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Abstract

We consider an analogue of Kontsevich’s matrix Airy function where the cubic potential
Tr(�3) is replaced by a quartic term Tr

(
�4
)
. Cumulants of the resulting measure are known

to decompose into cycle types for which a recursive system of equations can be established.
We develop a new, purely algebraic geometrical solution strategy for the two initial equations
of the recursion, based on properties of Cauchy matrices. These structures led in subsequent
work to the discovery that the quartic analogue of the Kontsevich model obeys blobbed
topological recursion.

2020 Mathematics Subject Classification: 39B32 (Primary); 14H70, 15B05,
30C15 (Secondary)

1. Introduction

Guided by uniqueness of quantum gravity in two dimensions, Witten conjectured in [33]
that the generating function of intersection numbers of tautological characteristic classes on
the moduli space of stable complex curves has to satisfy the PDE of the Korteweg–de Vries
hierarchy. The conjecture was proved a few months later by Kontsevich in his seminal paper
[20]. Kontsevich understood that critical graphs of the canonical Strebel differential [31]
on a punctured curve give a cell-decomposition of the moduli space of punctured curves,
which can be organised into a novel type of matrix model (the ‘matrix Airy function’) with
covariance

〈�(ejk)�(elm)〉c = δklδjm

λj + λk

(where (ejk) denotes the standard matrix basis and δkl the Kronecker symbol) and tri-valent
vertices. The λj are Laplace transform parameters1 of the lengths Lj of critical trajecto-
ries of the Strebel differentials, and the generically simple zeros of the Strebel differential
correspond to tri-valent vertices. Kontsevich went on to establish that the logarithm of the
partition function of his matrix model is the τ -function for the KdV-hierarchy, thereby
proving that his matrix model is integrable.

The same covariance (up to normalisation)

〈�(ejk)�(elm)〉c = δklδjm

N
(
Ej + Ek

)
1 These λj will be denoted by Ej in this paper.
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arises in quantum field theory models on noncommutative geometries [13], where the Ek are
the spectral values (‘energy levels’) of a Laplace-type operator. These are models for scalar
fields with cubic self-interaction. From a quantum field theoretical point of view one would
be more interested in a quartic self-interaction, which e.g. is characteristic to the Higgs field.
Such quartic models have been understood in [15] at the level of formal power series. Later
in [16, 17] exact equations between correlation functions in the quartic (matrix) model were
derived. These equations share many aspects with a universal structure called topological
recursion [10].

Such recursions typically rely on the initial solution of a non-linear problem (for the
Kontsevich model achieved in [25]). For the quartic model, the corresponding equation (for
the planar two-point function of cycle type (0, 1)) is given in (3·2) below. Its solution suc-
ceeded in [12], via a larger detour. It was assumed that (3·2) converges for N → ∞ to an
integral equation with Hölder-continuous measure. The special case of constant measure
was solved in [26] with help from computer algebra. Its structure suggested a conjecture
for the general case which was proved in [12] by residue theorem and Lagrange-Bürmann
resummation.

This paper provides a novel algebraic geometrical solution strategy for the non-linear
equation (3·2) and the affine equation (6·2) (which determines the planar two-point func-
tion of cycle type (2, 0)). We (re)prove that these cumulants are compositions of rational
functions with a preferred inverse of another rational function

R(z) = z − λ

N

d∑
k=1

�k

z + εk
.

Building on these results it was understood in [3] that derivatives of the partially summed
two-point function with respect to the spectral values Ek extend to meromorphic differentials
ωg,n labelled by genus g and number n of marked points of a complex curve. The ωg,n

are supplemented by two families of auxiliary functions and satisfy a coupled system of
equations. The solution of this system for small −χ = 2g + n − 2 in [3] gave strong support
for the conjecture that the ωg,n obey blobbed topological recursion [7] for the spectral curve(
x : Ĉ→ Ĉ, ω0,1 = xdy, ω0,2

)
given by

x(z) = R(z) , y(z) = −R(−z) , ω0,2(w, z) = dw dz

(w − z)2
+ dw dz

(w + z)2
.

The proof of this conjecture for g = 0 was achieved in [18]. As shown in [7], blobbed
topological recursion generates intersection numbers on the moduli space Mg,n of stable
complex curves. In view of the deep rôle played by the global involution z �→ −z [18]
we expect that this very natural involution will find a counterpart in the intersection the-
ory encoded in the quartic analogue of the Kontsevich model. Working out the details is a
fascinating programme left for the future.

2. Matrix integrals

Let HN be the real vector space of self-adjoint N × N-matrices and (E1, . . . , EN) be not
necessarily distinct positive real numbers. By the Bochner–Minlos theorem [6], combined
with the Schur product theorem [27, section 4], there is a unique probability measure dμ0(�)
on the dual space H′

N with
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exp

(
− 1

2N

N∑
k,l=1

MklMlk

Ek + El

)
=
∫

H′
N

dμ0(�) ei�(M) (2·1)

for any M = M∗ =∑N
k,l=1 Mklekl ∈ HN , where (ekl) is the standard matrix basis. The linear

forms extend via �(M1 + iM2) := �(M1) + i�(M2) to arbitrary complex N × N-matrices.
This allows us to evaluate �(ejk) and to identify the covariance∫

H′
N

dμ0(�) �(ejk)�(elm) = δklδjm

N
(
Ej + Ek

) .

We are going to deform the Gaußian measure (2·1) by a quartic potential,

dμλ(�) := dμ0(�) P4(�, λ)∫
H′

N
dμ0(�) P4(�, λ)

, (2·2)

P4(�, λ) = exp

(
− λN

4
Tr
(
�4)) := exp

(
− λN

4

N∑
j,k,l,m=1

�(ejk)�(ekl)�(elm)�
(
emj
))

,

for some λ > 0. This matrix measure is the quartic analogue of the Kontsevich model [20]
in which the deformation is given by the cubic term

P3(�, λ) = exp

(
− λN

3
Tr
(
�3)) := exp

(
−λN

3

N∑
k,l,m=1

�(ekl)�(elm)�(emk)

)
.

The cubic measure was designed to prove Witten’s conjecture [33] that intersection numbers
of tautological characteristic classes on the moduli space of stable complex curves are related
to the KdV hierarchy. Kontsevich proved that log

∫
H′

N
dμ0(�) P3(�, i/2), viewed as func-

tion of tk = −(2k − 1)!!(1/N)
∑N

j=1 E−(2k+1)
j , is the generating function of these intersection

numbers.
We are interested in moments of the measure (2·2),

〈ek1l1 . . . eknln〉 :=
∫

H′
N

dμλ(�) �
(
ek1l1

)
. . . �

(
eknln

)= 1

in
∂nZ(M)

∂Mk1l1 . . . ∂Mknln

∣∣∣
M=0

,

Z(M) =
∫

H′
N

dμλ(�) ei�(M) . (2·3)

As explained in Appendix A (see also [23, 30]), the moments (2·3) decompose into
cumulants 〈

n∏
i=1

ekili

〉
=

∑
partitions

π of {1, . . . , n}

∏
blocks β ∈ π

〈∏
i∈β

ekili

〉
c

. (2·4)

For a quartic potential (2·2), moments and cumulants are only non-zero if n is even and
every block β is of even length. The structure of the Gaußian measure (2·1) (together with
the invariance of a trace under cyclic permutations) implies that

〈
ek1l1 . . . eknln

〉
c is only non-

zero if (l1, . . . , ln) = (kσ (1), . . . , kσ (n)
)

is a permutation of (k1, . . . , kn), and in this case the
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cumulant only depends on the cycle type of this permutation σ in the symmetric group Sn

(see Appendix A, with b � 1 the number of cycles of length ni > 0, n1 + . . . + nb = n):

Nn1+···+nb
〈(

ek1
1k1

2
ek1

2k1
3
. . . ek1

n1
k1

1

)
. . .
(

ekb
1kb

2
ekb

2kb
3
. . . ekb

nb
kb

1

)〉
c

=: N2−bG∣∣k1
1...k1

n1

∣∣...∣∣kb
1...kb

nb

∣∣ . (2·5)

To correctly identify the cycles of the permutation it is necessary that all ki
j are pairwise

different in (2·5). These N-rescaled cumulants (2·5) are further expanded as formal power
series G... =∑∞

g=0 N−2gG(g)
... in N−2 so that

Nn1+···+nb
〈(

ek1
1k1

2
ek1

2k1
3
. . . ek1

n1
k1

1

)
. . .
(

ekb
1kb

2
ekb

2kb
3
. . . ekb

nb
kb

1

)〉
c

=
∞∑

g=0

N2−b−2g · G(g)∣∣k1
1...k1

n1

∣∣...∣∣kb
1...kb

nb

∣∣ . (2·6)

It turns out that this grading (g, b) of G(g)∣∣k1
1...k1

n1

∣∣...∣∣kb
1...kb

nb

∣∣ fits with the combinatorics of

ribbon graphs (with 4-valent vertices) on a connected oriented compact topological sur-
face of genus g � 0 with b � 1 boundary components (and ni labels on the ith boundary
component) and Euler characteristic χ = 2 − 2g − b (see e.g. [14, section 3] for the partic-
ular case of 4-valent vertices, and compare also with [20] or [11, sections 2 and 6]). Note
that the moments are related to ribbon graphs on possibly non-connected oriented compact
topological surfaces (see e.g. [22, section 3, proposition 3·8·3]).

Starting point for the investigation of cumulants are equations of motion for Z(M):

LEMMA 2·1. The Fourier transform Z(M) of the measure (2·2) satisfies

1

i

∂Z(M)

∂Mab
= iMbaZ(M)

N(Ea + Eb)
− λ

i3(Ea + Eb)

N∑
k,l=1

∂3Z(M)

∂Mak∂Mkl∂Mlb
. (2·7)

Proof. This follows from basic properties of the Gaußian measure (2·1). The derivative
(1/i)(∂/∂Mab) applied to Z(M) produces a factor �(eab) under the integral. Moments of
dμ0(�) are by (2·2) a sum over pairings. This means that �(eab) is paired in all possible
ways with a �(ecd) contained in exp(i�(M)) or in P4(�, λ). Every such pair contributes
a factor δadδbc/

(
N
(
Ea + Eb

))
, and summing over all pairings is the same as taking the

derivative, thus producing a term

1

N(Ea + Eb)

(
iMba − λN

N∑
k,l=1

�(eak)�(ekl)�(elb)

)

under the integral. The triple product of �(e..) is written as a third derivative with respect to
the corresponding entries of M.

The Kontsevich model [20] with cubic deformation P3(�, λ) is governed by the equation
of motion

1

i

∂Z(M)

∂Mab
= iMbaZ(M)

N(Ea + Eb)
− λ

i2(Ea + Eb)

N∑
k=1

∂2Z(M)

∂Mak∂Mkb
.
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For N = 1 this is essentially the ODE

f ′′(x) + 2cf ′(x) = xf (x)

solved by the Airy function f (x) = e−cxAi(x + c2), hence the title of [20]. Its quartic analogue
is the matrix version of the ODE

f ′′′(x) + 3cf ′(x) = xf (x) ,

which does not seem to have a name. The Airy function is the case p = 2 of a larger class

Aip(x) = 1

2π

∫ ∞

−∞
dt exp

(
i

(
tp+1

p + 1
+ xt

))
of higher Airy functions. As remarked in [20, section 4·3], they also give rise to higher
matrix Airy functions. In particular, there is also a ‘quartic analogue’ p = 3 in this class,
which was studied in [19, 21]. This matrix model does not seem to be related to our ‘quartic
analogue’ of the Kontsevich model.

Another equation of motion will be necessary for the subsequent work in [3]:

LEMMA 2·2. The Fourier transform Z(M) of the measure (2·2) satisfies

1

N

∂Z(M)

∂Ea
=
(

N∑
k=1

∂2

∂Mak∂Mka
+ 1

N

N∑
k=1

G|ak| + 1

N2
G|a|a|

)
Z(M) . (2·8)

Proof. Application of (1/N)(∂/∂Ea) −∑N
k=1 ∂2/

(
∂Mak∂Mka

)− (1/N)
∑N

k=11/
(
Ea + Ek

)
to the left-hand side of (2·1) yields zero so that it gives

1

N

∂

∂Ea

(
dμ0(�)

)= dμ0(�)
N∑

k=1

(
1

N(Ea + Ek)
− �(eka)�(eak)

)
when applying it to the right-hand side. Apply this identity to (2·2) to get

1

N

∂

∂Ea

(
dμλ(�)

)= dμλ(�)
N∑

k=1

(
1

N(Ea + Ek)
− �(eka)�(eak)

)

− dμλ(�)
∫

H′
N

dμλ(�)
N∑

k=1

(
1

N(Ea + Ek)
− �(eka)�(eak)

)
.

Multiplying with ei�(M) and integrating over H′
N gives with (A3) the assertion.

The equations of motion (2·7) and (2·8) induce identities between cumulants. Some of
them are derived in Appendix B, for others see [17]. Taking also the grading by (g, b) into
account, one can establish a partial order in the homogeneous building blocks G(g)

... . The
least element is the planar two-point function G(0)

|ab|, which is the dominant part (at large N)
of the cumulant of length 2 and cycle type (0, 1) (i.e. one cycle ab of length 2). It satis-
fies a closed non-linear equation for it alone, given in (3·1) below. Any other homogeneous
building block of (2·6) satisfies an affine equation with inhomogeneity that depends only
on functions of strictly larger topological Euler characteristic χ = 2 − 2g − b, which are
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known by induction. Similar recursive systems have been identified in many areas of mathe-
matics. Their common universal structure has been axiomatised under the name topological
recursion [10], since the recursion is by the topological Euler characteristic. Starting from
a few initial data called the spectral curve, topological recursion constructs a hierarchy of
differential forms and understands them as spectral invariants of the curve. A prominent
example is the Kontsevich model [20] whose topological recursion is described e.g. in
[11, section 6]. Other classes of examples are the one- and two-matrix models [8],
Mirzakhani’s recursions [24] for the volume of moduli spaces of Riemann surfaces, and
recursions in Hurwitz theory [5] and Gromov–Witten theory [4].

3. The planar two-point function

The two-point function G|ab| is the cumulant of length 2 and cycle type (0, 1) (i.e. one
cycle ab of length 2), see Appendix A. We reprove in Appendix B that the planar two-point
function G(0)

|ab| (of degree or genus g = 0) satisfies

(
Ea + Eb + λ

N

N∑
k=1

G(0)
|ak|

)
G(0)

|ab| = 1 + λ

N

N∑
k=1

G(0)
|kb| − G(0)

|ab|
Ek − Ea

. (3·1)

This equation was first established in [16]; equation (B7) which involves all G(g)
|ab| was

obtained in [17].
To give a meaning to the term k = a in (3·1) we make the decisive assumption that{

G(0)
|ab|
}

a,b=1,...N
arise by evaluation of a holomorphic function in two complex variables. Let

E1, . . . , Ed be the distinct entries in the tuple (Ek), which occur with multiplicities r1, . . . , rd,
with N = r1 + · · · + rd. We assume that for some neighbourhoods Uk ⊂C of Ek there is a
holomorphic function G(0) :

⋃d
k,l=1(Uk ×Ul) →C which interpolates G(0)

|ab| = G(0)(Ea, Eb)
and satisfies the natural (but by no means unique) holomorphic extension(

ζ + η + λ

N

d∑
k=1

rkG(0)(ζ , Ek)

)
G(0)(ζ , η) = 1 + λ

N

d∑
k=1

rk
G(0)(Ek, η) − G(0)(ζ , η)

Ek − ζ
(3·2)

of (3·1), for (ζ , η) ∈⋃d
k,l=1(Uk ×Ul). Equation (3·1) is understood as the limit ζ → Ea and

η → Eb of (3·2) when taking multiplicities into account. It is not possible to deduce (3·2)
from (3·1) alone. Justification of (3·2) comes from the fact that it gives rise to interesting
mathematical structures:

THEOREM 3·1. Construct 2d functions {εk(λ), �k(λ)}k=1,...,d, with limλ→0
(
εk, �k

)=(
Ek, rk

)
, as implicitly defined solution of the system

Ek = R(εk) , rk = �kR′(εk) , where R(z) = z − λ

N

d∑
j=1

�j

εj + z
. (3·3)

Then (3·2) is solved by G(0)(ζ , η) = G(0)
(
R−1(ζ ), R−1(η)

)
, where G(0) : Ĉ× Ĉ→ Ĉ is the

rational function
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G(0)(z, w) = 1

(R(w) − R(−z))(R(z) − R(−w))

{
R(z) + R(w)

+ λ

N

d∑
k=1

(
rk

R(εk) − R(z)
+ rk

R(εk) − R(w)

)

+ λ2

N2

d∑
k,l=1

rkrlGkl

(R(εk) − R(z))(R(εl) − R(w))

}
(3·4)

with

Gkl =

(
d∏

j,m=1

(−ε̂k
j − ε̂l

m
)

εj + εm

)⎛⎜⎜⎝ d∏
j=1
j �=k

εk − εj

R(εk)−R
(
εj
)
⎞⎟⎟⎠
⎛⎜⎜⎝ d∏

m=1
m �=l

εl − εm

R(εl)−R(εm)

⎞⎟⎟⎠
R′(εk)R′(εl)(εk + εl)

. (3·5)

Here z ∈ {u, û1, . . . , ûd
}

is the list of the different roots of R(z) = R(u), and the correct branch
of R−1 is chosen by the implicitly defined solutions above (i.e. εk ∈ R−1(Uk) for this branch).
In particular, G(0)

|kl| = G(0)(εk, εl) ≡ Gkl solves (3·1).

Existence of (εk(λ), �k(λ)) in a neighbourhood of λ = 0 is guaranteed by the implicit func-
tion theorem. We will prove several equivalent formulae for G(0)(z, w): (4·5), (4·9), (4·14)
and eventually (3·4). Some of them were already proved in [12]. There, inspired by the solu-
tion of a particular case [26], equation (3·2) was interpreted as an integral equation for a
Dirac measure. Approximating the Dirac measure by a Hölder-continuous function allowed
to employ boundary values techniques for sectionally holomorphic functions. Residue the-
orem and Lagrange–Bürmann resummation gave a solution formula whose limit back to
Dirac measure was arranged into (4·14).

In this paper we provide a more elementary proof of these equations which solely needs
properties of Cauchy matrices established by Schechter [28]:

PROPOSITION 3·2 ([28]). For two d-tuples (a1, . . . , ad) and (b1, . . . , bd), with all ai, bj

distinct, consider the d × d-matrix H = ( 1
ak−bl

)
kl. Let A(x) := ∏d

i=1(x − ai) and B(y) :=∏d
j=1(y − bj). Then the inverse of H is given by(

H−1)
kl = (al − bk)Al(bk) Bk(al) , (3·6)

where Al, Bk are the Lagrange interpolation polynomials

Al(x) = A(x)

(x − al) A′(al)
, Bk(y) = B(y)

(y − bk) B′(bk)
. (3·7)

The inverse of H satisfies

Bk(x)A(bk)

A(x)
=

d∑
l=1

(
H−1

)
kl

al − x
,

Al(x)B(al)

B(x)
=

d∑
k=1

(
H−1

)
kl

x − bk
. (3·8)
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Moreover, the row sums and column sums of H−1 are given by

d∑
j=1

(
H−1)

kj = − A(bk)

B′(bk)
,

d∑
i=1

(
H−1)

il =
B(al)

A′(al)
, (3·9)

and one has, for all j = 1, . . . , d,

d∑
k=1

A(bk)(
bk − aj

)
B′(bk)

= 1 and
d∑

l=1

B(al)(
al − bj

)
A′(al)

= 1 . (3·10)

4. Proof of Theorem 3·1
We are going to construct a non-constant rational function R ∈C(z) viewed as a branched

cover R : Ĉ=C∪ {∞} → Ĉ=C∪ {∞} of Riemann surfaces (with z = idC the standard
coordinate on C) via the following:

ANSATZ 4·1. A branched cover R : Ĉ→ Ĉ is supposed to be determined by conventions
(i)–(vi) and an algebraic relation (vii):

(i) R has degree d + 1;

(ii) all ramification points of R do not belong to R−1({E1, . . . , Ed});
(iii) without loss of generality, R(∞) = ∞ with residue −1 in the sense that

Resz=∞R(z)dz = −1;

(iv) for every k = 1, . . . , d, distinguish any of the d+1 distinct points of the fibre
R−1(Ek) as εk. Take any connected neighbourhood Uk ⊂C of Ek for which
R−1(Uk) has d+1 connected components, and let Vk be the connected component
of R−1(Uk) which contains εk. Then the choice of {εk} determines a holomor-
phic function G(0) :

⋃d
k,l=1(Vk × Vl) →C by G(0)(z, w) = G(0)(R(z), R(w)), where

G(0) :
⋃d

k,l=1(Uk ×Ul) →C satisfies (3·2);

(v) for any w ∈⋃d
j=1 Vj, let ŵ1, . . . , ŵd be the d other distinct preimages of R(w) ∈⋃d

j=1 Uj under R, i.e. R
(
ŵk
)= R(w). Assume that

∞ �= R
(−ŵl) and R

(−ŵl) �= R
(−ŵl′)

for all l, l′ = 1, . . . , d with l �= l′ and w close to some εk;

(vi) for any w close to some εk, G(0)
(−ŵl, w

)
is defined and finite for all l = 1, . . . , d. This

is the case e.g. if −ŵl ∈⋃d
j=1 Vj for all l = 1, . . . , d, or if G(0) extends to a suitable

rational function on Ĉ× Ĉ;

(vii) for any z ∈ Vl one has

R(z) + λ

N

d∑
k=1

rkG(0)(z, εk) + λ

N

d∑
k=1

rk

R(εk) − R(z)
= −R(−z). (4·1)
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With the properties (iv) and (vii) in this Ansatz 4·1 we turn (3·2) into

(
R(w) − R(−z)

)
G(0)(z, w) = 1 + λ

N

d∑
k=1

rk
G(0)(εk, w)

R(εk) − R(z)
, (4·2)

where (z, w) ∈⋃d
k,l=1(Vk × Vl). Next, setting z = −ŵl in (4·2) for l = 1, . . . , d and a given

w close to some εk, requirements (v) and (vi) of Ansatz 4·1 give (by ∞ �= R
(−ŵl

)
and

G(0)
(−ŵl, w

)
is defined and finite) the d equations

λ

N

d∑
k=1

rk
G(0)(εk, w)

R
(−ŵl

)− R(εk)
= 1 . (4·3)

This identifies (λ/N)rkG(0)(εk, w) as row sums of the inverse of a Cauchy matrix. Setting
aj = R

(−ŵj
)

and bi = R(εi) in the first identity (3·9) in Proposition 3·2 we conclude (since
the aj, bi for j, i = 1, . . . , d are pairwise distinct by requirement (v) of Ansatz 4·1):

COROLLARY 4·2. With Ansatz 4·1 one has

λ

N
rkG(0)(εk, w) = −

∏d
j=1

(
R(εk) − R

(−ŵj
))∏d

j=1,j �=k

(
R(εk) − R

(
εj
)) . (4·4)

Inserted back into (4·2) expresses G(0)(z, w) in terms of R. The result simplifies:

LEMMA 4·3. With Ansatz 4·1 one has

G(0)(z, w) = 1

(R(w) − R(−z))

d∏
j=1

R(z) − R
(−ŵj

)
R(z) − R

(
εj
) . (4·5)

Proof. This follows from (3·10) for (d + 1)-tuples with index 0 prepended. Setting b0 =
R(z), bk = R(εk), al = R

(−ŵl
)

for k, l = 1, . . . , d, then the case j = 0 of the first identity
(3·10) reads (independent of a0)∏d

j=1

(
R(z) − R

(−ŵj
))∏d

j=1

(
R(z) − R

(
εj
)) +

d∑
k=1

∏d
j=1

(
R(εk) − R

(−ŵj
))

(R(εk) − R(z))
∏d

j=1,j �=k

(
R(εk) − R

(
εj
)) = 1 . (4·6)

Equation (4·5) results from this identity when inserting (4·4) into (4·2).

LEMMA 4·4. With Ansatz 4·1 the rational function R ∈C(z) is necessarily given by

R(z) = z + c0 − λ

N

d∑
k=1

�k

εk + z
for some c0 ∈C , �k = rk

R′(εk)
. (4·7)

Proof. Comparing the limit z → εk of (4·5) with (4·4) shows that R has a simple pole at
every −εk with

R′(εk) Res
z=−εk

R(z)dz = −λrk

N
�= 0 .
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By construction, R has also a pole at ∞. Since R has degree d + 1 by (i) in
Ansatz 4·1, {−ε1, . . . , −εd, ∞} is already the complete list of poles (i.e. preimages of
∞) of R. Moreover, the pole at ∞ has to be simple with limz→∞ R(z)/z = 1 by (iii) in
Ansatz 4·1. Therefore, R(z) − z + (λ/N)

∑d
k=1 �k/(εk + z) is a bounded holomorphic func-

tion on Ĉ, which by Liouville’s theorem is a constant c0.

COROLLARY 4·5. For u ∈⋃d
j=1 Vj one has an equality of rational functions in z:

R(z) − R(u) = (z − u)
d∏

k=1

z − ûk

z + εk
, (4·8)

where ûk are the other preimages of R(u) under R.

Proof. Both sides are a rational function r(z), with zeros only in u, û1, . . . , ûd and poles
only in −ε1, . . . , −εd, ∞, all of which are simple. So they differ by a constant factor, which
has to be 1 because both sides satisfy limz→∞ r(z)/z = 1.

PROPOSITION 4·6. With Ansatz 4·1 the two-point function is symmetric, G(0)(z, w) =
G(0)(w, z). One has G(0)(εk, εl) = Gkl with Gkl given in (3·5).

Proof. Inserting (4·8) into (4·5) gives for z, w ∈⋃d
j=1 Vj:

G(0)(z, w) =
∏d

k=1(εk − z)

(z + w)
∏d

k=1

(−z − ŵk
) d∏

k=1

(
z + ŵk

)∏d
l=1

(−ŵk − ẑl
)∏d

l=1

(
εl − ŵk

)
(z − εk)

∏d
l=1

(
εk − ẑl

)∏d
l=1 (εk + εl)

= 1

(z + w)

d∏
k,l=1

(εk + εl)
(−ŵk − ẑl

)(
εk − ẑl

)(
εl − ŵk

)
= 1

(z + w)

d∏
k,l=1

(−ŵk − ẑl
)

(εk + εl)

(εk − z)

(R(εk) − R(z))

(εl − w)

(R(εl) − R(w))
. (4·9)

The limit z → εk and w → εl gives G(0)(εk, εl) = Gkl.

We prove that (ii), (iv), (v), (vi) and (vii) of Ansatz 4·1 are automatic. We start with

PROPOSITION 4·7. Relation (vii) of Ansatz 4·1 is consistent provided that c0 = 0.

Proof. With Lemma 4·4 and Lemma 4·3, both a consequence of Ansatz 4·1, each side
of (4·1) is a rational function, and all poles are simple. For the term rk/(R(εk) − R(z)) this
follows from the assumption (ii) of Ansatz 4·1. We show that both sides of (4·1) have the
same simple poles with the same residues. Then by Liouville’s theorem their difference is a
constant, which is easy to control.

First, it follows from (4·7) and (4·5) that both sides of (4·1) approach z for z → ∞. Near
∞ the difference between both sides of (4·1) is ±2c0, which shows that c0 = 0 in (4·7) is
necessary.
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Next, (4·7) shows that the only other poles of the right-hand side of (4·1) are simple and
located at z = εk with residue −(λ/N)�k. The same simple poles with the same residues are
produced by (λ/N)

∑d
k=1 rk/(R(εk) − R(z)) on the left-hand side, taking rk/R′(εk) = �k into

account.
But the left-hand side of (4·1) could also have poles at z = −εj and z = ε̂m

j (see (4·7)
and (4·9)). We have Resz=−εj R(z)dz = −(λ/N)�j. Setting w �→ εl in (4·5), then with
limz→−εj

(
R(z) − R

(−ε̂l
k
))

/(R(z) − R(εk)) = 1 for any k, l (here (v) of Ansatz 4·1 is used)
one easily finds that G(0)(−εj, εl) is finite for j �= l and that Resz=−εj(λ/N)rjG(0)

(
z, εj
)
dz =

(λ/N)
(
rj/R′(εj

))
, which thus cancels Resz=−εj R(z)dz = −(λ/N)�j.

Finally, from (4·5) we conclude

Res
z=ε̂m

j
G(0)(z, εk

)
dz = 1(

R
(
εk
)− R

(−ε̂m
j
))

R′(ε̂m
j
) ∏d

i=1

(
R(εm) − R

(−ε̂k
i
))∏d

i=1,i �=m

(
R(εm) − R(εi)

)
= 1(

R
(
εk
)− R

(−ε̂m
j
))

R′(ε̂m
j
)(− λ

N
rmG(0)(εm, εk

))
= rm

rkR′(ε̂m
j
) 1(

R
(
εk
)− R

(−ε̂m
j
))(− λ

N
rkG(0)(εk, εm

))
= rm

rkR′(ε̂m
j
) 1(

R
(
εk
)− R

(−ε̂m
j
)) ∏d

i=1

(
R
(
εk
)− R

(−ε̂m
i
))∏d

i=1,i �=k

(
R
(
εk
)− R(εi)

) ,

where (4·4), the symmetry G(0)(εm, εk) = G(0)(εk, εm) and again (4·4) have been used. The
first identity (3·10) for bk = R(εk) and aj = R

(−ε̂m
j
)

gives

Res
z=ε̂m

j

d∑
k=1

rkG(0)(z, εk)dz = rm

R′(ε̂m
j
) ,

which precisely cancels Resz=ε̂m
j
∑d

k=1
rk

R(εk)−R(z) dz = − rm

R′
(
ε̂m

j
) .

Let us consider now the rational function

R(z) = z − λ

N

d∑
k=1

�k

εk + z
(4·10)

from equation (4·7) with c0 = 0. We are interested in the real and complex solutions
{εk, �k}k=1,...,d (depending on λ) of the 2d equations

0 = R(εl) − El = εl − El − λ

N

d∑
k=1

�k

εk + εl
=: fl(ε1, �1, . . . , εd, �d, λ) , (4.11)

0 = R′(εl) − rl

�l
= 1 − rl

�l
+ λ

N

d∑
k=1

�k

(εk + εl)2
=: gl(ε1, �1, . . . , εd, �d, λ) (4.12)

for l = 1, . . . , d from Theorem 3·1 for the given positive real numbers El > 0 and rl > 0
from Section 2. In the following we only use that all these El, rl are positive (but not that rl
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is an integer counting the multiplicity of El). So we consider for K=R or K=C the real or
complex algebraic subset

Z(K) := {(ε1, �1, . . . , εd, �d, λ) ∈ U(K)| fl = 0, gl = 0, l = 1, . . . , d}
in

U(K) := {(ε1, �1, . . . , εd, �d, λ)| εk + εl �= 0, �l �= 0, k, l = 1, . . . , d} ⊂K
2d+1 ,

i.e. in the complement of the corresponding central hyperplane arrangement in K
2d+1. Note

that (ε1, �1, . . . , εd, �d, 0) ∈ Z(K) iff εl = El and �l = rl for all l = 1, . . . , d, and this real
point belongs to the chamber

U+(R) := {(ε1, �1, . . . , εd, �d, λ)| εl > 0, �l > 0, l = 1, . . . , d} ⊂ U(R) ⊂R
2d+1 .

Note that the complex dimension of any irreducible component of Z(C) is at least 1 =
(2d + 1) − 2d, since we are considering 2d equations in a Zariski-open subset of C2d+1.

LEMMA 4·8. Z(K) is a one-dimensional (real or complex) algebraic submanifold of
U(K) near the reference point (E1, r1, . . . , Ed, rd, 0), with the projection

pr : K2d+1 ⊃ Z(K) −→K

onto the last λ-coordinate a submersion near (E1, r1, . . . , Ed, rd, 0) in the Zariski topol-
ogy. In particular, the reference point (E1, r1, . . . , Ed, rd, 0) only belongs to one irreducible
component of Z(C), which is of dimension one. Moreover, the map (of pointed sets)

pr : Z(K) −→K with pr(E1, r1, . . . , Ed, rd, 0) = 0

becomes locally near (E1, r1, . . . , Ed, rd, 0) a (real or complex) analytic isomorphism onto
an open interval or disc around λ = 0 ∈K, fitting with the description given in Theorem 3·1
in terms of the implicit function theorem.

Proof. The claim follows from(
∂fl
∂εk

(
E1, r1, . . . , Ed, rd, 0

)
,

∂fl
∂�k

(
E1, r1, . . . , Ed, rd, 0

))= (δlk, 0)

and

(
∂gl

∂εk

(
E1, r1, . . . , Ed, rd, 0

)
,
∂gl

∂�k

(
E1, r1, . . . , Ed, rd, 0

))=
(

0, δlk · 1

rl

)
for l, k = 1, . . . , d.

Remark 4·9. Let us rewrite for a fixed λ ∈C the equations (4·11) and (4·12) in terms of the
d polynomials

Fl
(
ε1, �1, . . . , εd, �d

)
:= fl

(
ε1, �1, . . . , εd, �d, λ

) · d∏
k=1

(εk + εl)

of degree d + 1 and the d polynomials

Gl
(
ε1, �1, . . . , εd, �d

)
:= gl(ε1, �1, . . . , εd, �d, λ) · �l

d∏
k=1

(εk + εl)
2
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of degree 2d + 1 (for l = 1, . . . , d), so that:

Z(C) ∩ {pr = λ} ⊂ {(ε1, �1, . . . , εd, �d
) ∈C

2d| Fl = 0, Gl = 0, l = 1, . . . , d
}× {λ} .

If for a given λ ∈C the set{(
ε1, �1, . . . , εd, �d

) ∈C
2d| Fl = 0, Gl = 0, l = 1, . . . , d

}
is finite, then one gets by the affine Bezout inequality [29, Thm 3·1] the upper estimate
(d + 1)d(2d + 1)d for the number of solutions of the equations (4·11) and (4·12) (for this λ).

Let us come back to the rational function R(z) from (4·10) for the case of positive real
El > 0 and rl > 0 for l = 1, . . . , d related to the solution of Theorem 3·1 as discussed before.
Then

R′(z) = 1 + λ

N

d∑
k=1

�k

(εk + z)2
> 0 (4·13)

for all λ� 0 and z ∈R\{−ε1, . . . , −εd}.
LEMMA 4·10. R−1(Ek) consists for all Ek > 0 of d + 1 different real points so that

assumption (ii) of Ansatz 4·1 holds. Moreover we can choose U =U1 = . . . =Ud as a small
simply connected open neighbourhood of (R(0), ∞) ⊂R in C, with V = V1 = . . . = Vd also
containing (0, ∞). By shrinking of U we can even assume that V ⊂ {z ∈C| Re(z) > 0}. Then
the assumptions (v) and (vi) of Ansatz 4·1 hold for all w ∈ V with V small enough, as well
as the assumption (iv) with G(0) as in (4·5) resp. (4·9).

Proof. If we order the numbering of the εl as εi < εi+1 for i = 0, . . . , d with ε0 := −∞
and εd+1 := +∞, then

R : (−εi+1, −εi) −→R

is for all i = 0, . . . , d strictly monotone increasing and bijective by the estimate R′(z) > 0
above and the intermediate value theorem. This proves the first claim. Similarly, R−1(R(w))
consists for any w ∈ V ∩ (0, ∞) of d + 1 real points which we can order as ŵl ∈ (−εl+1, −εl).
Therefore, −ŵl ∈ (0, ∞) and all R

(−ŵl
)

are distinct for w ∈ V ∩ (0, ∞), because R is injec-
tive on (−ε1, ∞). Moreover, R is an injective immersion in (−ε1, ∞), which is an open
condition so that also the second claim follows. Finally the assumption (iv) with G(0) as in
(4·9) follows from 0 �= z + w for all z, w ∈ V , since Re(z + w) = Re(z) + Re(w) > 0.

We finish this section with the:

Proof of Theorem 3·1. We have seen that equation (3·2) can be solved by Ansatz 4·1 to
G(0)(R(z), R(w)) = G(0)(z, w), where R is given in (4·10) and G(0) in (4·5) resp. (4·9). This
solution depends on the choice of preimages εk ∈ R−1(Ek) made in (iv) of Ansatz 4·1. Any
solution {ε1, . . . , εd} of the system of equations (3·3) provides a solution of (4·5), if also
the assumptions (iv), (v) and (vi) of Ansatz 4·1 hold. Theorem 3·1 selects one particular
solution of (3·2) which satisfies the assumptions (ii), (iv), (v) and (vi) of Ansatz 4·1 by
Lemma 4·10. Hence also relation (vii) of Ansatz 4·1 holds by Proposition 4·7. The choice
limλ→0 εk = Ek and limλ→0 �k = rk is made to recover in the limit λ → 0 the moments of
the Gaußian measure (2·1).
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It remains to show (3·4). On the right-hand side of (4·2) we use the the symmetry
G(0)(εk, w) = G(0)(w, εk) from Proposition 4·6 and express G(0)(w, εk) as (4·5) for w �→ εk

and z �→ w. Dividing by (R(w) − R(z)) gives

G(0)(z, w) =
1 − λ

N

d∑
k=1

rk

(R(z) − R(εk))(R(εk) − R(−w))

d∏
j=1

R(w)−R
(−ε̂k

j
)

R(w) − R
(
εj
)

R(w) − R(−z)
. (4·14)

This equation was obtained in [12] by another method. We rearrange it as

G(0)(z, w) = 1

(R(w) − R(−z))(R(z) − R(−w))

{
R(z) − R(−w)

− λ

N

d∑
l=1

rl

(R(εl) − R(−w))

d∏
j=1

R(w) − R
(−ε̂l

j
)

R(w) − R
(
εj
)

− λ

N

d∑
k=1

rk

(R(z) − R(εk))

d∏
j=1

R(w) − R
(−ε̂k

j
)

R(w) − R
(
εj
) } .

The second line is −(λ/N)
∑d

l=1 G(0)(w, εl) by (4·5). We combine it with the term −R(−w)
inside { } according to our main algebraic relation (4·1). In the last line, the factor∏d

j=1

(
R(w) − R

(−ε̂k
j
))

/
(
R(w) − R

(
εj
))

is rewitten via (4·6), with w �→ εk and z �→ w. We
arrive at

G(0)(z, w) = 1

(R(w) − R(−z))(R(z) − R(−w))

{
R(z) + R(w)

+ λ

N

d∑
k=1

rk

(R(εk) − R(z))
+ λ

N

d∑
l=1

rl

(R(εl) − R(w))

+ λ

N

d∑
k,l=1

rk

(R(εk) − R(z))(R(εl) − R(w))

∏d
j=1

(
R(εl) − R

(−ε̂k
j
))∏d

j �=l(R(εl) − R
(
εj
) }

.

The result (3·4) follows from equation (4·4) for G(0)(εk, εl).

5. The diagonal 2-point function

The diagonal planar cumulant z �→ G(0)(z, z) of length 2 and cycle type (0, 1) admits a
simpler formula due to properties of the rational function R̃ with R̃(z) := R(z) − R(−z). Let
z ∈ {0, ±α1, . . . , ±αd

}
be the list of roots of

0 = R(z) − R(−z) = 2z − λ

N

d∑
k=1

�k

εk + z
− λ

N

d∑
k=1

�k

−εk + z
,

with the convention αk > 0 and αk �= αl for k �= l. Since here all εk > 0 and �k > 0 are positive
real numbers, we can argue as for the rational function R that also the rational function R̃
maps each of the 2d + 1 connected components of R\{±ε1, . . . , ±εd} bijectively onto R. So
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the odd function R̃ has indeed 2d + 1 different real roots
{
0, ±α1, . . . , ±αd

}
of the equation

R̃ = 0. Taking its poles {∞, ±εk} into account, we have

(R(z) − R(−z)) = 2z
d∏

k=1

(
z2 − α2

k

)(
z2 − ε2

k

) . (5·1)

PROPOSITION 5·1. For any z ∈ Ĉ, the diagonal planar cumulant of cycle type (0, 1) can be
simplified to

G(0)(z, z) = 2R(z) − 2R(0)

(R(z) − R(−z))2

d∏
k=1

(R(z) − R(αk))2

(R(z) − R(εk))2
(5·2)

≡ 1

2z

d∏
k=1

(
z − 0̂k

)
(z + ek)

∏d
j=2

(
z − α̂k

j
)2∏d

l=1

(
z − êk

l
)2 ,

in the convention α̂k
1 ≡ −αk.

Proof. The d + 1 fold product of (5·1) for
{
z, ẑ1, . . . , ẑd

}
is inserted into (4·5):

(R(z) − R(−z))2G(0)(z, z)
d∏

k=1

(R(z) − R(εk))

= (R(z) − R(−z))
d∏

l=1

(
R(z) − R

(−ẑl))
= 2z

(
d∏

l=1

2ẑl

)
d∏

k=1

(
z2 − α2

k

)∏d
l=1

((
ẑl
)2 − α2

k

)(
z2 − ε2

k

)∏d
l=1

((
ẑl
)2 − ε2

k

) . (5·3)

We use cases of (4·8); the third one takes R(αk) = R(−αk) into account:

2(R(z) − R(0)) = 2z
∏d

l=1

(
2ẑl
)∏d

k=1

(−2εk
) ,

(R(z) − R(εk)) = (z − εk)

∏d
l=1

(
εk − ẑl

)∏d
l=1(εk + εl)

,

(R(z) − R(αk))2 = (z2 − α2
k

)∏d
l=1

((
ẑl
)2 − α2

k

)∏d
l=1

(
ε2

l − α2
k

) .

We identify in (5·3) the first equation and the product over k of the second and third
equations:

(R(z) − R(−z))2G(0)(z, z)
d∏

k=1

(R(z) − R(εk))

= 2(R(z) − R(0))∏d
k=1

(
(z + εk)

∏d
l=1

(
ẑl + εk

)) d∏
k=1

(R(z) − R(αk))2

(R(z) − R(εk))
·

d∏
k=1

(2εk)
∏d

l=1

(
ε2

l − α2
k

)∏d
l=1(εl + εk)

.

Now observe that the residue of (4·8) at z = −εk is the identity

(u + εk)
∏d

l=1

(
ûl + εk

)∏d
j �=k

(
εj − εk

) = − λ

N
�k , (5·4)
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for any u /∈ R−1({∞}). Consequently,

(R(z) − R(−z))2G(0)(z, z)

2(R(z) − R(0))

d∏
k=1

(R(z) − R(εk))2

(R(z) − R(αk))2
=

d∏
k=1

N
∏d

l=1

(
ε2

l − α2
k

)
(−λ�k)

∏d
j �=k

(
ε2

j − ε2
k

) = C

is a constant independent of z, which for z → ∞ is identified as C = 1.

The following result will be needed in the next section:

LEMMA 5·2. For any w ∈ Ĉ one has

1

R(w) − R(−w)
+

d∑
k=1

1

R(w) − R
(−ŵk

) = 1

2(R(w)−R(0))
+

d∑
k=1

1

R(w) − R(αk)
. (5·5)

Proof. Taking R(w) = R
(
ŵk
)

into account, all terms on the lhs of (5·5) are of the form
(5·1) so that the lhs of (5·5) has simple poles at w ∈ {0, ±αl} and ŵk ∈ {0, ±αl}. Applying R
shows that these ŵk correspond to additional poles at w ∈ {0̂l, α̂l

j, ∓αl
}

for l = 1, . . . , d and
j = 2, . . . , d. We evaluate the residues at these poles and check that the rhs of (5·5) has the
same poles (clear) with the same residues.

Note that R(w) = R
(
ŵk
)

implies R′(w) = R′(ŵk
)(

ŵk
)′(w) or

(
ŵk
)′(w) = R′(w)/R′(ŵk

)
.

Consider the pole at w = ±αl. Then there is precisely one kl ∈ {1, . . . , d} with ŵkl = ∓αl.
Therefore,

Res
w=±αl

(
dw

R(w) − R(−w)
+

d∑
k=1

dw

R(w) − R
(−ŵk

))

=
⎛⎝ 1

R′(w) + R′(−w)
+ 1

R′(w) + R′(−ŵkl
) R′(w)

R′(ŵkl )

⎞⎠ ∣∣∣∣∣
w=±αl,ŵkl=∓αl

= 1

R′(± αl)
.

Consider in case of d � 2 the pole at w = α̂l
j. There are precisely two distinct k+, k− ∈

{1, . . . , d} with ŵk+ = αl and ŵk− = −αl. Therefore,

Res
w=α̂l

j

(
dw

R(w) − R(−w)
+

d∑
k=1

dw

R(w) − R
(−ŵk

))

=
⎛⎜⎝ 1

R′(w) + R′(−ŵk+
) R′(w)

R′
(

ŵk+
) + 1

R′(w) + R′(−ŵk−
) R′(w)

R′
(

ŵk−
)
⎞⎟⎠ ∣∣∣∣∣

w=α̂l
j,ŵk±=±αl

= 1

R′(α̂l
j
) .

The rhs of (5·5) has exactly the same residues.
Finally, it is also clear that both sides of (5·5) have the same residue 1/2R′(0) at w = 0.

For w = 0̂l there is a unique kl ∈ {1, . . . , d} with ŵkl = 0. Then
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Res
w=̂0l

(
dw

R(w) − R(−w)
+

d∑
k=1

dw

R(w) − R
(−ŵk

))

= 1

R′(w) + R′(−ŵkl
) R′(w)

R′
(

ŵkl
)
∣∣∣∣∣
w=0̂l,ŵkl=0

= 1

2R′(0̂l
) ,

which agrees with the residue of the rhs of (5·5). Therefore, the difference between lhs and
rhs of (5·5) is a bounded entire function, i.e. a constant by Liouville’s theorem, which is zero
when considering w → ∞. This completes the proof.

6. The planar 1 + 1-point function

The 1 + 1-point function G|a|b| is the cumulant of length 2 and cycle type (2, 0) (i.e. two
cycles a and b of length 1), see Appendix A. We derive in Appendix B its equation of motion
(B8) whose restriction to the planar sector (of degree or genus g = 0) reads

(Ea + Ea)G(0)
|a|b| = − λ

N

N∑
k=1

G(0)
|ak|G

(0)
|a|b| +

λ

N

N∑
k=1

G(0)
|k|b| − G(0)

|a|b|
Ek − Ea

+ λ
G(0)

|bb| − G(0)
|ab|

Eb − Ea
. (6·1)

We interpret this equation as evaluation G(0)
|a|b| = G(0)(εa|εb) of a function2 G(0)(z|w) which

satisfies

(
R(z) − R(−z)

)
G(0)(z|w) − λ

N

d∑
k=1

rkG(0)(εk|w)

R(εk) − R(z)
= λ

G(0)(z, w) − G(0)(w, w)

R(z) − R(w)
. (6·2)

The identity (4·1) was decisive here, and multiplicities rk of the Ek = R(εk) were admitted.
Since G(0)(αk|w) must be regular3 for any w > 0, evaluation at z = αk produces d

equations

λ

N

d∑
l=1

rlG(0)(εl|w)

R(αk) − R(εl)
= λ

G(0)(αk, w) − G(0)(w, w)

R(αk) − R(w)
. (6·3)

Equation (6·3) is with Proposition 3·2 solved by

rk

N
G(0)(εk|w) =

d∑
l=1

(R(αl) − R(εk))Al(R(εk))Ek(R(αl))
G(0)(αl, w) − G(0)(w, w)

R(αl) − R(w)
,

where

Ai(x) = A(x)

(x − R(αi))A′(R(αi))
and Ej(y) = E(y)(

y − R
(
εj
))

E′(R(εj
)) ,

with A(x) :=
d∏

k=1

(x − R(αk)) and E(y) =
d∏

k=1

(y − R(εk)) .

2 Be careful to distinguish G (0)(z|w) from G (0)(z, w).
3 Regularity of G (0)(αk|w) is here a technical assumption which is justified by viewing (6·2) as limiting case
of singular integral equations of Carleman type (see e.g. [32, section 4·4]). Their solutions are regular for
any z, w > 0.
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Here, the R(αk) and R(εl) are pairwise distinct, since R is injective on (−ε1, ∞). Inserting
this back into (6·2) gives the 1 + 1-point function

G(0)(z|w) = λ

R(z) − R(−z)

{
G(0)(z, w) − G(0)(w, w)

R(z) − R(w)

−
d∑

k,l=1

(R(αl) − R(εk))Al(R(εk))Ek(R(αl))

R(z) − R(εk)

G(0)(αl, w) − G(0)(w, w)

R(αl) − R(w)

}
(6·4)

in terms of the 2-point function G(0)(z, w) known from Theorem 3·1. We convert the solution
(6·4) into a manifestly symmetric form:

PROPOSITION 6·1. The planar cumulant of length 2 and cycle type (2, 0) has the solution

G(0)(z|w) = λ

(R(z) − R(w))2

(
G(0)(z, w) (6·5)

− R(z) + R(w) − 2R(0)

(R(z)−R(−z))(R(w)−R(−w))

d∏
k=1

(R(z) − R(αk))(R(w) − R(αk))

(R(z) − R(εk))(R(w) − R(εk))

)
.

Proof. Using (3·8) we evaluate the k-sum in (6·4) to

G(0)(z|w) = λ

R(z) − R(−z)

{
G(0)(z, w) − G(0)(w, w)

R(z) − R(w)

−
d∑

l=1

Al(R(z))E(R(αl))

E(R(z))

G(0)(αl, w) − G(0)(w, w)

R(αl) − R(w)

}
. (6·6)

In the second line we have

Al(R(z))E(R(αl))

E(R(z))
= −A(R(z))

E(R(z))
·

∏d
k=1(R(αl) − R(εk))

(R(αl) − R(z))
∏d

j=1,j �=l

(
R(αl) − R

(
αj
))

and we recall

G(0)(αl, w) = − 1

(R(αl) − R(w))

∏d
j=1 R(αl) − R

(−ŵj
)∏d

j=1

(
R(αl) − R

(
εj
))

from (4·5). Inserting both identities into (6·6) gives after a first partial fraction
decomposition

G(0)(z|w) = λ

(R(z) − R(−z))(R(z) − R(w))

{
G(0)(z, w) − G(0)(w, w)

− A(R(z))

E(R(z))
G(0)(w, w)

(
d∑

l=1

∏d
k=1(R(αl) − R(εk))

(R(αl) − R(z))
∏d

j=1,j �=l

(
R(αl) − R

(
αj
))

−
d∑

l=1

∏d
k=1(R(αl) − R(εk))

(R(αl) − R(w))
∏d

j=1,j �=l

(
R(αl) − R

(
αj
)))
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− A(R(z))

E(R(z))

(
d∑

l=1

∏d
k=1

(
R(αl) − R

(−ŵk
))

(R(αl)−R(z))(R(αl)−R(w))
∏d

j=1,j �=l

(
R(αl)−R

(
αj
))

−
d∑

l=1

∏d
k=1

(
R(αl) − R

(−ŵk
))

(R(αl)−R(w))2
∏d

j=1,j �=l

(
R(αl)−R

(
αj
)))} . (6·7)

The second and third line are converted via an identity (4·6) with substitution εi �→ αi

and −ŵj �→ εj. One of the surviving terms cancels G(0)(w, w) in the first line of (6·7).
Another partial fraction decomposition in the fourth line of (6·7) and 1/((R(αl) − R(w))2) =
limu→w 1/((R(u) − R(w)))

(
1/((R(αl) − R(u))) − 1/((R(αl) − R(w)))) in the fifth line of (6·7)

also give rise to expressions (4·6) with substitution εi �→ αi. We thus find

G(0)(z|w) = λ

(R(z)−R(−z))(R(z)−R(w))

{
G(0)(z, w)−A(R(z))E(R(w))

E(R(z))A(R(w))
G(0)(w, w)

+

d∏
k=1

R(z) − R
(−ŵk

)
R(z) − R(εk)

− A(R(z))E(R(w))

E(R(z))A(R(w))

d∏
k=1

R(w) − R
(−ŵk

)
R(w) − R(εk)

R(z) − R(w)

− A(R(z))

E(R(z))
lim

u→w

d∏
k=1

R(u) − R
(−ŵk

)
R(u) − R(αk)

−
d∏

k=1

R(w) − R
(−ŵk

)
R(w) − R(αk)

R(u) − R(w)

}
.

After evaluation of the limit we reconstruct in the last two lines G(0)(z, w) and G(0)(w, w) via
(4·5):

G(0)(z|w) = λ

(R(z) − R(w))2

(
G(0)(z, w)

− A(R(z))E(R(w))

E(R(z))A(R(w))

R(w) − R(−w)

R(z) − R(−z)
G(0)(w, w)

{
1

+ R(z) − R(w)

R(w) − R(−w)
+

d∑
k=1

R(z) − R(w)

R(w) − R
(−ŵk

) −
d∑

k=1

R(z) − R(w)

R(w) − R(αk)

})
.

With Lemma 5·2 the terms in { } can be reduced to { } = (R(z) + R(w) − 2R(0))/
(2(R(w) − R(0))). Inserting (5·2) for G(0)(w, w) gives the final result (6·5).

7. Outlook

We have developed a new algebraic solution strategy for the two initial cumulants of
a quartic analogue of the Kontsevich model. Our results have been extended in [3] to
an algorithm which allows to recursively compute all other cumulants. The key discov-
ery of [3] was to understand that one first has to focus on three families �

(g)
m (u1, ..., um),

T (g)(u1, ..., um‖z, w|) and T (g)(u1, ..., um‖z|w|) of auxiliary functions. Their simplest cases
are the functions T (0)(∅‖z, w|) := G(0)(z, w) and T (0)(∅‖z|w|) := G(0)(z|w) analysed in this
paper. The auxiliary functions are special polynomials [2] in the original cumulants. One
first solves a coupĺed system of equations for (�(g)

m , T (g)) and then uses the result to turn the
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Dyson–Schwinger equations for the cumulants into a problem which can easily be solved
by inversion of Cauchy matrices.

Of particular interest are the functions �
(g)
n which give rise to a family of meromorphic

differentials

ωg,n(z1, ..., zn) = �(g)
n (z1, ..., zn)dR(z1) . . . dR(zn) (7·1)

which starts with ω0,2(z1, z2) = dz1 dz2/(z1 − z2)2 + dz1 dz2/(z1 + z2)2. Also the next forms
ω0,3, ω0,4 and ω1,1 have been found in [3], where ω1,1 needs Propositions 5·1 and 6·1 of
this paper. Remarkably, all forms computed so far satisfy abstract loop equations [1] if one
sets ω0,1(z) = y(z)dx(z) with x(z) = R(z) and y(z) = −R(−z). It was shown in [7] that the
solution of abstract loop equations is blobbed topological recursion, a systematic extension
of topological recursion [10, 11] by additional terms which are holomorphic at ramifi-
cation points of x. The natural conjecture is that all ωg,n of the quartic analogue of the
Kontsevich model obey blobbed topological recursion. The conjecture was proved for genus
g = 0 in [18] by relating it to an equation which expresses ωg,n+1(z1, ..., zn, −z) in terms of
ωg,m+1(z1, ..., zm, +z) with m � n.

In an early version of this paper we had speculated that the exact solution of the non-linear
equation (3·2) might be caused by a hidden integrable structure. The discovery in [3, 18] that
the quartic analogue of the Konsevich model obeys blobbed topological recursion questions
this interpretation: integrability is not known in blobbed topological recursion. The relation
to intersection theory on the moduli space Mg,n of stable complex curves extends, however,
to blobbed topological recursion [7]. The discovery in [18] that (at least the planar sector of)
the quartic analogue of the Kontsevich model is completely governed by the behaviour of
the ωg,n under a global (and canonical) involution makes us confident that the intersection
numbers generated by this model will have a geometric significance. It will be an exciting
programme to make this precise.

Appendix A. Decomposition of moments via cumulants

The moments (2·3) decompose into cumulants (see e.g. [23, 30]),〈 n∏
i=1

ekili

〉
=

∑
partitions

π of{1, . . . , n}

∏
blocks β ∈ π

〈∏
i∈β

ekili

〉
c

. (A1)

There is a similar formula expressing the cumulants in terms of moments [30, equation
(1·2)], related to (A1) via Möbius inversion on the partially ordered set of (partitions of)
subsets of indices (the partition lattice of [N] × [N])

I := {k1l1, . . . , knln} ⊂ [N] × [N] ,

with |I| = n and [N] := {1, . . . , N}. For a quartic potential (2·2), moments and cumulants
are only non-zero if n is even and every block β is of even length. For example,〈

ek1l1ek2l2ek3l3ek4l4

〉= 〈ek1l1ek2l2ek3l3ek4l4

〉
c + 〈ek1l1ek2l2

〉
c

〈
ek3l3ek4l4

〉
c

+ 〈ek1l1ek3l3

〉
c

〈
ek2l2ek4l4

〉
c + 〈ek1l1ek4l4

〉
c

〈
ek2l2ek3l3

〉
c .

Note that in our context the moments
〈 ∏n

i=1 ekili

〉
are invariant under permutations of

I := {k1l1, . . . , knln} so that they only depend on the subset I ⊂ [N] × [N], but not on the
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choice of a labelling I = {k1l1, . . . , knln} � [n]. By [30, equation (1·2)] the same is then true
for the cumulants, i.e.

〈 ∏
i∈β ekili

〉
c only depends on the subset {kili| i ∈ β} ⊂ [N] × [N].

We restrict our attention to the case that all ki are pairwise different. Then the structure of
the Gaußian measure (2·1) (together with the invariance of a trace under cyclic permutations)
implies that the cumulant

〈 ∏n
i=1 ekili

〉
c corresponding to I = {k1l1, . . . , knln} with |I| = n > 0

is only non-zero if I has a permutation σ with pr2 = pr1 ◦ σ . Here

pri : [N] × [N] ⊃ I −→ [N]

is the projection onto the corresponding factor for i = 1, 2. By choosing a labelling

I := {k1l1, . . . , knln} � [n]

as before, this corresponds to a permutation σ in the symmetric group Sn, with (l1, . . . , ln) =(
kσ (1), . . . , kσ (n)

)
.

Therefore, the cumulant
〈 ∏n

i=1 ekili

〉
c only depends on I and the conjugacy class of a

permutation in Sn (corresponding to the permutation σ of I with pr2 = pr1 ◦ σ ), which is
again independent of the choice of the labelling of I. In fact such conjugacy classes in Sn

just correspond to the different cycle types of a permutation in the symmetric group Sn.
The cycle type of σ is the n-tuple (�1(σ ), �2(σ ), . . . , �n(σ )) where �k(σ ) is the number of
cycles of length k in σ , with

∑n
i=1 i�i(σ ) = n. The number of cycles in a permutation σ is

b(σ ) =∑n
i=1 �i(σ ). The number of different cycle types is the partition number p(n), and

there are n!/1�1�1!2�2�2! . . . n�n�n! permutations with the same cycle type (�1, . . . , �n).
Conversely, the l-indices of a non-vanishing cumulant

〈
ek1l1 . . . eknln

〉
c are completely

determined by the cycle type and the information which k’s belong in which cyclic order
to the same cycle. If, after renaming the k’s,

(
k1

1, . . . , k1
n1

)
belong to one cycle,

(
k2

1, . . . , k2
n2

)
belong to another cycle, and so on up to the bth cycle, this information uniquely encodes a
cumulant (with n = n1 + · · · + nb)

Nn
〈(

ek1
1k1

2
ek1

2k1
3
. . . ek1

n1
k1

1

)
. . .
(

ekb
1kb

2
ekb

2kb
3
. . . ekb

nb
kb

1

)〉
c

=: N2−bG∣∣k1
1...k1

n1

∣∣...∣∣kb
1...kb

nb

∣∣ . (A2)

The power series expansion of the Fourier transform Z(M) into moments (2·3) can be
compared with the insertion of (A2) into (A1). The first terms are:

Z(M) = 1 − 1

N2

N∑
j,k=1

{
N

2
G|jk|MjkMkj + 1

2
G|j|k|MjjMkk

}

+ 1

N4

N∑
j,k,l,m=1

{
N

4
G|jklm|MjkMklMlmMmj + 1

3
G|j|klm|MjjMklMlmMmk

+ 1

8
G|jk|lm|MjkMkjMlmMml + 1

4N
G|j|k|lm|MjjMkkMlmMml

+ 1

24N2
G|j|k|l|m|MjjMkkMllMmm + N2

8
G|jk|G|lm|MjkMkjMlmMml

+ N

4
G|jk|G|l|m|MjkMkjMllMmm + 1

8
G|j|k|G|l|m|MjjMkkMllMmm

}
+O(M6) . (A3)
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Appendix B. Equations for the second cumulant

We derive here equations for the two non-vanishing second-order cumulants G|ab| =
1
N 〈eabeba〉c of cycle type (0, 1) (i.e. one cycle ab of length 2) and G|a|b| = 〈eaaebb〉c of cycle
type (2, 0) (i.e. two cycles a and b of length 1). To distinguish G|ab| and G|a|b| we require
a �= b.

We start from (2·7) with Z(M) given by (A3), apply (N(Ea + Eb)/i)(∂/∂Mba) and put
M = 0. For a �= b this gives the following result (the underlining should be ignored for the
moment; we explain it later):

(Ea + Eb)G|ab| = 1 − λ

{
1

N2

N∑
k,l=1

G|bakl| + 1

N

N∑
k=1

(
G|ab|G|ak| + G|ab|G|bk|

)

+ 1

N2

(
G|abab| + G|abbb| + G|baaa| + G|ab|

(
G|a|a| + G|a|b| + G|b|b|

))
+ 1

N3

N∑
k=1

(
G|k|bak| + G|a|bak| + G|b|bak| + G|ab|bk| + G|ab|ak|

)

+ 1

N4

(
G|a|a|ab| + G|a|b|ab| + G|b|b|ab|

)}
. (B1)

Next, we set b ≡ a in (2·7) for Z(M) given by (A3), apply (N2(Ea + Ea)/i)(∂/∂Mbb) for
a �= b and obtain for M = 0 (ignore again the underlining):

(Ea + Ea)G|a|b| = −λ

{
G|bb|G|ab| + 1

N2

N∑
k,l=1

G|b|akl|

+ 1

N

N∑
k=1

(
G|bbka| + G|bbak| + G|ak|G|a|b| + G|ak|G|a|b| + G|ak|G|b|k|

)

+ 1

N2

(
G|b|aaa| + G|a|abb| + G|a|abb| + G|b|abb| + G|bb|ab| + 3G|a|b|G|a|a|

)
+ 1

N3

N∑
k=1

(
G|a|b|ak| + G|a|b|ak| + G|b|k|ak|

)
+ 1

N4
G|b|a|a|a|

}
. (B2)

Equations (B1) and (B2) are the analogues of Dyson–Schwinger equations in quantum
field theory. In this form they provide little information because the right-hand sides are too
complicated. We will now establish from the equations of motion (2·7) two other identities
which collect the underlined terms in (B1) and (B2) into a function of the left-hand sides.

To establish the identities, set b �→ k in (2·7) and apply (N(Ea + Ek)/i)(∂/∂Mkb). Next,
set a �→ k in (2·7) and apply (N(Eb + Ek)/i)(∂/∂Mak). Take the difference of both equations
and sum over k:

−N
N∑

k=1

(Ea − Eb)
∂2Z(M)

∂Mak∂Mkb
=

N∑
k=1

(
Mka

∂Z(M)

∂Mkb
− Mbk

∂Z(M)

∂Mak

)
. (B3)
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This is a Ward–Takahashi identity first discovered in [9]. The strategy which we follow here
was suggested in [17]. We insert (A3) into (B3) and evaluate the derivatives for a �= b:

1

N

N∑
k=1

{(
G|kb| − G|ak|

)
MbkMka + 1

N

(
G|b|k| − G|a|k|

)
MbaMkk

}

= 1

N

N∑
k=1

(Ea − Eb)

{
1

N

N∑
l=1

G|bkal| + G|ak|G|bk|

+ 1

N2

(
G|b|abk| + G|a|abk| + G|bk|ak|

}
MbkMka

+ 1

N2

N∑
k=1

(Ea − Eb)

{
G|bakk| + 1

N

N∑
l=1

G|k|bal| + G|ab|
(
G|b|k| + G|a|k|

)
+ 1

N2

(
G|b|k|ab| + G|a|k|ab|

)}
MbaMkk +O

(
M4) . (B4)

For the next steps we assume that the functions G..ki.. under consideration are evaluations
of holomorphic functions in several complex variables at points Eki in the holomorphicity
domain. See the discussion after (3·1). Applying to (B4) the operators N∂2/

(
∂Mbp∂Mpa

)
or

N2∂2/
(
∂Mba∂Mpp

)
for a �= p �= b gives two independent equations. Under the holomorphic-

ity assumption they extend continuously to p = a and p = b. After exchanging p ↔ b, these
equations read

−G|pb| − G|ab|
Ep − Ea

= 1

N

N∑
k=1

G|bakp| + G|ab|G|bp| + 1

N2

(
G|p|bap| + G|a|bap| + G|bp|ab|

)
, (B5)

−G|p|b| − G|a|b|
Ep − Ea

= G|bbpa| + 1

N

N∑
k=1

G|b|akp| + G|ap|
(
G|p|b| + G|a|b|

)
+ 1

N2

(
G|b|p|ap| + G|a|b|ap|

)
; (B6)

they hold for p �= a. By the holomorphicity assumption the equations (B5) and (B6) extend
continuously to p = a. Then, summing (B5) over p collects the double-underlined terms
in (B1) into −(1/N)

∑N
p=1

(
G|pb| − G|ab|

)/(
Ep − Ea

)
, and the case p = b of (B6) collects

the single-underlined terms in (B1). Similarly, summing (B6) over p collects the single-
underlined terms in (B2) into − 1

N

∑N
p=1

(
G|p|b| − G|a|b|

)/(
Ep − Ea

)
, and the case p = b of

(B5) collects the double-underlined terms in (B2):

(Ea + Eb)G|ab| = 1 − λ

N

N∑
p=1

G|ab|G|ap| + λ

N

N∑
p=1

G|pb| − G|ab|
Ep − Ea

− λ

N2

(
−G|b|b| − G|a|b|

Eb − Ea
+ G|abab| + G|baaa| + G|ab|G|a|a|

+ 1

N

N∑
p=1

G|ab|ap|

)
− λ

N4
G|a|a|ab| , (B7)
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(Ea + Ea)G|a|b| = − λ

N

N∑
p=1

G|ap|G|a|b| + λ

N

N∑
p=1

G|p|b| − G|a|b|
Ep − Ea

+ λ
G|bb| − G|ab|

Eb − Ea

− λ

N2

(
G|b|aaa| + G|a|abb| + 3G|a|b|G|a|a| + 1

N

N∑
p=1

G|a|b|ap|

)

− λ

N4
G|b|a|a|a| . (B8)

These identities have been found in [17] (by a faster, but less elementary approach).
Identities of such type can be solved by a further expansion of all arising functions G... as

formal power series in N−2,

G... =
∞∑

g=0

1

N2g
G(g)

... . (B9)

With the convention that (1/N)
∑N

1 is of order N0, the coefficient of N−2g in (B7) reads

(Ea + Eb)G(g)
|ab| = δg,0 − λ

N

N∑
p=1

∑
g1+g2=g

G(g1)
|ab|G

(g2)
|ap| + λ

N

N∑
p=1

G(g)
|pb| − G(g)

|ab|
Ep − Ea

− λ

(
−G(g−1)

|b|b| − G(g−1)
|a|b|

Eb − Ea
+ G(g−1)

|abab| + G(g−1)
|baaa| +

∑
g+g2=g−1

G(g1)
|ab|G

(g2)
|a|a|

+ 1

N

N∑
p=1

G(g−1)
|ab|ap|

)
− λG(g−2)

|a|a|ab| . (B10)

For the degree or genus g = 0 we thus obtain the closed equation (3·1) for G(0)
|ab|. Similarly,

the restriction of (B8) to the degree or genus g = 0 is (6·1). Both equations have been solved
in this paper.
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