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Abstract. Two of the main objects of study in multifractal analysis of measures
are the coarse multifractal spectra and the Rényi dimensions. In the 1980s it was
conjectured in the physics literature that for ‘good’ measures the following result,
relating the coarse multifractal spectra to the Legendre transform of the Rényi
dimensions, holds, namely

‘the coarse multifractal spectra = the Legendre transforms of the Rényi dimensions’.

This result is known as the multifractal formalism and has now been verified for many
classes of measures exhibiting some degree of self-similarity. However, it is also well
known that there is an abundance of measures not satisfying the multifractal formalism
and that, in general, the Legendre transforms of the Rényi dimensions provide only
upper bounds for the coarse multifractal spectra. The purpose of this paper is to
prove that even though the multifractal formalism fails in general, it is nevertheless
true that all measures (satisfying a mild regularity condition) satisfy the inverse of the
multifractal formalism, namely

‘the Rényi dimensions = the Legendre transforms of the coarse multifractal spectra’.

2000 Mathematics Subject Classification. 28A80.

1. The inverse multifractal formalism. For a probability measure μ on �d with
compact support K , the Rényi dimensions of μ are defined as follows. For r > 0 and
a real number q write

M(r; q) = sup
(B(xi, r))i is a centred

packing of K

∑
i

μ(B(xi, r))q. (1.1)

(Recall that a finite or countable family of balls (B(xi, r))i is called a centred packing
of K if xi ∈ K for all i and B(xi, r) ∩ B(xj, r) = ∅ for all i �= j.) The lower and upper
Rényi dimensions of order q are now defined by

τ (q) = lim inf
r↘0

log M(r; q)
− log r

,

τ (q) = lim sup
r↘0

log M(r; q)
− log r

.

(1.2)
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These dimensions were essentially introduced by Rényi [10, 11] in the 1960s as a tool for
analysing various problems in information theory. In fact, for a probability vector p =
(p1, . . . , pn) and q ∈ �, Rényi defined the q-entropy Hp(q) of p by Hp(q) = 1

1−q log
∑

i pq
i

for q �= 1, and Hp(1) = −∑
i pi log pi.

The main significance of the Rényi dimensions is their relationship with the coarse
multifractal spectra. For a probability measure μ on �d with support equal to K , we
define the coarse multifractal spectra as follows. Let α ∈ �. For r, ε > 0, let

N(ε, r; α) = sup

{
n ∈ �

∣∣∣∣∣ (B(xi, r))n
i=1 is a centred packing of K such that

α − ε ≤ log μ(B(xi, r))
log r

≤ α + ε for all i = 1, . . . , n

}
.

(1.3)

In analogy with the definition of the box dimension, we now define the lower and
upper coarse multifractal spectra of the measure μ by

f (α) = lim inf
ε↘0

lim inf
r↘0

log N(ε, r; α)
− log r

,

f (α) = lim inf
ε↘0

lim sup
r↘0

log N(ε, r; α)
− log r

(1.4)

(if N(ε, r; α) = 0, then we put log N(ε,r;α)
− log r = −∞). In particular, it follows immediately

from the definitions that

f (α) = f (α) = −∞

for all α < 0. We also note that

f (α) ≤ f (α) ≤ α < ∞

for all α ≥ 0; indeed, since τ (1) ≤ 0 (because M(r; 1) ≤ 1 for all r > 0) and f (α) ≤ τ ∗(α)
(see [3] or Theorem 2.1 below), we conclude that f (α) ≤ f (α) ≤ τ ∗(α) = infq(qα +
τ (q)) ≤ 1 · α + τ (1) ≤ 1.

In the 1980s it was conjectured in the physics literature [4, 5] that for ‘good’
measures, the following result, relating the coarse multifractal spectra to the Legendre
transform of the Rényi dimensions, holds. This result is known as the ‘multifractal
formalism’ and is stated below. In order to state the ‘multifractal formalism’ we need
the notion of the Legendre transform of a function. For a function ϕ : � → � we
define the Legendre transform ϕ∗ : � → [−∞,∞] by

ϕ∗(x) = inf
y

(
xy + ϕ(y)

)
. (1.5)

We can now state the multifractal formalism.

DEFINITION (The multifractal formalism). A probability measure μ on �d is said
to satisfy the multifractal formalism if

‘the coarse multifractal spectra = the Legendre transforms of the Rényi dimensions’,
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i.e. if

f (α) = τ ∗(α),

f (α) = τ ∗(α),

for all α ∈ �.

During the 1990s there has been an enormous interest in verifying the multifractal
formalism and computing the multifractal spectra of measures in the mathematical
literature, and within the last 10–15 years the multifractal spectra of various classes of
measures in �d exhibiting some degree of self-similarity have been computed rigorously
(cf. [3, 7] and the references therein). However, it is also known that there is an
abundance of measures not satisfying the multifractal formalism (indeed, since the
function τ ∗ is always concave it follows that if μ is a measure for which f is not
concave, then μ does not satisfy the multifractal formalism) and that, in general, the
Legendre transforms of the Rényi dimensions provide only upper bounds for the coarse
multifractal spectra. This is the content of the next theorem.

THEOREM A [3, 6]. Let μ be a probability measure on �d with compact support. We
have

f (α) ≤ τ ∗(α),

f (α) ≤ τ ∗(α),

for all α ∈ �.

In physics literature one is often interested in computing the coarse multifractal
spectra f (α) and f (α) [1, 2, 4, 5]. Unfortunately, the coarse multifractal spectra cannot
easily be computed numerically. However, the Rényi dimensions τ (q) and τ (q) can
relatively easily be computed numerically, and physicists therefore often compute
f (α) from τ (q) (and f (α) from τ (q)) using the multifractal formalism [1, 2, 4, 5]. This
is clearly unfortunate since the multifractal formalism is false in general. The purpose
of this paper is to prove that even though the multifractal formalism fails in general,
it is nevertheless true that the Legendre transforms of f (α) and f (α) can be computed
from τ (q) and τ (q), respectively. Indeed, we prove that all measures (satisfying a mild
regularity condition) satisfy the inverse of the multifractal formalism namely the Rényi
dimensions coincide with the Legendre transforms of the coarse multifractal spectra.

THEOREM 1.1 (The inverse multifractal formalism). Let μ be a probability measure
on �d with compact support. Then

‘the Rényi dimensions = the Legendre transforms of the coarse multifractal spectra.’

More precisely, the following holds:
(1) If 0 < q and f �= −∞, then

−τ (q) = ( − f
)∗

(q).

(2) If 0 < q, then

−τ (q) = ( − f
)∗

(q).
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In fact, Theorem 1.1 follows from more general version of the inverse multifractal
formalism. This is explained in the next section. We also note that the requirement
f �= −∞ cannot be omitted. Indeed, in Example 2 below we construct a probability
measure on [0, 1] such that f = −∞ and the inverse multifractal formalism for τ and

f fails, in fact, −τ (q) <
( − f

)∗
(q) for all q ∈ �.

2. The mixed inverse multifractal formalism. Recently mixed (or simultaneous)
multifractal spectra have generated an enormous interest in the mathematical literature
(cf. [8, 9] and the references therein). Previously, only the scaling behaviour of a single
measure μ has been investigated (see [3] and the references therein). However, mixed
multifractal analysis investigates the simultaneous scaling behaviour of finitely many
measures μ1, . . . , μk. Mixed multifractal analysis thus combines local characteristics
which depend simultaneously on various different aspects of the underlying dynamical
system, and provides the basis for a significantly better understanding of the underlying
dynamics. We will now give the definitions of the mixed Rényi dimensions and the mixed
coarse multifractal spectra extending (1.2) and (1.4), and state a mixed version of the
inverse multifractal formalism.

2.1. Mixed Rényi dimensions. Let μ1, . . . , μk be probability measures on �d with
common support equal to K . For q = (q1, . . . , qk) ∈ �k, we define the mixed moment
scaling function of the measures μ1, . . . , μk by

M(r; q) = sup
(B(xi, r))i is a centred

packing of K

∑
i

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk . (2.1)

The lower and upper mixed Rényi dimensions, denoted by τ (q) and τ (q), of μ1, . . . , μk

are defined by

τ (q) = lim inf
r↘0

log M(r; q)
− log r

,

τ (q) = lim sup
r↘0

log M(r; q)
− log r

.

(2.2)

The reader will observe that for k = 1, these definitions reduce to (1.1) and (1.2).

2.2. Mixed coarse multifractal spectra. Let μ1, . . . , μk be probability measures
on �d with common support equal to K . In order to define the mixed coarse multifractal
spectra of the measures μ1, . . . , μk, we fix ααα = (α1, . . . , αk) ∈ �k. For r, ε > 0, let

N(ε, r;ααα) = sup

{
n ∈ �

∣∣∣∣∣ (B(xi, r))n
i=1 is a centred packing of K such that

αj − ε ≤ log μj(B(xi, r))
log r

≤ αj + ε for all i = 1, . . . , n and all j = 1, . . . , k

}
.

(2.3)

https://doi.org/10.1017/S0017089509990279 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990279


ON THE INVERSE MULTIFRACTAL FORMALISM 183

In analogy with the definition of the box dimension, we now define the lower and
upper mixed coarse spectra of the measures μ1, . . . , μk by

f (ααα) = lim inf
ε↘0

lim inf
r↘0

log N(ε, r;ααα)
− log r

,

f (ααα) = lim inf
ε↘0

lim sup
r↘0

log N(ε, r;ααα)
− log r

.

(2.4)

Again, the reader will observe that for k = 1, these definitions reduce to (1.3) and (1.4).

2.3. The mixed inverse multifractal formalism. To state our main results we need
the notion of the Legendre transform of a function defined on �k. For a function
ϕ : �k → � we define the Legendre transform ϕ∗ : �k → [−∞,∞] by

ϕ∗(x) = inf
y

( 〈x|y〉 + ϕ(y)
)
, (2.5)

where 〈·|·〉 denotes the usual inner product in �k. Observe that this definition coincides
with definition (1.5) for k = 1.

Our first result says that the statement in Theorem A holds for arbitrary positive
integers k, i.e. for all positive integers k, the Legendre transforms of the mixed Rényi
dimensions provide upper bounds for the mixed coarse multifractal spectra.

THEOREM 2.1. Let μ1, . . . , μk be probability measures on �d with common compact
support. We have

f (ααα) ≤ τ ∗(ααα),

f (ααα) ≤ τ ∗(ααα),

for all ααα ∈ �k.

The proof of Theorem 2.1 is given in Section 3. Our second main result (Theorem
2.2) says that even though the mixed coarse multifractal spectra, in general, do not
coincide with the Legendre transforms of the mixed Rényi dimensions, all measures
satisfy the inverse of the multifractal formalism, namely, the mixed Rényi dimensions
coincide with the Legendre transforms of the mixed coarse multifractal spectra. In
Theorem 2.2 we use the following notation. If x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ �k,
then we write x ≤ y if xj ≤ yj for all j, and we write x < y if xj < yj for all j. Also, we
write 0 = (0, . . . , 0) ∈ �k.

THEOREM 2.2 (The mixed inverse multifractal formalism). Let μ1, . . . , μk be
probability measures on �d with common compact support. Write

A = max
j=1,..., k

sup
x∈K
r>0

log μj(B(x, r))
log r

,

where K denotes the common support of the measures μ1, . . . , μk. Let q ∈ �k.
(1) If (i) 0 < q and f �= −∞, or (ii) A < ∞, then

−τ (q) = ( − f
)∗

(q).
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(2) If (i) 0 < q and f �= −∞, or (ii) A < ∞, then

−τ (q) = ( − f
)∗

(q).

The proof of Theorem 2.2 is given in Section 4. If k = 1, then f �= −∞ (see Pro-
position 2.3). Hence, for k = 1, the requirement f �= −∞ can be omitted. Proposition
2.3 also shows that Theorem 2.1 follows from Theorem 2.2. Unfortunately, we have not
been able to show that f �= −∞ for k ≥ 2. We also note that it follows from Example
2 below that, even for k = 1, the lower coarse multifractal spectrum f may equal −∞.

PROPOSITION 2.3. If k = 1, then f �= −∞.

Proof. Let μ be a probability measure on �d . We must now prove that the upper
coarse multifractal spectrum f of μ is not constantly equal to −∞.

Define the lower local dimension of μ at x ∈ �d by

dimloc(μ; x) = lim inf
r↘0

log μ(B(x, r))
log r

.

We also define the lower and upper Hausdorff dimensions of μ by dimH(μ) =
infμ(E)>0 dimH(E) and dimH(μ) = infμ(�d\E)=0 dimH(E), where dimH denotes the
Hausdorff dimension. It follows from [3, Propositions 10.2 and 10.3] that

dimH(μ) ≤ dimloc(μ; x) ≤ dimH(μ)

for μ-a.a. x ∈ �d . In particular, we conclude that dimloc(μ; x) ≤ dimH(μ) ≤ d for μ-
a.a. x ∈ �d . Hence, we can find x0 ∈ �d and α0 ∈ [0, d] such that dimloc(μ; x) = α0.
This clearly implies that for all ε > 0 there is a sequence (rn(ε))n of positive real numbers
with rn(ε) → 0 as n → ∞ such that α0 − ε ≤ log μ(B(x0,rn(ε)))

log,rn(ε) ≤ α0 + ε, whence

N(ε, rn(ε); α0) ≥ 1

for all ε > 0 and all n. We deduce from this that

lim sup
r↘0

log N(ε, r; α0)
− log r

≥ lim sup
n→∞

log N(ε, rn(ε); α0)
− log rn(ε)

≥ 0

for all ε > 0. We conclude from this that f (α0) ≥ 0. �

We now consider various examples.

EXAMPLE 1. We will now illustrate Theorem 2.2 by presenting a simple example
of a measure that does not satisfy the multifractal formalism but satisfies the inverse
multifractal formalism. Fix t ∈ (0, 1), and define the probability measure μ on [0, 1]
by μ(A) = ∫

A
1−t
xt dx for A ⊆ [0, 1]. It is not difficult to show that

τ (q) = τ (q) = max
(−(1 − t)q, 1 − q

) =
{

1 − q for q ∈ (−∞, 1
t );

−(1 − t)q for q ∈ [ 1
t ,∞),

(2.6)
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and that

f (α) = f (α) =

⎧⎪⎨
⎪⎩

−∞ for α ∈ � \ {1 − t, 1};
0 for α = 1 − t;
1 for α = 1.

(2.7)

For brevity we will write τ (q) for the common value of τ (q) and τ (q), and we will write
f (α) for the common value of f (α) and f (α). An easy calculation using (2.6) shows that

τ ∗(α) =
{−∞ for α ∈ � \ [1 − t, 1];

1
t α + 1 − 1

t for α ∈ [1 − t, 1].

In particular, we see that μ does not satisfy the multifractal formalism. Indeed, τ ∗(α) �=
f (α) for all α ∈ (1 − t, 1). However, since it is clear that supx∈[0,1],r>0

log μ(B(x,r))
log r < ∞, it

follows from Theorem 2.2 that μ satisfies the inverse multifractal formalism. Indeed,
this is also easily verified directly from (2.6) and (2.7) since

(−f )∗(q) = inf
α≥0

(αq − f (α))

= inf
α=1−t,1

(αq − f (α))

= min
(

(1 − t)q , −1 + q
)

= − max
( − (1 − t)q, 1 − q

)
= −τ (q)

for q ∈ �.

EXAMPLE 2. We will now construct a measure on [0, 1] such that
(1) f = −∞;

(2) the inverse multifractal formalism for τ and f fails; in fact, −τ (q) <
( − f

)∗
(q)

for all q. Hence, the requirement that f �= −∞ in Theorem 2.2 cannot be
omitted;

(3) the inverse multifractal formalism for τ and f holds.
We first choose a sequence (an)n∈�0 (where �0 = � ∪ {0}) of real numbers in (0, 1) such
that a0 = 1 and 2an+1 < an for all n, and

u < U

where

u = lim inf
n

n log 2
− log an

, U = lim sup
n

n log 2
− log an

.

We now construct a measure μ as follows. Firstly, for each positive integer n, we
construct inductively a family In = {In,1, . . . , In,2n} of 2n closed disjoint subintervals
of [0, 1] with diamIn,i = an for all i as follows.

The start of the induction. We put I0,1 = [0, 1].
The inductive step. Assume that the closed disjoint intervals In,1, . . . , In,2n have

been constructed with diamIn,i = an for all i. We now construct the intervals
In+1,1, . . . , In+1,2n+1 as follows. Fix i = 1, . . . , 2n. Then In,i is a closed subinterval of
[0, 1] with diamIn,i = an. Since 2an+1 < an, it follows that we can choose two pairwise
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disjoint subintervals In+1,2i−1 and In+1,2i of In,i with diamIn+1,2i−1 = diamIn+1,2i = an+1

such that the left endpoints of In+1,2i−1 and In,i coincide, and such that the right
endpoints of In+1,2i and In,i coincide. This completes the construction of the intervals
In+1,1, . . . , In+1,2n+1 .

Now put

K =
⋂

n

⋃
i

In,i.

Finally, we let μ be the unique probability measure supported on K such that

μ(In,i) = 1
2n

(2.8)

for all n and all i.
We claim that

τ (q) = min
(

u(1 − q), U(1 − q)
)

(2.9)

for all q. We will now prove (2.9).
We first prove that τ (q) ≤ min

(
u(1 − q), U(1 − q)

)
. Let (B(xi, an))i∈I be a centred

packing of K . Letting L denote Lebesgue measure in �, we clearly have

L
( ⋃

i∈I

B(xi, an)

)
=

∑
i∈I

L(B(xi, an)) =
∑
i∈I

2an = 2|I|an. (2.10)

Next, for a subset E of � and r > 0, let B(E, r) denote the r neighbourhood of E,
i.e. B(E, r) = {x ∈ � | dist(x, E) < r}. Since xj ∈ K ⊆ ∪i=1,..., 2n In,i, we conclude that
∪i∈I B(xi, an) ⊆ ∪i=1,..., 2n B(In,i, an), whence

L
( ⋃

i∈I B(xi, an)

)
≤ ∑

i=1,..., 2n L(B(In,i, an)) = ∑
i=1,..., 2n 3an = 3 · 2nan. (2.11)

Combining (2.10) and (2.11) shows that 2|I|an ≤ 3 · 2nan, and so

|I| ≤ 3
2 2n. (2.12)

For each i ∈ I , we can clearly find three intervals In,j−1, In,j, In,j+1 such that K ∩
In,j ⊆ K ∩ B(xi, an) ⊆ K ∩ (In,j−1 ∪ In,j ∪ In,j+1). This implies that 1

2n ≤ μ(B(xi, an)) ≤
3 1

2n , and so

μ(B(xi, an))q ≤ c 1
2nq , (2.13)

where c = max(1, 3q).
Combining (2.12) and (2.13) yields

∑
i∈I

μ(B(xi, an))q ≤
∑
i∈I

c 1
2nq = |I|c 1

2nq ≤ 3c
2 2n(1−q).
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Taking supremum over all centred packings (B(xi, an))i∈I of K gives M(an; q) ≤
3c2n(1−q), from which we conclude that

τ (q) ≤ lim inf
n

log M(an; q)
− log an

≤ lim inf
n

(
log 3c

2

− log an
+ (1 − q)

n log 2
− log an

)

= lim infn

(
(1 − q)

n log 2
− log an

)
= min

(
u(1 − q), U(1 − q)

)
.

Next we prove that τ (q) ≥ min
(

u(1 − q), U(1 − q)
)
. Let the right endpoint of the

interval In,i be denoted by xn,i. Fix r > 0 and let nr denote the unique positive integer
satisfying anr+1 ≤ r < anr . It is clear that (B(xnr,i, r))i=1,..., 2nr ; i is odd is a centred packing
of K , whence

M(r; q) ≥
∑

i = 1, . . . , 2nr

i is odd

μ(B(xnr,i, r))q. (2.14)

It is also clear that Inr+1,2i ⊆ B(xnr,i, r) and B(xnr,i, r) ∩ K ⊆ (Inr,i ∪ Inr,i+1) ∩ K .
This implies that 1

2nr+1 ≤ μ(B(xnr,i, r)) ≤ 2 1
2nr , and so

μ(B(xnr,i, r))q ≥ c 1
2nrq , (2.15)

where c = min(2−q, 2q).
Combining (2.14) and (2.15) yields

M(r; q) ≥
∑

i = 1, . . . , 2nr

i is odd

c 1
2nrq = c

2 2nr(1−q),

from which we conclude that

τ (q) = lim inf
r↘0

log M(r; q)
− log r

≥ lim inf
r↘0

(
log c

2

− log r
+ (1 − q)

nr log 2
− log r

)
.

(2.16)

However, since anr+1 ≤ r < anr , we deduce that

nr

nr + 1
(nr + 1) log 2
− log anr+1

≤ nr log 2
− log r

≤ nr log 2
− log anr

. (2.17)

Using (2.17) and the fact that nr
nr+1 → 1 as r ↘ 0, inequality (2.16) now simplifies to

τ (q) ≥ lim infn

(
(1 − q)

n log 2
− log an

)
= min

(
u(1 − q), U(1 − q)

)
.

This completes the proof of (2.9).
It follows easily from (2.9) that

τ ∗(α) = −∞
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for all α. We deduce from this and Theorem 2.1 that f (α) ≤ τ ∗(α) = −∞ for all α,
whence

f (α) = −∞

for all α. This immediately implies that( − f
)∗

(q) = ∞

for all q. Hence, −τ (q) <
( − f

)∗
(q) for all q, i.e. f = −∞ and the measure μ fails the

inverse multifractal formalism for all q.
Next we show that even though the inverse multifractal formalism for τ and f fails

for all q, it holds for τ and f . Indeed, it follows from an argument similar to the proof
of (2.9) that

τ (q) = max
(

u(1 − q), U(1 − q)
)
.

Also, a standard argument shows that

f (α) =
⎧⎨
⎩

−∞ for α ∈ � \ {u, U};
u for α = u;
U for α = U .

.

Finally, a straightforward calculation now shows that −τ (q) = ( − f
)∗

(q) for all q, i.e.
the inverse multifractal formalism for τ and f holds for all q.

3. Proof of Theorem 2.1. In this section we prove Theorem 2.1.

Proof of Theorem 2.1. We must prove the following two inequalities,

f (ααα) ≤ τ ∗(ααα), (3.1)

f (ααα) ≤ τ ∗(ααα), (3.2)

for ααα = (α1, . . . , αk) ∈ �k.

Proof of (3.1). Fix q = (q1, . . . , qk) ∈ �k. We will now prove that f (ααα) ≤ 〈ααα|q〉 +
τ (q). If f (ααα) = −∞, then this inequality is trivially satisfied. We may therefore assume
that f (ααα) > −∞. As f (ααα) < ∞, this implies that f (ααα) ∈ �. Let δ > 0. Since f (ααα) − δ <

f (ααα) = lim infε↘0 lim infr↘0
log N(ε,r;ααα)

− log r , we can find ε0 > such that

f (ααα) − δ < lim inf
r↘0

log N(ε, r;ααα)
− log r

for all 0 < ε < ε0. This implies that for each 0 < ε < ε0 there is a positive real number
r(ε) > 0 such that

N(ε, r;ααα) ≥ r−f (ααα)+δ

for all 0 < r < r(ε).
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Next, fix 0 < ε < ε0 and 0 < r < r(ε). It follows from the definition of N(ε, r;ααα)
that there is a centred packing (B(xi, r))N(ε,r;ααα)

i=1 of K with

αj − ε ≤ log μj(B(xi, r))
log r

≤ αj + ε

for all i and all j, i.e.

μj(B(xi, r))qj ≥ rαjqj+ε|qj |

for all i and all j. We conclude from this that

M(r; q) ≥
∑

i

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk

≥
∑

i

rα1q1+···+αkqk+ε(|q1|+···+|qk|)

= r〈ααα|q〉+ε‖q‖1 N(ε, r;ααα)

≥ r〈ααα|q〉+ε‖q‖1 r−f (ααα)+δ = r〈ααα|q〉+ε‖q‖1−f (ααα)+δ

for all 0 < r < r(ε), where ‖q‖1 = |q1| + · · · + |qk| . Taking logarithms and letting r
tend to 0, we obtain

f (ααα) ≤ 〈ααα|q〉 + ε‖q‖1 + τ (q) + δ

for all 0 < ε < ε0 and all δ > 0. Finally, letting ε and δ tend to 0 we see that

f (ααα) ≤ 〈ααα|q〉 + τ (q).

Since q ∈ �k was arbitrary, this inequality implies that f (ααα) ≤ infq(〈ααα|q〉 + τ (q)) =
τ ∗(ααα), which completes the proof of (3.1).

Proof of (3.2). The proof of inequality (3.2) is similar to the proof of (3.1) and is
therefore omitted. �

4. Proof of Theorem 2.2. In this section we prove Theorem 2.2. We first prove a
small auxiliary lemma.

LEMMA 4.1. Let f : �k → [−∞,∞] be a function and fix q ∈ �k. The following two
statements are equivalent.

(1) (−f )∗(q) = ∞.
(2) f = −∞.

Proof. We clearly have

(−f )∗(q) = ∞
�

infααα

( 〈ααα|q〉 − f (ααα)
) = ∞

�
〈ααα|q〉 − f (ααα) = ∞ for all ααα

�
f (ααα) = −∞ for all ααα.

This completes the proof. �
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We now turn towards the proof of Theorem 2.2. However, first recall that if
x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ �k, then we write x ≤ y if xj ≤ yj for all j, and we
write x < y if xj < yj for all j. Also recall that we write 0 = (0, . . . , 0) ∈ �k.

Proof of Theorem 2.2. We must prove the following four statements:
Claim 1. For all q = (q1, . . . , qk) ∈ �k, we have

−τ (q) ≤ ( − f
)∗

(q). (4.1)

Claim 2. Let q = (q1, . . . , qk) ∈ �k. If (i) 0 < q and f �= −∞ or (ii) A < ∞,
then we have

( − f
)∗

(q) ≤ −τ (q). (4.2)

Claim 3. For all q = (q1, . . . , qk) ∈ �k, we have

−τ (q) ≤ ( − f
)∗

(q). (4.3)

Claim 4. Let q = (q1, . . . , qk) ∈ �k. If (i) 0 < q and f �= −∞ or (ii) A < ∞,
then we have

( − f
)∗

(q) ≤ −τ (q). (4.4)

Proof of (4.1). It follows from Theorem 2.1 that f (ααα) ≤ τ ∗(ααα) ≤ 〈ααα|q〉 + τ (q) for
all ααα, q ∈ �k, whence −τ (q) ≤ 〈ααα|q〉 − f (ααα) for all ααα, q ∈ �k. This clearly implies that
−τ (q) ≤ infααα(〈ααα|q〉 − f (ααα)) = (−f )∗(q) for all q ∈ �k.

Proof of (4.2). For brevity write

t = −( − f )∗(q),

and note that

t = supααα

(−〈ααα|q〉 + f (ααα)
)
.

Next we choose α0 > 0 as follows:
If 0 < q and f �= −∞, then t > −∞ (by Lemma 4.1) and mini qi > 0, and we can thus
choose a positive real number α0 such that

d − α0 min
i

qi ≤ t. (4.5)

If A < ∞, then we choose α0 such that

max
j=1,..., k

sup
x ∈ K
r > 0

log μj(B(x, r))
log r

≤ α0. (4.6)

Fix δ > 0.
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Momentarily fix ααα ∈ �k. We now choose dααα ∈ � as follows:
If f (ααα) > −∞, we put

dααα = f (ααα) + δ,

and if f (ααα) = −∞, we can clearly choose dααα ∈ � such that

−t − δ ≤ −dααα + 〈ααα|q〉.

Since lim infε↘0 lim supr↘0
log N(ε,r;ααα)

− log r = f (ααα) < dααα, we can find a positive real number
ε0(ααα) > 0 with ε0(ααα) ≤ δ such that

lim sup
r↘0

log N(ε0(ααα), r;ααα)
− log r

< dααα

for all n. This implies that there is a positive number r0(ααα) > 0 such that

N(ε0(ααα), r;ααα) < r−dααα (4.7)

for 0 < r < r0(ααα).
Since [0, α0]k is compact and

(
B(ααα, ε0(ααα))

)
ααα∈[0,α0]k is an open cover of [0, α0]k, we

can find finitely many points ααα1, . . . ,αααs0 ∈ [0, α0]k with

[0, α0]k ⊆
s0⋃

l=1

B(αααl, ε0(αααl)). (4.8)

We will write each αααl in coordinate form as αααl = (αl,1, . . . , αl,k).
Finally, fix 0 < r < minl=1,..., s0 r0(αααl) and let (B(xi, r))i∈I be a centred packing of

K . We clearly have

∑
i

μ1(B(xi, r))q1 · · ·μk(B(xi, r))qk = �0(r) + �0(r), (4.9)

where

�0(r) =
∑
i ∈ I

log μj (B(xi ,r))

log r ≤ α0 for all j

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk ,

�0(r) =
∑
i ∈ I

α0 <
log μj (B(xi ,r))

log r for some j

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk .
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We first analyse the sum �0(r). We have using (4.8)

�0(r) =
∑
i ∈ I

log μj (B(xi ,r))

log r ≤ α0 for all j

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk

=
∑
i ∈ I(

log μj (B(xi ,r))

log r

)
j=1,..., k

∈ [0, α0]k

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk

≤
s0∑

l=1

∑
i ∈ I(

log μj (B(xi ,r))

log r

)
j=1,..., k

∈ B(αααl , ε0(αααl ))

μ1(B(xi, r))q1 · · ·μk(B(xi, r))qk .

(4.10)

Next fix i such that
( log μj(B(xi,r))

log r

)
j=1,..., k ∈ B(αααl, ε0(αααl)). This implies that αl,j − ε0(αααl) ≤

log μj(B(xi,r))
log r ≤ αl,j + ε0(αααl) for all j, whence μj(B(xi, r))qj ≤ rαl,jqj−ε0(αααl )|qj | for all j, and so

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk ≤ rαl,1q1−ε0(αααl )|q1| · · · rαl,kqk−ε0(αααl )|qk|

= r〈αααl |q〉−ε0(αααl )‖q‖1 .

We conclude from this and (4.10) that

�0(r) ≤
s0∑

l=1

∑
i ∈ I(

log μj (B(xi ,r))

log r

)
j=1,..., k

∈ B(αααl , ε0(αααl ))

r〈αααl |q〉−ε0(αααl )‖q‖1

≤
s0∑

l=1

N(ε0(αααl), r;αααl) r〈αααl |q〉−ε0(αααl )‖q‖1

≤
s0∑

l=1

r−dαααl r〈αααl |q〉−ε0(αααl )‖q‖1

≤
s0∑

l=1

r−dαααl r〈αααl |q〉−δ‖q‖1 .

If f (αααl) > −∞, then dαααl = f (αααl) + δ, whence

r−dαααl r〈αααl |q〉−δ‖q‖1 = r−(−〈αααl |q〉+f (αααl ))−δ‖q‖1−δ ≤ r−t−δ‖q‖1−δ.

On the other hand, if f (αααl) = −∞, then dαααl is chosen such that −t − δ ≤ −dαααl + 〈αααl|q〉,
whence

r−dαααl r〈αααl |q〉−δ‖q‖1 = r−dαααl +〈αααl |q〉−δ‖q‖1 ≤ r−t−δ‖q‖1−δ.
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Hence

�0(r) ≤
s0∑

l=1

r−t−δ‖q‖1−δ

= s0 r−t−δ‖q‖1−δ.

(4.11)

Next we analyse the sum �0(r). We divide the analysis into two cases depending
on whether 0 < q and f �= −∞, or A < ∞. We first assume that 0 < q and f �= −∞.
In this case qj > 0, whence μj(B(xi, r))qj ≤ 1, and so

�0(r) =
∑
i ∈ I

α0 <
log μj (B(xi ,r))

log r for some j

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk

=
k∑

j=1

∑
i ∈ I

α0 <
log μj (B(xi ,r))

log r

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk

≤
k∑

j=1

∑
i ∈ I

α0 <
log μj (B(xi ,r))

log r

μj(B(xi, r))qj .

(4.12)

Next fix j and i such that α0 <
log μj(B(xi,r))

log r . This implies that μj(B(xi, r)) ≤ rα0 , and so

μj(B(xi, r))qj ≤ rα0qj ,

where we again have used the fact that we are assuming that 0 < q, and so, in particular,
qj > 0. We conclude from this and (4.12) that

�0(r) ≤
k∑

j=1

∑
i ∈ I

α0 <
log μj (B(xi ,r))

log r

rα0qj

≤
k∑

j=1

∑
i∈I

rα0qj

≤ k rα0 mini qi |I|.

(4.13)

However, since K is compact (and therefore, in particular, bounded) and (B(xi, r))i∈I

is a centred packing of K , there is a constant c such that |I| ≤ cr−d . Using (4.13), we
conclude from this and the choice of α0 (cf. (4.5)) that

�0(r) ≤ ck r−d+α0 mini qi ≤ ck r−t ≤ ck r−t−δ‖q‖1−δ. (4.14)
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Next we assume that A < ∞. We conclude immediately from this and the choice of α0

(cf. (4.6)) that �0(r) = 0, whence

�0(r) = 0 ≤ ck r−t−δ‖q‖1−δ. (4.15)

Combining (4.11), (4.14) and (4.15) gives∑
i

μ1(B(xi, r))q1 · · · μk(B(xi, r))qk = �0(r) + �0(r)

≤ (s0 + kc) r−t−δ‖q‖1−δ.

Since the packing (B(xi, r))i∈I was arbitrary, this implies that M(r, q) ≤ (s0 +
kc) r−t−δ‖q‖1−δ for all 0 < r < minl=1,..., s0 r0(αααl), whence

log M(r, q)
− log r

≤ t + δ‖q‖1 + δ + log(s0 + kc)
− log r

for all 0 < r < minl=1,..., s0 r0(αααl). Letting r ↘ 0 and letting δ ↘ now gives τ (q) ≤ t.
This proves (4.2).

Proofs of (4.3) and (4.4). The proofs of inequalities (4.3) and (4.4) are similar to
the proofs of (4.1) and (4.2), respectively, and are therefore omitted. �
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