′ ∈ Q.

Taking the product over all places v and applying Theorem 8.2, we get the claim. (The term

(ΩA′/K/ΩA/K)[Kn:K] gives a contribution of the form pCl
dn

for some C ∈ Q.) 2

Corollary 8.10. Theorem 1.3 holds.

Proof. (i) This is Theorem 8.9(ii).

(ii) Combine Theorem 8.9(i) and Proposition 6.1.

(iii) If rkpA/Kn =O(l(d−1)n), then the divisible Selmer quotient is pO(l(d−1)n) by Corollary 7.2,

and the torsion quotient is pO(1) by Proposition 6.1. Moreover, if rkpA/Kn and A(Kn)[p∞] are

bounded, then the torsion quotients stabilise by Proposition 6.1, as does the divisible Selmer

quotient by Theorem 7.4(ii) applied to φ and to φt. This gives the results for X◦. 2
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Appendix. Conductors of elliptic curves in extensions

In this Appendix we give bounds on the growth of conductors of elliptic curves in extensions
of local fields. These results are independent of the rest of the paper, and do not rely on the
presence of an isogeny.

Let K be a finite extension of Ql, and let IK be the inertia subgroup of Gal(K̄/K). We will
be interested in continuous representations χ : IK → GLd(C), in other words, those that factor
through a finite extension of K. We write In for the upper ramification groups of IK. We denote
by fχ, fE , . . . the conductor exponents of a representation, an elliptic curve, etc.

Notation A.1. For an irreducible continuous representation χ 6= 1 of IK, set

mχ = max
i>1
{i : χ(Ii) 6= id}.

We set m1 = −1.

Lemma A.2. Let χ and ρ be irreducible continuous representations of IK.

(i) mχ = fχ/dimχ− 1.

(ii) χ factors through IK/I
n if and only if mχ < n.

(iii) If mρ < mχ, then fρ⊗χ = fχ dim ρ.

(iv) If mρ = mχ, then fρ⊗χ 6 fχ dim ρ = fρ dimχ.

Proof. (i) See [Ser79, ch. 6, § 2, Exercise 2]. (This is formulated in [Ser79] on the level of finite
extensions, but the definition extends directly to the whole of IK, since upper ramification groups
behave well under quotients.)

(ii) This is clear.
(iii) By (ii), the group Imχ acts trivially on ρ and non-trivially on χ. As Imχ / IK and χ is

irreducible, χ has no invariants under Imχ . Therefore ρ⊗χ has no invariants either, and so each
irreducible constituent τ of ρ⊗ χ has mτ > mχ. On the other hand, clearly Im acts trivially on
ρ ⊗ χ for m > mχ, so mτ = mχ and fτ = (fχ/dimχ) dim τ by (i). Taking the sum over τ , we
deduce that

fρ⊗χ = fχ
dim(χ⊗ ρ)

dimχ
= fχ dim ρ.

(iv) As in (iii), let τ be an irreducible constituent of ρ ⊗ χ. For m > mχ, the group Im

acts trivially on χ and on ρ, and hence on τ . Therefore, by (ii), mτ < m, and taking the limit
m → mχ gives mτ 6 mχ. By (i), fτ 6 (fχ/dimχ) dim τ , and taking the sum over τ as in (iii)
gives the claim. 2

Theorem A.3. Let K be an l-adic field and ρ : IK → GLd(C) a non-trivial continuous irreducible
representation. Take n > fρ/dim ρ− 1, and write N = In for the nth ramification subgroup (in
the upper numbering) of IK. Then, for every finite extension F/K,

fResF ρ = fResFN ρ 6 eFN/K(fρ − d) + d.
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Proof. Because conductors and the upper numbering remain unchanged in unramified extensions,
we may assume that F/K is totally ramified. Decompose IndF/K 1 as

⊕
τ∈J τ with τ irreducible.

By the conductor-discriminant formula,

fResF ρ = fIndF/K ResF ρ − d vK(∆F/K)

= fρ⊗IndF/K 1 − d fIndF/K 1 =
∑
τ∈J

fρ⊗τ − d fτ .

Let JN ⊂ J be the (multi-)set of τ which factor through IK/N . Then

fResFN ρ =
∑
τ∈JN

fρ⊗τ − d fτ

by the same argument. However, mτ > n > mρ for τ /∈ JN by Lemma A.2(ii), and so the terms
fρ⊗τ − d fτ are 0 by Lemma A.2(iii) for such τ . This proves the equality fResF ρ = fResFN ρ.

For the inequality, first observe that by the argument above,

fResF ρ =
∑
Jρ

(fρ⊗τ − d fτ ),

where Jρ ⊂ JN is the set of τ ∈ J for which mτ 6 mρ. By Lemma A.2(iii) and (iv), noting that
dim τ 6 fτ for every τ 6= 1, we have

fResF ρ =
∑
τ∈Jρ

(fρ⊗τ − d fτ ) 6
∑
τ∈Jρ

(fρ dim τ − d fτ )

6 fρ +
∑

τ∈Jρ\{1}

(fρ dim τ − ddim τ)

= fρ + (fρ − d)

((∑
τ∈Jρ

dim τ

)
− 1

)
6 fρ + (fρ − d)

((∑
τ∈JN

dim τ

)
− 1

)
= fρ + (fρ − d)([FN : K]− 1) = d+ (fρ − d)[FN : K],

which gives the claim, as we assumed that F/K is totally ramified. 2

Theorem A.4. Let K be an l-adic field and E/K an elliptic curve with additive reduction. Take
n > fE/2− 1 and write N = In for the nth ramification subgroup (in the upper numbering) of
Gal(K̄/K). Then, for every finite extension F/K,

fE/F = fE/FN 6 eFN/K(fE/K − 2) + 2.

Proof. Write L = FN . Let V be the Weil–Deligne representation associated to the first étale
cohomology of E/K, and let ρ be its ‘Weil part’ (i.e. the semisimplification of H1

ét(E,Q`) ⊗ C
for some ` 6= l).

Either ρ is irreducible or it is a sum of two one-dimensional characters ψ1 and ψ2 of the
same conductor (because ψ1ψ2 = det ρ is the cyclotomic character, which is unramified). The
conductor depends only on the action of the inertia group, so, by applying Theorem A.3 either
to ρ directly or to the ψi, we find that fResF ρ = fResL ρ.

Now, if E/K has potentially good reduction, then V is a Weil representatation and fE = fρ, so
the result follows from Theorem A.3. If E/L has multiplicative reduction, then fE/F = fE/L = 1,
and the result again follows.
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Finally, suppose that E/L has additive potentially multiplicative reduction. By Theorem A.3,

fResF ρ = fResL ρ 6 eL/K(fρ − 2) + 2.

Over any field where E has additive reduction, fE = fρ > 2. This fact over L, together with
the formula, shows that fResF ρ > 2; in particular, E has additive reduction over F . Thus E
has additive reduction over all three fields, and the formula then translates to the claim in the
theorem. 2

Corollary A.5. Let K be an l-adic field and K∞/K a possibly infinite Galois extension. Let
E/K be an elliptic curve with additive reduction. Suppose that for some n > fE/2−1, the upper
ramification subgroup InK∞/K of the inertia group of K∞/K has finite index e. Then, for every
finite extension L of K in K∞,

fE/L 6 e(fE/K − 2) + 2.

Proof. This is clear, since eLIn/K = eLI/K 6 e, where I = InK∞/K. 2

Corollary A.6. Let K be an l-adic field and K∞/K a Galois extension whose Galois group
is an l-adic Lie group. Then there is a constant C > 0 such that every elliptic curve E/K has
conductor exponent fE/L 6 C over all finite extensions L of K in K∞. Moreover, if K∞ =

⋃
mKm

with Km/K finite Galois, then fE/Km stabilises as m →∞.

Proof. This is clear for curves with good and multiplicative reduction. If E/K has additive
reduction, by [Pap93, Theorem 1] the conductor exponent fE/K is at most 2, 3vK(3) + 2 or
6vK(2) + 2 when l > 5, l = 3 or l = 2, respectively. By Sen’s theorem [Sen72, § 4, main theorem],
InK∞/K / IK∞/K is of finite index for every n, so the two claims follow from Corollary A.5 and
Theorem A.4. 2
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