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ON POLYGONAL PRODUCTS OF FINITELY GENERATED
ABELIAN GROUPS

GOANSU KIM

We prove that a polygonal product of polycyclic-by-finite groups amalgamating
subgroups, with trivial intersections, is cyclic subgroup separable (hence, it is resid-
ually finite) if the amalgamated subgroups are contained in the centres of the vertex
groups containing them. Hence a polygonal product of finitely generated abelian
groups, amalgamating any subgroups with trivial intersections, is cyclic subgroup
separable. Unlike this result, most polygonal products of four finitely generated
abelian groups, with trivial intersections, are not subgroup separable (CSTZ^F).
We find necessary and sufficient conditions for certain polygonal products of four
groups to be subgroup separable.

1. INTRODUCTION

Polygonal products of groups were introduced by Karrass, Pietrowski and Solitar
[6]. Using their result, Brunner, Frame, Lee and Wielenberg [5] determined all torsion-
free subgroups of finite index in the Picard group PSL{2, Z[i]). In [3], Allenby and
Tang proved that polygonal products of four finitely generated free abelian groups,
amalgamating cyclic subgroups with trivial intersections, is residually finite. Kim and
Tang [9] showed that certain polygonal products of four nilpotent groups, amalgamating
cyclic subgroups with trivial intersections, are residually finite. In this paper, we prove
that polygonal products of more than four polycyclic-by-finite groups amalgamating any
subgroups, contained in the centres of their vertex groups, with trivial intersections are
7rc (Theorem 2.11), hence they are residually finite. Thus, polygonal products of more
than four finitely generated abelian groups, amalgamating any subgroups with trivial
intersections, are TTC . It was relatively easy to prove the same result for those polygonal
products with four vertex groups and cyclic subgroups amalgamated [8]. Note that
polygonal products of four polycyclic-by-finite groups amalgamating cyclic subgroups,
contained in the centres of their vertex groups, with trivial intersections is conjugacy
separable [7]. Unlike the case for residual finiteness or for conjugacy separability, most
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454 G. Kim [2]

polygonal products of four finitely generated abelian groups amalgamating cyclic sub-
groups with trivial intersections are not subgroup separable (Theorem 3.3). We also
find necessary and sufficient conditions for certain polygonal products of four groups to
be subgroup separable (Theorem 3.2).

Briefly polygonal products of groups can be described as follows [3]: Let P be a
polygon. Assign a group Gv to each vertex v and a group Gc to each edge e of P.
Let ae and f3e be monomorphisms which embed Ge as a subgroup of the two vertex
groups at the ends of the edge e. Then the polygonal product G is defined to be the
group generated by the generators and relations of the vertex groups together with the
extra relations obtained by identifying geac and ge/3e for each ge €. Ge.

By abuse of language, we say that G is the polygonal product of the (vertex) groups
Go, G\, ..., Gn, amalgamating the (edge) subgroups Ho, Hi, ..., Hn with trivial in-
tersections, if Gi D Gi+i = Hi and Hi f\Hi+i = 1, where 0 ^ i ^ n and the subscripts
i are taken modulo n + 1.

Finally, we note that a polygonal product can appear as a subgroup of a group, and
then the residual properties of the polygonal product determine the residual properties
of the whole group, as in the following example.

EXAMPLE 1.1: Let G = (a, b; [a, b^ab], am, bn), where n ^ 0. Clearly G is a
finite cyclic extension of (a)G . We note that (a)a = (ao, oi, . . . , on_i; aj", [a ,̂ a^+i]),
where ô  = b~labl and the subscripts i are considered modulo n. For n ^ 3, we may
consider {a)a as the polygonal product of the abelian subgroups (at, o^+i) amalga-
mating the subgroups (at-+i), where the subscripts are taken modulo n. By Theorem
2.12, we can see that (a)a is TTC for n ^ 4. If n — 1, 2, 3 then {a)G is finite abelian.
Therefore, G is TTC for all n ^ 0.

We shall adopt the following notation and terminology:
We use N <f G to denote that the normal subgroup N of G has finite index in

G and "f.g." means "finitely generated". We denote by A *H B the generalised free
product of A and B with the subgroup H amalgamated. If G = A *H B and x 6 G,
then ||x|| denotes the free product length of x in G. On the other hand, we use \x\ to
denote the order of x. If G is a homomorphic image of G, then we use ~x to denote
the image of x £ G in G.

Let H be a subgroup of a group G. Then G is said to be H-separable if, for
each x £ G \ H, there exists N <]/ G such that x $ NH. A group G is locally
extended residually finite [C£"R.!F or subgroup separable) if G is ZT-separable for all f.g.
subgroups H of G.

A group G is extended residually finite (£TZ!F) if G is If-separable for all
subgroups H of G.
A group G is cyclic subgroup separable (TTC) if G is (z) -separable for all
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x £ G.

A group G is residually finite (TZ!F) if G is (l)-separable.

Clearly, every C£TZ!F group is nc, and every irc group is V.T.
We shall use the following results:

THEOREM 1.2. [4], [1] If A and B are TIT (7rC) LSTIT) and U is Unite, then
A*uB is HT (nc, C£KT, respectively).

THEOREM 1 .3 . [1] Let G = N • H be a split extension of the normal f.g. sub-
group N by H. If N is £HT and H is {C.)£HT, then G is {C^STIT. If N and H
are both nc groups, then G is a irc group.

THEOREM 1.4. [8] Let G = E *H F. Suppose that

(a) E and F are nc and H-separable,
(b) for each N <f H there exist NE < / E and Np </ F such that NEC\B —

NFf\H CN.

Then G is nc.

A group G is polycyclic-by-finite if it has a normal subgroup N such that N is
polycyclic and G/N is finite.

2. CYCLIC SUBGROUP SEPARABILITY (nc)

A group G is polycyclic-by-finite if it has a normal subgroup N such that N is
polycyclic and G/N is finite.

In this section we shall prove that a polygonal product of polycyclic-by-finite groups
AQ, Ai, ..., An (n ^ 3), amalgamating any subgroups Ho, Hi, ..., Hn with trivial
intersections, is TTC if 27,-_i, Hi C Z(Ai) for all i. To prove this result, we have to study
some properties of the group Em = Ai *HX A^ *JJ7 • • • *Hm_l Am, where Hj = Aj D Aj+\
for 1 ^ j ^ m — 1, and each Ai is a polycyclic-by-finite group containing subgroups
27,_i and Hi such that £Tj_i f~l Hi = 1, where .ff;_i, Hi C Z(Ai) for 1 < i < m.
Throughout this section Em denotes the above group.

LEMMA 2 . 1 . For given subgroups U < / Ho and V < / Hm, there exists N < /
Em such that N n Ho = U, N n Hm = V and NH0 H NHm = N.

PROOF: CASE 1: m > 1. There exists a homomorphism TT: Em —> (Ai/HiU) *
(An/Hm^V), since H^, H{ C Z(A{). Now A1/H1U and Am/Hm-1V are
polycyclic-by-finite, hence, ~Em - Emn is HT'. Thus, since ~HQ = H0HiU/HiU =
Ho/U and J m = Hm/V are finite, there exists JV </ E~m such that 1 = ~N f~l jffm-ff0 •
Let iV be the preimage of TV in £ m .

CASE 2. m = 1. Let U <f Ho and V <f J?i be given. Since U, V C Z(Ai), we can
consider .4.1 = Ai/UV. Then the subgroups Ho and ITi of Ai are finite. Since Ai is
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V,T, there exists N < / A\ such that 1 = N f~l H\H0 . Let N be the preimage of N in

It is not difficult to see that N satisfies our requirements. D

LEMMA 2 . 2 . For any given M < / J5n_i and N <f An, there exist P <f En-!

and Q < / An such that P CM, Q CN, Pn ffn_x =Qn Hn-i, PH0 n PHn-i = P
and QHn-1nQHn = Q.

PROOF: By Lemma 2.1, there exists Mi </ £n_i such that MIHHQ — Mr\H0,
Mi n .ffn_i = M n JV, and MiHo D Mi#n_x = Mi. Similarly, there exists Ni < / i4n

such that Ni D 5 n _i = M D JV, JVj H JIn = JV D Hn, and iViJ?n_i n iVxJIn = JVi.
Let P = M n Mi and Q = N l~l JVi. Then it is easy to see that P and Q satisfy the
required conditions. D

THEOREM 2 . 3 . Let G = E *H F, where E, F are H-separable. Let S be a
subgroup of E and suppose that E is S-separable. Suppose, further, that

(W) for each N <f H there exist NE </ E and NF <f F such that NEnH =
NFnH CN.

Then G is S-separable.

PROOF: Let g e G be such that g i S.

CASE 1. g e E. Since E is 5-separable, there exists P <\j E such that g £ PS.
Now, by (W), there exist Pi <f E and Qi <f F such that P1nH = Q1nHcPnH.
Let NE = PHPj and NF = Qi • Then NE < / E, NF <f F, and NEnH = Px C\H =
Qi D H — NF D H. Thus, we have a homomorphism ir: E *H F —» E/NE *JJ F/NF,
where W = HNE/NE = HNF/NF. It is clear that g £ 5 , where ~G = Git. Since G
is CSIIF by Theorem 1.2, there exists ~M <fG such that 5 £ M 5 . Let M be the
preimage of M in G. Then, clearly, M <f G and g $ MS.

CASE 2. g e F\H. Since f is 5-separable, we can find Q < / F such that 5 £ QH.
By (W), there exist Pi <f E and Qj <f F such that Px D JI = Qi fl H C <? D ff. Let
NE = Pi and JVF = Q n Qj. Then NE <f E, NF <\f F, and JV^ n 5 = Pi D H =
<?i fl H = NFC\H. Now we consider TT: G -» E/JVB *^ F/iVF as in Case 1. Then
j £ F \ I and 5 c l . It follows that 3 g 5. As in Case 1, we can find M </ G such
that 3 g MS.

CASE 3. ||^|| > 2. Assume that 3 = ei/i • • • e n / n , where ei e E\H and f{ e F\H
(the other cases are similar). Since 2? and P are 5-separable, there exist P </ E and
Q <f F such that e; g PJ? and /; g QiT for all i. Considering P fl <? </ H, by
assumption (W), we can find Pi <\j E and Qi <if F such that PiC\H = Qx DH C PnQ.
Let iVs = PnPi and NF = QnQi. Then NE <f E, NF <f F and NEC\H = NFnH.
Thus we have a homomorphism n: G —» E/NE *JJ F/NF as in Case 1. Then we have
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\\s\\ = llffll ^ 2, where G = Gn. It follows that g~ £ S. Now, as in Case 1, we can find
M < / G such that g (£ MS. This proves the theorem. D

If 5 = (1), then Theorem 2.3 proves that G - E*HF is TIT'. Thus Theorem 2.3
is a generalised version of [11, Criterion] or [2, Lemma 3.1]. Furthermore, using the
above theorem, we can prove the following two results which are unavoidable for our
main result in this section.

COROLLARY 2 . 4 . The group En is Ho-separable and Hn-sepaxa.ble.

PROOF: Note that Ex and E2 are CSTIT by [1, Theorem 5]. Hence the lemma
holds for n = 1, 2. Inductively, we assume that En-i is .Ho-separable and Hn-\-
separable. Note that the Ai are polycyclic-by-finite, hence An is also -ffn-i -separable.
By Lemma 2.1, for each JVjy </ Hn-i, there exist N </ En-i and M < / An such that
NnHn-i =NH = MClHn-i. This proves (W) in Theorem 2.3 for En = En-\ *//„_! An.
Thus En is 17o-separable by Theorem 2.3. By symmetry, En is ^-separable. D

COROLLARY 2 . 5 . The group En is TTC.

PROOF: Write En = En-i *Hn_x An. Then En-i and An are Hn-i-separable
(Corollary 2.4) and satisfy (W) in Theorem 2.3 as in the previous proof. It follows, by
induction and Theorem 1.4, that En is irc. D

LEMMA 2 . 6 . Forgiven x £ Em such that x £ H0Hm, there exists N < / Em

such that x £ NH0Hm.

PROOF: For m = 1, the lemma is trivial, since E\ — Ai is polycyclic-by-finite
(hence, it is CSTZT) and since HQH\ is a f.g. subgroup. For an induction, we assume
that the lemma holds for Em-i; that is, for given e G Em-i such that e ^ HoHm-i,
there exists P < / Em-\ such that e $ PHQHm-i. We consider Em = Em-\ *Hm-1

Am •

CASE 1. Suppose that x £ HoHm is implied by the syllable length of x; that is,

(1) 11*11 ^ 3 ; or,
(2) ||z|| = 2 and x G AmEro_!.

Consider the case x — eioi • • • enan, where e< G Em-i \-Hm-i and en 6 Am\Hm-i (the
other cases are similar). Since Em-i, Am are Hm-i-separable by Corollary 2.4, there
exist Pi <f Em-i and Qi <f Am such that e< ^ PiHm-i and at £ QiBm-i, for
all i. Now, by Lemma 2.2, there exist P <f Em-\ and Q <f Am such that P C Pi,
Q CQi, f n H m _ i =Qn ffm_!, PH0 n PEm-X = P, and QHm^ n QHm = Q.

Hence, considering the natural homomorphism ir: Em —> (Em-i/P) *-g (Am/Q),

where fl^_! = H^P/P = Hm-XQIQ, we have ||x|| = ||z|| and Wo n l » - i = (1) =
¥ m _ i n l m . Then clearly x £ H0Hm.
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CASE 2. ||x|| = 2 and x £ AmEm^; that is, x = ea where e G i?m-i \ Hm-i and
a G Am \ Hm-i. Thus, by Corollary 2.4, there exist Pi <3f Em-\ and Qi < / .Am such
that e ^ PiH-m-i and a ^ Qi J m _ i . We note that x = ea (£ HoHm if, and only if,
one of the following is true:

(1) e £ .ffoffm-i; or
(2) e = Air and ro ^ 27m, where fti G -ffo and r G Hm-i •

If (1) is true then, by the induction hypothesis, there exists Pi <3f Em-i such
that e ^ P2H0Hm-i. Then, by Lemma 2.2, there exist P <j Em-i and Q <]/ ^4m

such that P C Pi n P2, Q C Qi, P H # „ _ ! = Q n ffm_i, PJ70 n Pffm_i = P , and
QHm-i fl Q^ m = Q. Consider the homomorphism IT: Em —» Em-\IP *js Am/Q,

• " m — 1

as above. Note that Ho C\ Hm-\ ~ 1 = £Tm-i D JETm, S" = ea and e $ H0Hm_1. It
follows that a; ^ HoHm.

If (2) is true then, since Am is LEV.]-', we can find Q2 < / >lm such that ra ^
QiBm- As before, we can find P </ Em-\ and Q </ 4̂TO such that P C Pi,
QcQiDQ2, P n V i = Q n g m _ i , Pg 0 n Pffm-i = P , a n d QHm^f\QHm = Q.
Then, as before, we have x = eo ^ HQHm, where Em = Emir.

CASE 3. ||x|| = 1. Consider the case x E Em-i \Hm-i (the other case being similar).
Since x g Ho, there exists Pi < / Em-i such that x ^ Pi-ffo U Pi£Tm_i. Now, by
Lemma 2.2, there exist P < / Em-i and Q </ ^4m such that P C Pi, P 0 Hm-i =
Q D i l m _ i , PH0 0 PJ?m_i = P , and QHm-i 0 Qffm = Q. Then, we can easily see
that x ^ HoHm, where Em = Emn as above.

CASE 4. ||x|| = 0. In this case we have x G J?™-i and j / 1 . Since Em-i is ^^ r

(Corollary 2.5), there exists Pi < / Em-\ such that x ^ Pi . As in Case 3, we can find
P < / jEm_i and Q </ Am such that x ^ H0Hm, where £ m = £m7r.

Consequently, we have found P < / -Em-i and Q < / Am such that x ^ HoHm,
where Em — Emn = Em-i/P*jj Am/Q. Since |ffo| and \Hm\ are finite, and since
E~m is TIT, it is not difficult to find ~N </ ~Em such that x ^ NH0Hm. Let JV be the
preimage of N in Em. Then clearly, N <]/ Em and x ^ NHoHm as required. D

DEFINITION 2.7: [9] Let G = G1*HG2- Let X, y be subgroups of d , G2

respectively. Let M = {{Ni, Mi); i G 1} be a collection of pairs of normal subgroups of
G\ and 6?2 satisfying the following:

(1) Ni<oGlt Mi < G2, and JV» n H = Mi n F , for all i G / .
(2) NidXH = (Ni n X)(iV< n ff) and Mi n YH = (Mi n K)(M< n ^ ) , for

all iel,
/» \

(3) f) iVa., f| Ma. G M for all a j , . . . , an G / , where n is finite,
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(4) H NiX = X, PI NiH = H, pi MiY - Y, and fl M<# = H,
»e/ iei »€/ ie/

(5) f) NiXH = XE a n d fl MiYH = YE.

Then AT is called a compatible filter of G with respect to the subgroups X and Y".

LEMMA 2 . 8 . [9] Let G = Gi*H G2. Let X, Y be subgroups of d , G2 re-

spectively, such that X r\H = YHH = 1. Let M be a compatible filter of G with

respect to X and Y. Then, for each g G G\(X *Y) with \\g\\ ^ 1, there exists

(N, M) G N such that \\gn\\ = \\g\\ and gir £ Xir * Yir, where n is the canonical

homomorphism of G onto G — G\ *H-G2, and where G\ — Gi/N, G-i = G2/M and

~H = HN/N = HM/M.

For example, we can see, by Corollary 2.4 and Lemma 2.6 together with Lemma 2.2,
that M = {(P, Q):P<f Em-u Q </ Am* P n -ffm-i = Q n Hm-U PH0 n PHm-! =

P, QHm-i n QHm = Q} is a compatible filter of Em — Em-i *Hm_i Am with respect
to Ho and Hm.

THEOREM 2 . 9 . Let G = d *H G2, and let X < Gi, Y < G2 be such that

XP\H = l=Yr\H. Suppose that G has a compatible filter M = {(Ni, Mi) : i G /} of

G with respect to X and Y, where Ni <f G\ and Mi < / G2, for all i, and suppose

further that

( W ) for eaci NH <\f H there exists {Nj, Mj) G M such that Mj D H =

Nj n H C NH for some j € I.

Then G is X * Y-separable whenever H is 1i.T.

P R O O F : Let g G G \ (X * Y).

CASE 1. g G H. Since g ^ 1 and H is H.T, there exists NH <f B such that g £ NH •

By ( W ) , there exists (Nj, Mj) G M such that NjDH = MjHH C NH for some j el.

Then, g £ ~X * Y where G = GJNj *^ G2/Mj and ¥ = NjH/Nj = MjH/Mj. Now,
G is ^ f ^ J " by Theorem 1.2. Hence, there exists ~N <f G such that g £ N~(X*¥).

Let N be the preimage of ]V in G. Then iV < / G and <j ^ iV(X * Y).

CASE 2. g £ H. By Lemma 2.8, there exists (iV,-, Mj) £ Af such that </ £ X * F ,

where G = Gi/Nj *-g G2/Mj. Then, as before, we can find N <if G such that

gtN(X*Y). D

LEMMA 2 . 1 0 . For each N <f Ho * Hm(m > 2), there exists NBm < / Em such

that NEmn(H0*Hm) = N.

PROOF: There exists a natural homomorphism TT: Em —» A\/Hi * Am/Hm-i,

obtained by defining zn = 1, for all z G A2 U • • • U Am-i, if m ^ 3; or ZTT = 1,
for all z G 2Zi, if m = 2. Let Em — Emir — A\ * Am, where Ai = Ai jE\ and
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~Am = Am/Hm-!. We note that ~H0 S Ho, ~Hm = Hm and N = ~N <f 2?0 * 2?m. Now,
considering A\ * Am = A\ *-g (So * Hm) *jjm Am, we have a homomorphism

<t>: Em -» (At /N n ¥ 0 ) * 5 Q (#o * ^m/N) *Sm (&m/N D ¥ m ) ,

where Ho = ~BofN D So = H0N/~N and F m = ~H^N/~N = ~EmfN D !ffm. Since ff0

and 27TO are finite, therefore, ~Em<t> is 7 ^ . Note that (Ho * Tlm)/~N is finite. It follows
that there exists M <\f TUm(f> such that M n ((Bo * Fm)/77) = 1. Now, let NEm be
the preimage of M in i5m under the homomorphism ir o <f>. Then iV£;m < / £Jm and
NEm

 n (-ffo * Sm) = JV as required. D

Now we are ready to show our main result of this section.

THEOREM 2 . 1 1 . Let G be the polygonal product of the polycycEc-by-Hnite
groups Ao, Ai, . . . , An (n ^ 3), amalgamating any subgroups Ho, Hi, ..., Hn, with
trivial intersections, where Hi C Z(A{) l~l Z(Ai+i) for all i, and where subscripts are
taken modulo n + 1. Then G is irc.

PROOF: We write G = E*HF, where E = Ai*Hl •*Hn_2 An.lt F = A0*HnAn,
and H = Ho * Hn-i • With G in this form, we can apply Theorem 1.4. For condition
(a) in the theorem, Corollary 2.5 proves that E and F are irc • Theorem 2.9, using
Lemma 2.1, proves that E and F are ^-separable. Also, Lemma 2.10 proves condition
(b) in the theorem. Hence, by Theorem 1.4, G is 7rc. D

We immediately have the following result:

THEOREM 2 . 1 2 . Let G be the polygonal product of the f.g. abelian groups
Ao, A\, ..., An (n ^ 3), amalgamating any subgroups Ho, Hi, ..., Hn, with trivial
intersections. Then G is irc.

We note that the above two results are generalisations of Theorem 3.4 in [3].

3. SUBGROUP SEPARABILITY {LSTIT)

Now we consider the subgroup separability of polygonal products of f.g. abelian
groups. Throughout this section we assume that the amalgamated subgroups of polyg-
onal products are not trivial.

LEMMA 3 . 1 . [1] IS a group G contains a subgroup Fz x F2, where F2 is a free

group of rank 2, then G is not CETlf.

THEOREM 3 . 2 . Let P be the polygonal product of the four LEUT groups A,

B, C, D, amalgamating the finite subgroups H2, Hz, H4, Hi, with trivial intersec-

tions, where the Hi are contained in the centres of the vertex groups containing them.

Then P is CS11F if, and only if, either \Hi\ = \H3\=2 or \H2\ = \Hi\ = 2.
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[9] Polygonal products of abelian groups 461

PROOF: Let Po be the polygonal product of Ao - (Hi,H2), Bo - (H2, H3),

Co = (H3, Hi), D o = {Hi, H-i) amalgamating H2, H3, Hi, Hx. Let E = Ao *Hi Bo,

F = D0 * H 4 Co and H = Hx *H3. Then E = H2 x H, F = Hi x H and Po = E*HF =

{H2*HA)x{H1*Hi).
( = > ) Note that H2 *Hi contains a free subgroup of rank 2 unless I.H2I = 2 = IJJ4I

[10, p.195]. Similarly, H\ * H3 contains a free subgroup of rank 2 unless |Ifi| —
2 = l-ffsl- Now if P is CETIT then Po is CEUT. It follows from Lemma 3.1 that
|#2| = 2=|#4|or 1̂ 1 = 2 = 1̂ ,1.

{<=) Assume that |fl^i| = 2 — \H3\. Then every subgroup of Hi * H3 is f.g.,
hence, J?i * Hs is CUT'. It follows from Theorem 1.3 that Po is CETIT'. Note that
P = ({(Po *A0 A) *B0 B) *c0 C) *D0 D. Since Ao, Bo, Co, Do are finite, by Theorem
1.2, P is C£HT. D

THEOREM 3 . 3 . Let P be the polygonal product of the lour groups A, B, C,
D, amalgamating the subgroups H2, H3, Hi, Hi, with trivial intersections, where the
Hi are contained in the centres of the vertex groups containing them. II P is LE1Z.T,
then either \Hi\ = \HS\ = 2 or \H2\ = |J?4| = 2.

PROOF: If P is C£KT, then the subgroup Po constructed in the proof of Theorem
3.2 is also LSTIT. It follows that |fli| = |JJ3| = 2, or \H2\ = \Ht\ = 2, as in the proof
of Theorem 3.2. D

COROLLARY 3 . 4 . Let G be the polygonal product of the f.g. abelian groups A,
B, C, D, amalgamating the subgroups (b), (c), {d), (a), with trivial intersections.
If G is C.E'R.T, then |a| = 2 = \c\ or \b\ = 2 = \d\. In particular, the polygonal
product of the four free abelian groups amalgamating the cyclic subgroups, with trivial
intersections, is not CS'R.T.
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