
ELEVEN NONEQUIVALENT CONDITIONS
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l Introduction. We consider in this paper eleven conditions on a com-

mutative ring R. The first of these is that R contains an identity. It is well

known that each of the other properties is a consequence of the first condition.

This paper considers other relations which exist between these properties. A

complete diagram of all simple implications which exist between the eleven

properties, together with proof of these implications, is given in section 3.

Examples illustrating simple implications which do not hold are presented in

section 4. The notation and terminology is that of [10] with one exception •

c denotes containment and <= denotes proper containment. All rings considered

will be assumed to be commutative and nonzero.

The eleven conditions considered on R, a commutative ring are:

A: R contains an identity.

B - R is generated by idempotent elements.

C : If A is a nonzero ideal of R such that V A *R, then R/A has an

identity.

D: If # e R, there exists y e R such that x =* xy.

E- If A is a proper ideal of R, V Ϊ ^ i ? .

F .' R is idempotent.

G ' Maximal ideals of R are prime.

H: If P is a nonzero prime ideal of R, RIP contains an identity.

/ : An ideal A such that yl~A is maximal is primary.

K- Each proper ideal of R is contained in a maximal ideal.

L : If A and B are comaximal proper ideals of R, then AB- A Π B.

It is well-known that properties B — L follow from A. Further, each of

these properties is preserved under homomorphisms. Rings satisfying E have

arisen naturally in [2], C3], and [4], and according to the terminology used

Received November 17, 1964.

183

https://doi.org/10.1017/S0027763000011739 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011739


184 ROBERT W. GILMER, JR.

there, will be called u-rings. We shall need some preliminary results before

establishing other irelationships between these eleven properties,

2. Preliminary Results. One of our most frequent tools in this paper will

be the passage from a commutative ring R to 2?*, where 2?* is obtained by

adjoining an identity to R. [7 83],

THEOREM 1. Suppose S is a commutative ring with identity e and R is a

subring of S such that S = Rίel. Then

(a) a subset A of R is an ideal of R if and only if it is an ideal of S. (b)

if A is an ideal of S and if AC\R is a finitely generated ideal of R, then A is a

finitely generated ideal of S. (c) R is Noetherian if and only if S is Noetherian.

Proof (a) is immediate.

To prove (b), let ai, . . . , ύk be a basis for the ideal A Π R. Then let G

be the set of integers m such that v + me& A for sόπie V<ER. G is a subgroup

of the additive group of integers and is therefore cyclic, generated by some

integer q. Let v e R be such that v + qe = a<E A. We shew that {au . . . \ ak9 a}

generates A in S. Thus if a1 = u + se e A, then s=*mq&G. Hence a1-ma

^u-mv^AΠR so that a' -ma = Σ^iβ/ for some r/<e R. It follows that

{ai, . . . , ak, a} generates A in R.

(c) : apply (a) and (b).

THEOREM 2. Suppose A, B, C are ideals of a ring R such that A has a basis

{ci, . . . , ak} of k elements and AB= AC. Then given b e Bk, there is an element

c&C such that ab = ac for all ae'A. In particular, if A contains a regular

element k

Proof. Let R* be a ring obtained by adjoining an identity to R. Theorem

1 shows that the hypotheses of Theorem 2 still hold if "if" is replaced by
4'i?*". Hence we may assume R contains an identity.

We first note that since {alt ., . . , ak) generates A and since Bk is generated

by 1̂1 products v^bibz- *bk where i, eJ?, it suffices to prove the existence of

a c such that aic^vai for ί = 1, 2, . . . , k. This we proceed to do.

We have BA = ΣBaj = CA = 'ΣCaj- Thus if l<i<k, baa = Σy=i^7^, for

some c/yeC. We therefore obtain a homogeneous system
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of k equations linear in tfi, . . . , au and having coefficients in R. If d is the

determinant of the system (*), at-d = 0. for ί = 1, 2, . . . , k. It is easily seen,

however, that d~υ-c for some c e C Theorem 2 now follows.

COROLLARY l υ . Lέtf A and B be ideals of a ring R such that A is finitely

generated and such that AB- A. Then there exists b^B such that ab = a for

all βG A.

Proof. As in the proof of Theorem 2, we may assume R has an identity

element e, so that AB = AR. Suppose A is generated by k elements. Then

by Theorem 2, given e& Rk, there exists b e B such that for all a (Ξ A, ab = ae

COROLLARY 22). A finitely generated idempotent ideal B of a ring R is principal

and is generated by an idempotent element.

Proof. Apply Corollary 1.

COROLLARY 3. Suppose {x\> . . . , xn> ylf . . . ,yn) is a collection of elements

of a ring R such that Xiy> = x-t for each i. There exists an element y&R such

that Xiy = Xi for each i.

Proof Let A be the ideal of R generated by {xu . . , Xn) and B the ideal

of R generated by {yu - - ,yn). The hypothesis on Xi and yi imply AB= A.

Corollary 3 now follows from Corollary 1.

3. Relations Between the Eleven Properties. The following diagram de-

scribes completely the simple implications which exist between these properties.

In particular, no two of the eleven properties are equivalent.

τ> Corollary 1 is proved in [10; 215], for rings with identity.
2> Corollary 2 was first proved by Mori in [8; 174-175].

https://doi.org/10.1017/S0027763000011739 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000011739


186 ROBERT W. GILMER, JR.

Before proving that these twelve implications hold, we first give equivalent

statements of pro'perties C, D, E, and H.

PROPOSITION 1. C is equivalent to C ;

O If A is a nonzero principal ideal of R such that y/^Ac:R9 then R/A has

an identity.

PROPOSITION 2. D is equivalent to each of D\ Z>", Dnι:

D1 : For each ideal A of R> RA = A.

D" If {xi, . . . , Xu) is a finite set of elements of R, there exists y&R such

that Xj-y = Xi for each i.

Dm: // A and B are comaximal ideals of R, then A Π B == AB.

Proof That D implies D" follows from Corollary 3. It is clear that D"

implies D' and D* implies D"' by the usual proof. [ 9 ; 401

If D'" holds in R and # e R, then (x) and R are comaximal so that {x) =

RΠ{x) =s Rx. Hence # e Rx and D holds.

PROPOSITION 3. E is equivalent to E':

Ef' Each proper ideal of R is contained in a proper prime ideal.

Proof. This follows immediately from the fact that the radical of an ideal

is the intersection of the prime ideals containing it. [7; 104].

PROPOSITION 4. H is equivalent to Hf:

H1: If Q is a nonzero primary ideal with radical P*R, R/Q contains an

identity element.

Proof. See Lemma 3 of [21

We now prove the implications of our chart. That A-*B, A-*Cf E-+F,

and C->H are immediate.

That B-* D follows immediately from Corollary 3.

Note that a domain in which D holds has an identity. Hence D-+H.

That D+L follows from Proposition 2.

D-*E' Suppose AcR and x&R- A. If y is such that x = xy, then for

any n, x = xyn. Hence yn$A and V~A c:R so that E holds.

Note that the ideal M of R is maximal if and only if RIM is a ring having

exactly two ideals. By [10 133], the ring S has exactly two ideals if and

only if 5 is a field or the additive group of S is cyclic of prime order and
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multiplication in S is trivial (the product of any two elements in zero). Hence

if M is a maximal ideal of R, M is not prime if and only if MΏR2. Equi-

valently, M is prime if and only if V M ^ R. From these observations it is

clear that F-*G.

The following lemma shows that C->/.

LEMMA 1. Let A be an ideal of a ring R such that V A is maximal in R.

Then A is primary if and only if R/A has an identity element.

Proof. If R/A has an identity, then A/A is primary in R/A since jA/A

is maximal. Hence A is primary in R [10; 148-153].

Conversely, if A is primary, then V A is prime and maximal. Our previous

observations show i?/V A is a field. Lemma 3 of ί2l now shows R/A has an

identity.

D-+K- If PFc Rf W is contained in a proper prime ideal P since D-*E+>Ef.

But D also implies H so that R/P contains an identity. Thus P/P is contained

in M/P, a maximal ideal of R/P. Then AQP^M and M is maximal in R

(Note that we have actually shown E and H imply K. Theorem 3 shows E

and H are equivalent to D.).

We delay for the present the proof that E-*J.

4. Examples. The following series of examples shows that the only simple

implications which exist between our eleven properties are those shown in the

diagram in section 3. It can be checked that these examples are sufficient to

show no other simple implication exists, though we shall not enumerate those

illustrated by most examples.

EXAMPLE 1. Let Q be a nonzero additive abelian group. Q becomes a ring

R if multiplication is defined trivially. For any such Qt F does not hold in R,

while C holds vacuously.

If Q is cyclic of order 12, K holds in R while G and L do not.

If Q is cyclic of order 6, K and L hold in R but G does not.

Finally, if Q is the additive group of rationale, then G holds in R while

L and K do not.

These examples show, for instance, that H and / are the only properties

implied by C

EXAMPLE 2. We let R be the ring of all finite subsets of Z. B holds in
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R but C does not.

EXAMPLE 3. We let R be the ring of even integers. R is a one-dimensional

Noetherian domain in which K and H hold, but G, /, and L do not. G fails

because (4) is maximal but not prime. (12) has radical (6), a maximal ideal,

but (12) is not primary in R so that / fails also. L fails because "(4) and (6)

are comaximal but (4) Π (6) = (12) 3 (24) = (4) (6).

EXAMPLE 4. Let Q be a valuation ring whose maximal ideal M is the union

of the prime ideals properly contained in M and such that Q = k + M where

k = GF{p) for some prime p (for example, see [5, section 5Q>: If W is an

ideal of Q such that WeM, then given nκ=M~ W, m is in some prime ideal

PczM so that W<^{m)QPcM and so ΛJWGP^M. NOW consider R = M.

Because Q = k + M, R and Q have exactly the same ideals (-y R) by Theorem

1. Hence the ideals of R are linearly ordered and the observation just made

shows that R is a ^-domain. Also, L holds vacuously in R. We have already

shown K fails in R and a subsequent result (Theorem 3) shows that H also

fails in R, for clearly R does not have an identity.

EXAMPLE 5. Let k be a field and let {X/}Γ=i be a set of elements from an

extension field of k which are algebraically independent over k. Let M be the

ideal of Q = kί{Xi)l generated by {X} and let N be the ideal of Q generated

by {Xi-XiXj)i<j. Then define R = M/N. That D holds an R is shown by

Corollary 3. In [1] it is shown that R contains no idem-potent element, and

hence B fails in R. Theorem 3 then implies C does not hold in R.

EXAMPLE 6. Suppose R is the principal ideal generated by X in the poly-

nomial domain 5 = Z[Z] . Since S = Z+R, R is a ; Noetherian domain by

Corollary 3. Hence K holds in R. If V is the ideal ίof S1^generated by 2 X

and X + X2 and if W is the ideal of S generated by 3 X-and X2, * and W are

comaximal maximal ideals of R> W is not prime, and β i ί e FΠ W— (VW).

Hence G and L fail in R. Also- 2Z5+ (XS + J?*)S has radical,F but is not

primary in R so that / does not hold in R. Finally [2.X + Z 2 ]S is prime in

R but i?/[2Z+Z 2 ]S does not have an identity so that H is invalid in 7?.

EXAMPLE 7. For k a positive integer, let θk = ̂ VΎ and let Sk =Zίθkl. Sk

is the integral closure of Z in Γ(θk), Γ the field of rationals. Let Ύk:= {2ώ0 4-

fli^A 4- * * + ̂ 2̂ -1̂ 1 ~ι\&ie 2Ί Because Ŝ  is integral over;Z, there is a maximal
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ideal Mk of Sk such that MkfϊZ= (3). If E denotes the ring of even integers,

we have MkRE= (6). Hence P* = M*n Tk is a maximal ideal of Tk (Sk is

integral over Tk) such that Pkf\E = (6).

Next we note that Γ2*+1 Π E = (4). For 4 = 0jfM e τ £ + ι and if du . , A***

e 7&, then for each /, bk-di/dk^ Tk- Therefore dιd2- ί/2fc+i = 4^i 'b2*+ι

so that EΠ T f + ί = (4) as asserted. Consequently, if Wk = PkΓ\τf*1, Wk has

maximal radical ft in Tk and W*ΓUS= (12).

We observe that having chosen Mk, we may choose MΛM in S*n so that

Mk+ι^Sk = Mk because Sk+i is integral over S*. Since also 7*cT*+i, τ f + 1 £

Γjf+ί. It follows then that WkQ Wn-i. Now let Γ= U 7*, P - U P*, ΐF = U W .̂

The following facts concerning T are easily checked' T is an idempotent one-

dimensional domain, P is maximal in T and PfϊE = (6), and VPF = P, "PΓΠE1

= (12). Consequently, Tî  is not primary in T; 2 6 e W, 6<£ W, and 2 $ P.

Hence F holds in T but / does not.

EXAMPLE 8. Let S = ZΌίu X*> - , {Uij}l be a polynomial domain over Z,

let M be the ideal of S generated by {2XU 2X2, . . .} and let N be the ideal

of S generated by {2Xi-2i+1UijX{X\} for all positive integers / and j . Let

R-MIN. Let x\ be the iV-residue of JC, , «, y the iV-residue of t/"/;. We have,

for any / and j , 2XΊ = (2^/y^>i) (2AΓ/+IV'. Hence if W is an ideal of R having

radical R, then for any it W contains some power of 2ΛΓ/+X and therefore con-

tains 2xi. Therefore W-R and R is a &-ring. Yet L does not hold in R.

If Γ is the ideal of S generated by {6xu 6x2, . . .} and if V is the ideal of S

generated by {lOtfi, 10#2, . . .}, then AΛ TIA and A+V/A are comaximal

ideals of i? whose intersection properly contains their product.

EXAMPLE 9. If i? = 2Z/12Z, L holds in R but / does not.

5. Other Relations between the Eleven Properties. The examples of the

previous section serve to point out that properties C and H may be satisfied

vacuously in a ring and are therefore not generally strong properties. In this

section we show that C and H are rather strong properties in a u-ring. In

fact we show that if C holds in an idempotent ring R, then R has an identity

and we show that E and G are equivalent to D. We also investigate relations

between our eleven properties in the case when R is Noetherian or, less

restrictively, finitely generated. We first consider a lemma.
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LEMMA 2. Let V be a proper ideal of a commutative ring R and let P be a

minimal prime ideal of V such that R/P has an identity e~*0. If W-

{xe R\tx -XΪΞV for some ί e i ? } , then W is an ideal of R and F

Proof. If eiXi — Xi&V for / = 1, 2 and if t = eL + e2-e1ei then txi-xi =

(eιXι-xι) ~e2(eiXί-Xι) e V and similarly tx2-x2& Vso that t(xx-x2) - (Xi-x*) e V

and xι-xgeW. Further, if r e i ? , then βim - rxi = r(e*i -#i) e V so that

α i θ A Hence TΓ is an ideal. Obviously 7cW.

Now if <? is the isolated primary component of V belonging to P, RIQ has

an identity ~s. Thus if yei?, SJZ-JIGQ SO that (sy-jy)% = 5(^ι;y) - (yvy) e V

for some vy$P. This implies>»,e W. In particular, if y$P, thenyvy& W-P.

THEOREM 3. D**E and H.

Proof By the results of section 3, we need only show that if H holds in

the w-ring Rf then so does D.

Since R = R2* (0), there is an element # e R such that Rx* (0). We let

Wι = {y<ΞR\yt-ysΞRx for some t^R) and we let W2 = { z e i ? | z s - « e Tf, for

some sei?}. Now W1QW2 by Lemma 2. But if z^Wz and zs —ze Wi, then

(zs-z)t- (zs-z) = (s i- ί-s)«-zei?Λ: so that 2 e TFi- Hence Wi = Fi. But

(0) c i?jt:c 1^ so any minimal prime of Wi is nonzero. Lemma 2 then implies

that R is a minimal prime of Wt so that Wi = R since i? is a &-ring. In par-

ticular, then, # e Wi so that ta-#e ito and # e ifr.

Now let Vi=*{veR\tv = υ for some te /?}. As just shown, (0) c (A:)Cy lβ

Let F2 = {wejRIsw-we Vi for some sei?>. A repetition of the argument

in the preceding paragraph shows Vι = V2 = R so that Z> holds in i?.

COROLLARY 4. Suppose the ascending chain condition for prime ideals holds

in the u-ring R. Then D holds in R.

Proof We show that H holds in R. Thus let P be prime in R and maximal

with respect to the property that RIP does not have an identity. Then R/P

is a ^-domain in which H holds. By Theorem 3, D holds in R/P. As previously

observed, this implies R/P contains an identity. Hence there is no prime ideal

P of R such that A does not hold in R/P. That is, H holds in R. Corollary

4 then follows from Theorem 3.

PROPOSITION 5. Suppose W is an ideal of a u-ring R such that y/W = M , a
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maximal ideal. If x, y^R are such that xy^W and y^My then Rx^ W.

Proof. Since y$M, M+ (y) = R. Hence, if q&R, there exists m, v e R,

such that q = m -f- vy + ay. For some integer t, mι e W. Hence q* =

#2' + p'j; -f <*'.y and ##' = nix + p'ry -f α'ry e TT. This shows that V FF: # = i?.

Since i? is a w-ring, R= W - x so that ifa£ PF as asserted.

THEOREM 4. / Λαάfe m ̂ 0 u-ring R.

Proof. Suppose the ideal W of R has maximal radical M, that xy&W and

J ; $ M . By proposition 5, Rx^W. Now i?/ίf is a w-ring in which H holds

since MIW is the only proper prime ideal of R/W. By Theorem 3, D holds

in R/W. Whence %e# (if/WO = xR+ WIW= W/W so that * e TF. Hence TF

is primary.

THEOREM 5. Aw idempotent ring R in which C holds contains an identity

element.

Proof. Since R = R2* (0), there exists * e # such that Rx*0. Let W, =

{y^R\yt-y^Rx for some *ei?}. Now (0)ci?#cJFi so that i?/T î has an

identity I. Then ex-x<=Rx and # e i?x This shows that if W*= {y&R\y=yt

for some t(=R}t then (0) c (#) c T̂ 2 so that Λ/TFi has an identity ΰ. Thus if

r £ i ? , ru — r& Wi and hence ru~ r= {ru — r)t for some /ei?. It follows that

r= (u + t-ur)r so that r e W2—that is, W2 = R and Z) holds in R.

We suppose i? does not contain an identity. Then R contains no regular

element. Then let x^R and let y be such that x = xy. Since jy is a zero divisor,

j -ε = 0 for some z # 0. We note that (x) Π (2) = (0) for if rx = 52, then rxy = n:

= szy = 0. Finally, i?/ (#) and i?/ U) have identities £i, i"2 respectively—that is

eιt-te(x) and e2t-t^ (z) for all ί e i ? . Now if e^ei + βz-eie2y then for all

t<=R, et-t = ett-t~e2{eιt~t) =e2t-t-eMit-i)t= (x) Π (z) = (0). Hence e is

an identity of R, contrary to our assumption. Therefore R has an identity.

EXAMPLE 10. Let Q be a nondiscrete rank one valuation ring with maximal

ideal M such that Q = π + M for some field TΓ = GF{p). Consider i? = M. i? is

an idempotent ring and H holds vacuously in R. But clearly D does not hold

in R. Hence if and F do not imply iλ

We now consider the case of a finitely generated ring R. In any such

ring K holds, for if {Pa} is a chain of proper ideals of 2?, then U Pa is also a

proper ideal.
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THEOREM 6. If G holds in the finitely generated ring R, then R has an

identity.

Proof. If W is a proper ideal of R> W is contained in a maximal ideal M

since K holds in R. Since G holds, M is prime so that R is a u-ήng by Pro-

position 3. In particular, R is finitely generated and idempotent so that Corollary

2 shows that R contains an identity.

In the course of the proof of Theorem 6 we have observed that K and G

imply E. Examples 1, 3, 6, and 9 show that if simple implications other than

those of the form X^K and those given in section 3 exist under the additional

hypothesis that R is Noetherian, then these other implications are among /-> H and

L-*H. We shall see at once that the first of these two implications does not

hold.

EXAMPLE 11. Let S = ZίXl be a polynomial domain over Z, letM= (2, X)

and let Γ= SM. We note that if a e= T-MT, then α - l e MT so that T =

Z-f MT. Hence MT is a Noetherian ring. We let R = MT/X2T. Then R is

also Noetherian. XT/X2T is the only proper prime ideal of R, and it is easily

checked that MT/XT is not idempotent, and thus has no identity. Therefore

H does not hold in R. But / holds vacuously no ideal of R has maximal

radical.

The next example shows that H need not hold in a finitely generated ring

R in which / and L hold.

EXAMPLE 12. Let 5 be a rank two valuation ring whose maximal ideal M

is principal and S is such that S = π -f M where π = GF(p) for some prime p

(such an S may be constructed in π(Xy F, Z)). Let R = M. As in example

10, / holds vacuously. Because the ideals of R are linearly ordered, L is also

vacuously satisfied. R is finitely generated because M is principal and S =

π + M. Yet H does not hold in R. If P is the nonzero prime ideal of S properly

contained in M, LM/Pl = M2 4- P/P = M2/PciM/P SO that M/P does not have

an identity.

We are unable to determine whether H holds in a Noetherian ring satisfying

L. The best result obtained in this direction is Theorem 7. The proof uses

the following lemma.
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LEMMA 3. Suppose L holds in the finitely generated domain Q and that Q

does not contain an identity. Then Q is principal If Q is Noetherian, if K is

the quotient field of Q, and if Q* = Q M is the subring of K generated by Q and

the identity element e, Q* is a one-dimensional local domain and each ideal of Q*

contains a power of Q.

Proof Theorem 6 implies there is a maximal ideal M of Q such that M

is not prime. Hence Q2Q.M so that if x, y^Q-M, then M+ (x) = (?, but

xy&MΠ (x), xy$M(x). Since L holds in Q, we must have (?= (x).

Suppose now that Q is Noetherian and Q* is not a local domain. Then

there exist distinct maximal ideals Mlt M2 and elements w/eM, such that

mi + m2= 1. Then mxQ and m%Q are proper comaximal ideals of Q. Hence

mιQm>Q = miQ Π m2Q = L(mι) Π (m2)lQ, since Q is principal, =mιm<ιQ. But Q*

is a domain, and hence e e Q. This contradiction shows that Q* is a local

domain. Hence Q*/Q is also local. Since Q*/Q is a homomorphic image of

Z, Q*/Q — Z/(pk) for some prime p and some integer k>l. Hence Q is primary

for the maximal ideal M of 0* in fact M = Q+ (£β) and pkee Q. Because

Q is principal, the principal ideal theorem [10 238] shows M is a minimal

prime of Q*. Consequently, Q* is one-dimensional. That each ideal of 0*

contains a power of Q now follows simply because Q* is Noetherian.

THEOREM 7. If L holds in the finitely generated ring R, then R is principal

or H holds in R. If R is Noetherian and P is a proper prime ideal of R which

is not both a maximal prime and a minimal prime of R, then R/P contains an

identity.

Proof Suppose R is finitely generated and H does not hold in R. Let P

be a prime ideal of R such that R/P does not have an identity. By Lemma 3,

R/P is principal. R = P + (x) for some x. Then also R = LP+ (x2)l 4- (x) and

because R/P does not have an identity #ΦP+ (x2) and # 2 ΦP f (x*) ΏP(X) + U3).

Since # 2 eLP+ (*2)] Π (*) and L holds in R, R= (x).

To prove the last assertion, it suffices to show that if Pi and P2 are prime

in the Noetherian ring R satisfying L with Pi<^Pz^R, then R/Pi has an

identity. But this follows immediately from Lemma 3; since Pi/Pi contains

no power of R/Pu R/P\ has an identity.
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