MERCERIAN CONDITIONS FOR THE METHOD (F, d_{n})

H. B. SKERRY

1. Introduction. This paper sets forth conditions sufficient that the generalized Lototsky method (F, d_{n}) be regular and Mercerian. If the d_{n} 's are real and of constant sign, then the conditions are also necessary. Moreover, it follows that if f is a polynomial, then under the same conditions the method (f, d_{n}) is equivalent to the Sonnenschein method generated by f. Various related results are also given.

2. Definitions and preliminaries.

Definition 2.1. Let f be a nonconstant function holomorphic on the closed unit disk and let $\left\{d_{n}\right\}_{1}{ }^{\infty}$ be a complex sequence with $f(1)+d_{n} \neq 0$. Suppose

$$
\prod_{1}^{n} \frac{f(z)+d_{i}}{f(1)+d_{i}}=\sum_{k=0}^{\infty} a_{n k} z^{k}, \quad n \geqq 1
$$

Then the generalized Lototsky method (f, d_{n}) is defined by the matrix $A=\left(a_{n k}\right)$, where $a_{00}=1, a_{0 k}=0$, for $k>0$, and $a_{n k}$ is as above, for $n \geqq 1$. The method (F, d_{n}) is the special case in which $f(z)=z$. If $f(1)=1$ and $d_{n} \equiv 0$, the (f, d_{n}) method reduces to the Sonnenschein method $Z(f)$.

For a discussion of these methods see $[\mathbf{3} ; \mathbf{4} ; \mathbf{1 0}]$, and the literature cited therein.

We shall use $\left(1+d_{n}\right)$! for $\Pi_{1}{ }^{n}\left(1+d_{i}\right), c_{A}$ for the convergence field of A, s for the space of all complex sequences, and m and c for the subspaces of bounded and convergent sequences, respectively.

A matrix A is called Mercerian if $c_{A}=c$; this does not imply that A is regular, i.e., that A is consistent with the identity matrix I.

Suppose that $B=\left(b_{n k}\right)$ is the inverse matrix to the (F, d_{n}) matrix. In [4], Jakimovski found a formula for $b_{n k}$ in the event that the d_{n} 's are real and distinct; we derive it without such restrictions. We shall use the notation of [4] for divided differences. If f is a polynomial, the discussion [7, p. 45] shows that its divided differences are representable in the form

$$
\begin{equation*}
\left[f\left(x_{0}\right), \ldots, f\left(x_{m}\right)\right]=\frac{1}{m!} f^{(m)}(\xi) \tag{2.2}
\end{equation*}
$$

where, by definition,

$$
\begin{equation*}
\left[f\left(x_{0}\right), \ldots, f\left(x_{m}\right)\right]=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-x_{0}\right) \ldots\left(z-x_{m}\right)} \tag{2.3}
\end{equation*}
$$

Received May 26, 1971 and in revised form, August 27, 1971.
(See [7, p. 44, (4)]). It follows that if $\operatorname{deg} f=n$, then $m>n$ implies that $\left[f\left(x_{0}\right), \ldots, f\left(x_{m}\right)\right]=0$. Now set $f(z)=z^{n}$, and effect the notational change $x_{i}=d_{i+1}$. Define

$$
q_{n m}=(-1)^{n-m}\left[d_{1}{ }^{n}, \ldots, d_{m+1}{ }^{n}\right], m, n \geqq 0 .
$$

We claim that if $d_{0}=0$, then

$$
\begin{equation*}
b_{n m}=\left(1+d_{m}\right)!q_{n m}, \quad m, n \geqq 0 \tag{2.4}
\end{equation*}
$$

We have seen that (2.4) is valid whenever $m>n$, for then $q_{n m}=0$. It is also readily verified for $n=0,1$. Thus, assume that for $0 \leqq k \leqq n$, we have $b_{k j}=\left(1+d_{j}\right)!q_{k j}$, for $j \geqq 0$. By [8, (2.11)],

$$
\begin{equation*}
b_{n+1, m}=b_{n, m-1}\left(1+d_{m}\right)-d_{m+1} b_{n m}, 0 \leqq m \leqq n+1, n \geqq 0 . \tag{2.5}
\end{equation*}
$$

Thus, if $0 \leqq m \leqq n+1$, we have

$$
\begin{aligned}
b_{n+1, m} & =\left(1+d_{m}\right) \cdot\left(1+d_{m-1}\right)!q_{n, m-1}-d_{m+1}\left(1+d_{m}\right)!q_{n m} \\
& =\left(1+d_{m}\right)!\left(q_{n, m-1}-d_{m+1} q_{n m}\right)
\end{aligned}
$$

so it remains only to show that $q_{n+1, m}=q_{n, m-1}-d_{m+1} q_{n m}$, i.e., that

$$
\begin{equation*}
\left[d_{1}{ }^{n+1}, \ldots, d_{m+1}{ }^{n+1}\right]=\left[d_{1}{ }^{n}, \ldots, d_{m}{ }^{n}\right]+d_{m+1}\left[d_{1}{ }^{n}, \ldots, d_{m+1}{ }^{n}\right] . \tag{2.6}
\end{equation*}
$$

From (2.3), the right side of (2.6) is

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{C} \frac{z^{n} d z}{\left(2-d_{m}\right)!}+\frac{d_{m+1}}{2 \pi i} \int_{C} \frac{z^{n} d z}{\left(z-d_{m+1}\right)!}= & \frac{1}{2 \pi i} \int_{C} \frac{z^{n+1} d z}{\left(z-d_{m+1}\right)!} \\
& =\left[d_{1}{ }^{n+1}, \ldots, d_{m+1}{ }^{n+1}\right]
\end{aligned}
$$

It follows by induction that (2.4) is valid in general.
3. The main results. There are a number of conditions which are sufficient for a triangle to be Mercerian. For example, if Γ is the Banach algebra of conservative matrices, there are
(1) $A \in \Gamma,\left\|A^{-1}\right\|<\infty$,
(2) the principal diagonal condition (see [2]),
(3) $A \in \Gamma,\|A-I\|<1$,
(4) $A \in \Gamma, A$ has a right inverse in Γ,
(5) $A \in \Gamma, A$ has the AB condition, $\left|a_{n n}\right| \geqq \epsilon>0$ (see [11]).

However, (2) and (3) require that $\lim \sup \left|1+d_{n}\right|!<2$ and sup $\left|1+d_{n}\right|!<2$, respectively, and these conditions turn out to be too strong. (4) is clearly deficient for computational reasons, and (5) involves showing that A has the AB condition. In general, showing that a matrix has this condition may be very difficult. There are two well-known criteria which suffice, Bosanquet's and Riesz's (see [11]), but neither is helpful even in the case in which $d_{n} \geqq 0$, for each n. Thus, we use (1), which is also a necessary condition for A to be Mercerian.

In the sequel, let $A=\left(a_{n k}\right)$ be the $\left(F, d_{n}\right)$ matrix and let $B=\left(b_{n k}\right)=A^{-1}$. We now define

$$
\begin{equation*}
S(j, n)=\sum d_{1}^{i_{1}} \ldots d_{j}^{i_{j}}, i_{1}+\ldots+i_{j}=n \tag{3.1}
\end{equation*}
$$

where

$$
d_{0}=0 \text { and } S(j, n)=\left\{\begin{array}{l}
1, n=0, j>0 \\
0, n<0 \\
0, j \leqq 0
\end{array}\right.
$$

From (2.5), it follows by induction that

$$
\begin{equation*}
b_{n m}=\left(1+d_{m}\right)!(-1)^{n-m} S(m+1, n-m) \tag{3.2}
\end{equation*}
$$

We remark here that in the case in which the d_{n} 's are distinct, (3.1) is an immediate consequence of (2.4) and the formula

$$
\begin{equation*}
\left[d_{1}{ }^{n}, \ldots, d_{m+1}{ }^{n}\right]=S(m+1, n-m), \tag{3.3}
\end{equation*}
$$

which appears on [9, p. 8]. Conversely, this formula follows from (2.4) and (3.2) even when the d_{n} 's are not distinct.

From (3.2), it is clear that, if each $d_{n} \geqq 0$, then

$$
\begin{equation*}
\|B\|=\sup \sum_{m=0}^{n}\left|b_{n m}\right|=\sup \sum_{m=0}^{n}\left(1+d_{m}\right)!S(m+1, n-m) \tag{3.4}
\end{equation*}
$$

Lemma 3.5. Suppose that each $d_{n} \geqq 0$. Then $\|B\|<\infty$ if and only if

$$
L=\lim \sup \sum_{m=0}^{n} S(m+1, n-m)<\infty .
$$

Proof. If $\|B\|<\infty$, then $L<\|B\|<\infty$, by (3.4). If $L<\infty$, then

$$
\lim \sup S(n, 1)=\lim \sup \sum_{1}^{n} d_{j}=\sum_{1}^{\infty} d_{j} \leqq L<\infty,
$$

so $\left(1+d_{m}\right)!=O(1)$. Then (3.4) shows that

$$
\|B\| \leqq O(1) \sup \sum_{m=0}^{n} S(m+1, n-m)<\infty
$$

Corollary 3.6. Suppose that each $d_{n} \geqq 0$. Then $\|B\|<\infty \Rightarrow \sum_{1}{ }^{\infty} d_{n}<\infty$, and each $d_{n}<1$.

Proof. If $d_{N} \geqq 1$, then $m \geqq N-1$ implies that

$$
S(m+1, n-m) \geqq d_{N}^{n-m} \geqq 1
$$

Hence,
$\lim \inf \sum_{m=0}^{n} S(m+1, n-m) \geqq \lim \inf \sum_{m=N-1}^{n} S(m+1, n-m)$
$\geqq \lim \inf (n-N+2)=\infty$,
so $L=\infty$.

Lemma 3.7. If each $d_{n} \geqq 0$ and $s=\sum_{1}{ }^{\infty} d_{n}<1$, then $\|B\|<\infty$.
Proof. From its definition, it is clear that $S(m+1, n-m) \leqq s^{n-m}$, so

$$
L \leqq \lim \sup \sum_{m=0}^{n} s^{n-m}=1 /(1-s)
$$

Lemma 3.8. Let each $d_{n} \geqq 0$. In order that $\|B\|<\infty$, it is necessary and sufficient that each $d_{n}<1$ and $\sum_{1}{ }^{\infty} d_{n}<\infty$.

Proof. Corollary 3.6 gives the necessity. Now suppose that $q_{n} \geqq 0$, for $n>N$, and $q_{n}=0$, for $1 \leqq n \leqq N$; suppose also that $\sum_{N+1}^{\infty} q_{n}<1$. Define $d_{n}=q_{n}$, if $n \neq N$, and let $d_{N}=p_{N}$, with $0 \leqq p_{N}<1$. Then

$$
\begin{equation*}
S(j, n)=\sum p_{N}{ }^{i_{N}} \cdot q_{N+1} i_{N+1} \ldots q_{j}^{i_{j}}, i_{N}+\ldots+i_{j}=n . \tag{3.9}
\end{equation*}
$$

Now define $B(j, n)$ and $C(j, n)$ so that $S(j, n)=B(j, n)+C(j, n)$ and $C(j, n)$ is composed of all summands in $S(j, n)$ in which p_{N} has a positive exponent, i.e.,

$$
B(j, n)=\sum q_{N+1}{ }^{i_{N+1}} \ldots q_{j}{ }^{i_{i}}, i_{N+1}+\ldots+i_{j}=n,
$$

and

$$
C(j, n)=\sum p_{N}{ }^{i_{N} q_{N+1}}{ }^{i_{N+1}} \ldots q_{j}^{i_{i}}, i_{N}+\ldots+i_{j}=n, i_{N} \neq 0 .
$$

We bear in mind that $C(j, n)=0$, if $j<N$ or $n \leqq 0, B(j, n)=0$, if $j \leqq 0$ or $n<0$ and if $0<j \leqq N$ with $n>0$, and $B(j, 0)=1$, if $j>0$. It is clear from its definition that

$$
C(j, n)=\sum_{k=1}^{n}{p_{N}}^{k} B(j, n-k), \quad j \geqq N,
$$

whence follows
(3.10) $C(m+1, n-m)=\sum_{k=1}^{n-m} p_{N}{ }^{k} B(m+1, n-m-k), \quad N-1 \leqq m$.

From (3.10) we get

$$
\begin{aligned}
\sum_{m=0}^{n} C(m+1, n-m) & =\sum_{m=N-1}^{n-1} C(m+1, n-m) \\
& =\sum_{m=N-1}^{n-1} \sum_{k=1}^{n-m} p_{N}^{k} B(m+1, n-m-k) \\
& =\sum_{k=1}^{n-N+1} p_{N}{ }^{k} \sum_{m=0}^{n-k} B(m+1, n-m-k) .
\end{aligned}
$$

If $S_{q}(m+1, n-m)$ is $S(m+1, n-m)$ with $d=\left\{d_{n}\right\}_{1}^{\infty}$ replaced by $q=\left\{q_{n}\right\}_{1}^{\infty}$, then $B(m+1, n-m)=S_{q}(m+1, n-m)$, so the proof of Lemma 3.7 shows that $\lim \sup \sum_{m=0}^{n} B(m+1, n-m)=b<\infty$. Then
there is an M with $\sum_{m=0}^{n} B(m+1, n-m)<M$, for each n. Thus,

$$
\begin{align*}
L & \leqq \lim \sup \sum_{m=0}^{n} B(m+1, n-m)+\lim \sup \sum_{m=0}^{n} C(m+1, n-m) \tag{3.11}\\
& =b+\lim \sup \sum_{k=1}^{n-N+1} p_{N}{ }^{k} \sum_{m=0}^{n-k} B(m+1, n-m-k) \\
& <b+M \lim \sup \sum_{k=1}^{n-N+1} p_{N}{ }^{k}<\infty
\end{align*}
$$

Now, assuming that $N>1$, let $\bar{q}_{n}=q_{n}$, if $n \neq N$, and let $\bar{q}_{N}=p_{N}$. Then define $\bar{d}_{n}=\bar{q}_{n}$, if $n \neq N-1$, and define $\bar{d}_{N-1}=p_{N-1}$, with $0 \leqq p_{N-1}<1$. Thus, $\bar{d}=\left\{\bar{d}_{n}\right\}_{1}{ }^{\infty}=\left(0, \ldots, 0, p_{N-1}, p_{N}, q_{N+1}, q_{N+2}, \ldots\right)$ Let $\bar{S}(j, n)$ be defined as $S(j, n)$ with \bar{d} substituted for d. We now define $\bar{B}(j, n)$ and $\bar{C}(j, n)$ similarly, so that

$$
\begin{aligned}
& \bar{S}(j, n)=\sum p_{N-1} i_{N-1} \bar{q}_{N} i_{N} \ldots \bar{q}_{j}^{i_{j}}, i_{N-1}+\ldots+i_{j}=n, \\
& \bar{B}(j, n)=\sum \bar{q}_{N}{ }^{i_{N}} \ldots \bar{q}_{j} i_{j}, i_{N}+\ldots+i_{j}=n \\
& \bar{C}(j, n)=\sum p_{N-1}{ }^{i_{N-1}} \bar{q}_{N} i_{N} \ldots \bar{q}_{j}^{i_{j}}, i_{N-1}+\ldots+i_{j}=n, i_{N-1} \neq 0,
\end{aligned}
$$

and

$$
\bar{S}(j, n)=\bar{B}(j, n)+\bar{C}(j, n)
$$

with $\bar{C}(j, n)=0$, if $j<N-1$ or $n \leqq 0, \bar{B}(j, n)=0$, if $j \leqq 0$ or $n<0$ and if $0<j \leqq N-1$ with $n>0$, and $\bar{B}(j, 0)=1$, if $j>0$. As before,

$$
\sum_{m=0}^{n} \bar{C}(m+1, n-m)=\sum_{k=1}^{n-N+2} p_{N-1}{ }^{k} \sum_{m=0}^{n-k} \bar{B}(m+1, n-k-m) .
$$

From (3.9), $\bar{B}(m+1, n-m)=S(m+1, n-m)$, so it follows by (3.11) that

$$
\begin{aligned}
\bar{L} & =\lim \sup \sum_{m=0}^{n} \bar{S}(m+1, n-m) \\
& \leqq \lim \sup \sum_{m=0}^{n} \bar{B}(m+1, n-m)+\lim \sup \sum_{m=0}^{n} \bar{C}(m+1, n-m) \\
& =L+\lim \sup \sum_{k=1}^{n-N+2} p_{N-1}{ }^{k} \sum_{m=0}^{n-k} \bar{B}(m+1, n-k-m) \\
& \leqq L+\bar{M} \lim \sup \sum_{k=1}^{n-N+2} p_{N-1}^{k}<\infty .
\end{aligned}
$$

By induction, it is clear that, if $d_{n}=p_{n}, 1 \leqq n \leqq N$, and $d_{n}=q_{n}, n>N$, with $0 \leqq p_{n}<1$, and if $S(j, n)$ is given by (3.1), then

$$
L=\lim \sup \sum_{m=0}^{n} S(m+1, n-m)<\infty
$$

But any sequence $\left\{d_{n}\right\}_{1}^{\infty}$ satisfying the hypotheses may be written as ($p_{1}, \ldots, p_{N}, q_{N+1}, \ldots$), with $\sum q_{n}<1$.

Theorem 3.12. Let each $d_{n} \geqq 0$. Then the (F, d_{n}) matrix is regular and Mercerian if and only if each $d_{n}<1$ and $\sum d_{n}<\infty$.

Proof. Lemma 3.8 above and [10, Lemma 2.2] show the conditions to be sufficient. Conversely, if A is regular and Mercerian, then $I \supseteq A$, and it follows that $B \in \Gamma$, whence $\|B\|<\infty$. Lemma 3.8 gives the necessity.

We remark here that Lemmas 3.8 and 3.5 together with formula (3.3) prove
Lemma 3.13. If each $d_{n} \geqq 0$, then $\lim \sup \sum_{m=0}^{n}\left[d_{1}{ }^{n}, \ldots, d_{m+1}{ }^{n}\right]<\infty$ if and only if each $d_{n}<1$ and $\sum d_{n}<\infty$.

Lemma 3.14. Let each $d_{n} \leqq 0$. Then, in order that $\|B\|<\infty$, it is necessary and sufficient that each $d_{n}>-1$.

Proof. We observe first that if each x_{j} is real and in $[a, b]$, then in (2.2) we may assume that $\xi \in[a, b]$, in accordance with [7, p. 45]. In particular, if each $x_{j} \leqq 0$, then so is ξ. By (2.4) and (2.2),

$$
b_{n m}=\left(1+d_{m}\right)!(-1)^{n-m}\binom{n}{m} \xi^{n-m}, \quad \xi \leqq 0 .
$$

It follows that $\operatorname{sgn} b_{n m}=\operatorname{sgn}\left(1+d_{m}\right)$!, or else $b_{n m}=0$.
To prove the necessity, suppose that $d_{n}<-1$, for some n, and let N be the smallest such n. Define $d_{0}=0$. Then $b_{N-1, N-1}=\left(1+d_{N-1}\right)!=\epsilon>0$. By (2.5), if $\rho=\left|d_{N}\right|$, we have

$$
b_{N, N-1}=b_{N-1, N-2}\left(1+d_{N-1}\right)-d_{N} b_{N-1, N-1} \geqq \rho \epsilon .
$$

It easily follows by induction that $b_{N+k, N-1} \geqq \rho^{k+1} \epsilon$, whence $\|B\|=\infty$.
On the other hand, $\left[8\right.$, Theorem 2B] shows that, if $-1<d_{n} \leqq 0$, then the identity matrix $I \supseteq A$ (with consistency), so $B \in \Gamma$ and $\|B\|<\infty$.

Theorem 3.15. Let each $d_{n} \leqq 0$. Then the (F, d_{n}) matrix is regular and Mercerian if and only if each $d_{n}>-1$ and $\sum d_{n}$ converges.

Proof. [5, Theorem 3.12] and Lemma 3.14 show that the conditions are sufficient. Conversely, if A is regular and Mercerian, then $I \supseteq A$, so $\|B\|<\infty$ and, thus, $d_{n}>-1$. Moreover, if $\sum d_{n}$ diverges, then $a_{n n}=1 /\left(1+d_{n}\right)!\rightarrow \infty$, so $\|A\|=\infty$.

The last theorem allows us to generate many matrices which are consistent with I but have strictly smaller convergence fields.

Corollary 3.16. Let $-1<d_{n} \leqq 0$, for each n, and let $\sum d_{n}$ diverge. Then the $\left(F, d_{n}\right)$ matrix A is consistent with I on c_{A}, and c_{A} is a proper subset of c.

Proof. As in the proof of sufficiency for Lemma 3.14,

$$
-1<d_{n} \leqq 0 \Rightarrow I \supseteq A \text { (with consistency). }
$$

The divergence of the series implies that A is not regular and Mercerian, by

Theorem 3.15. Since I and A are consistent, $c_{A}=c$ would imply that A is regular and Mercerian.

We now consider the case in which $\left\{d_{n}\right\}$ is a complex sequence. Let $\rho_{n}=\left|d_{n}\right|$ and $T(m+1, n-m)=\left[\rho_{1}{ }^{n}, \ldots, \rho_{m+1}{ }^{n}\right]$. By (2.4) and (3.3) we have

$$
\|B\|=\sup \sum_{m=0}^{n}\left|b_{n m}\right| \leqq \sup \sum_{m=0}^{n}\left|1+d_{m}\right|!T(m+1, n-m) .
$$

If $\sum \rho_{n}<\infty$, then $\left|1+d_{m}\right|!=O(1)$, so

$$
\|B\| \leqq O(1) \sup \sum_{m=0}^{n} T(m+1, n-m)
$$

If also $\rho_{n}<1$, for each n, then Lemma 3.13 implies that $\|B\|<\infty$. We have proved

Lemma 3.17. If $\left|d_{n}\right|<1$, for each n, and $\sum\left|d_{n}\right|<\infty$, then $\|B\|<\infty$.
Theorem 3.18. $\left|d_{n}\right|<1$, for each n, and $\sum\left|d_{n}\right|<\infty$ are sufficient conditions for the $\left(F, d_{n}\right)$ matrix to be regular and Mercerian. If each $d_{n} \geqq 0$, or each $d_{n} \leqq 0$, then these conditions are also necessary.

Proof. This follows from [5, Theorem 3.12] and Lemma 3.17.
Now let C be the (f, d_{n}) matrix, A the $\left(F, d_{n}\right)$ matrix, and $Z=Z(f)$ the Sonnenschein matrix generated by f (assuming that $f(1)=1$). Koch [6] has observed that $C=A Z$, and it is easily seen that if $d(Z)$ is the domain of the linear transformation $Z: s \rightarrow s$, then $C=A \circ Z$ on $d(Z)$, i.e., if $x \in d(Z)$, then $C x=(A Z) x=A(Z x)$. In particular, if f is a polynomial, whence $d(Z)=s$, it follows that $C=A \circ Z$ on s. The above theorem now gives

Theorem 3.19. Let $\left|d_{n}\right|<1$, for each n, and $\sum\left|d_{n}\right|<\infty$. Then the (f, d_{n}) matrix is equivalent to $Z(f)$ on $d(Z)$, and, if f is a polynomial, on all of s.

This theorem is of interest in part because, while useful, necessary and sufficient conditions for the regularity of the $\left(f, d_{n}\right)$ method are not known, such conditions are known [3] for $Z(f)$.

We close with an application of a theorem of Agnew [1, Theorem 7.4]. We reproduce a preliminary definition and the theorem below.

Definition. The sequence $x=\left\{x_{n}\right\}$ lies in an angle less than π if there exist z_{0}, θ_{0}, and φ such that $0<\varphi<\pi / 2$, and for each n we have

$$
x_{n}=z_{0}+r_{n} \exp \left\{i\left(\theta_{0}+\theta_{n}\right)\right\},
$$

with $r_{n} \geqq 0$ and $\left|\theta_{n}\right| \leqq \varphi$.
Theorem (Agnew). If C and D are positive regular matrices $\left(c_{n k} \geqq 0\right.$, $d_{n k} \geqq 0$), then every sequence which lies in an angle less than π and is summable to σ by either of the methods $C D$ or $C \circ D$, is summable to σ by the other.

Theorem 3.20. Let f have real nonnegative Maclaurin coefficients and let $0 \leqq d_{n}<1$, for each n, and $\sum d_{n}<\infty$. Then the methods $\left(f, d_{n}\right)$ and $Z(f)$ are equivalent on the set \mathscr{A} of all sequences each of which lies in some angle less than π. In particular, they are equivalent on m.

Proof. [10, Lemma 2.2] shows that $Z(f)$ is regular, and A is regular and Mercerian. Thus, $\left(f, d_{n}\right)=A Z \sim A \circ Z \sim Z$ on \mathscr{A}.

References

1. R. P. Agnew, Comparison of products of methods of summability, Trans. Amer. Math. Soc. 43 (1938), 327-343.
2. _-_Equivalence of methods for evaluation of sequences, Proc. Amer. Math. Soc. 3 (1952), 550-556.
3. J. Clunie and P. Vermes, Regular Sonnenschein type summability methods, Acad. Roy. Belg. Bull. Cl. Sci. 45 (1959), 930-954.
4. A. Jakimovski, A generalization of the Lototsky method of summability, Michigan Math. J. 6 (1959), 277-290.
5. A. Jakimovski and H. Skerry, Some regularity conditions for the (f, d_{n}, z_{1}) summability method, Proc. Amer. Math. Soc. 24 (1970), 281-287.
6. C. F. Koch, Some remarks concerning $\left(f, d_{n}\right)$ and $\left[F, d_{n}\right]$ summability methods, Can. J. Math. 21 (1969), 1361-1365.
7. G. G. Lorentz, Bernstein polynomials (University of Toronto Press, Toronto, 1953).
8. A. Meir, On the $\left[F, d_{n}\right]$-transformations of A. Jakimovski, Bull. Res. Council Israel Sect. F 10 (1962), 165-187.
9. L. M. Milne-Thomson, The calculus of finite differences (Macmillan, London, 1933).
10. G. Smith, On the (f, d_{n})-method of summability, Can. J. Math. 17 (1965), 506-526.
11. A. Wilansky and K. Zeller, Abschnittsbeschränkte Matrix-transformationen; starke Limitierbarkeit, Math. Z. 64 (1956), 258-269.

Lehigh University, Bethlehem, Pennsylvania

