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Abstract

Structures where we have both a contravariant (pullback) and a covariant (pushforward)
functoriality that satisfy base change can be encoded by functors out of (∞-)categories
of spans (or correspondences). In this paper, we study the more complicated setup
where we have two pushforwards (an ‘additive’ and a ‘multiplicative’ one), satisfy-
ing a distributivity relation. Such structures can be described in terms of bispans (or
polynomial diagrams). We show that there exist (∞, 2)-categories of bispans, charac-
terized by a universal property: they corepresent functors out of ∞-categories of spans
where the pullbacks have left adjoints and certain canonical 2-morphisms (encoding
base change and distributivity) are invertible. This gives a universal way to obtain func-
tors from bispans, which amounts to upgrading ‘monoid-like’ structures to ‘ring-like’
ones. For example, symmetric monoidal ∞-categories can be described as product-
preserving functors from spans of finite sets, and if the tensor product is compatible
with finite coproducts our universal property gives the canonical semiring structure
using the coproduct and tensor product. More interestingly, we encode the additive
and multiplicative transfers on equivariant spectra as a functor from bispans in finite
G-sets, extend the norms for finite étale maps in motivic spectra to a functor from
certain bispans in schemes, and make Perf(X) for X a spectral Deligne–Mumford stack
a functor of bispans using a multiplicative pushforward for finite étale maps in addi-
tion to the usual pullback and pushforward maps. Combining this with the polynomial
functoriality of K-theory constructed by Barwick, Glasman, Mathew, and Nikolaus, we
obtain norms on algebraic K-theory spectra.
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1. Introduction

This paper is the first part of a project aimed at better understanding certain sophisticated
ring-like structures that occur in ‘homotopical mathematics’. By this, we mean not just the
theory of E∞-rings, where additions and multiplications are indexed over finite sets, but also
more exotic structures occurring in equivariant and motivic homotopy theory where operations
can be indexed over finite G-sets and finite étale morphisms, respectively. Such structures are
also relevant to derived algebraic geometry and algebraic K-theory.

In the present paper we construct equivariant and motivic versions of the canonical semiring
structure on a symmetric monoidal ∞-category whose tensor product commutes with finite
coproducts.

In the G-equivariant case this structure encodes the compatibility of additive and multi-
plicative transfers (or norms) along maps of finite G-sets. In the case of genuine G-spectra such
multiplicative transfers were defined by Hill et al. [HHR16] (extending a construction on the
level of cohomology groups due to Greenlees and May [GM97, Boh14]) and played a key role in
their solution of the Kervaire invariant one problem; more recently, they have been considered
as the defining structure of an equivariant symmetric monoidal ∞-category in ongoing work of
Barwick et al. [BDG+16].

In the motivic version, we have multiplicative transfers along finite étale morphisms and addi-
tive transfers along smooth morphisms of schemes. Such multiplicative transfers were constructed
for motivic spectra (and in a number of related examples) by Bachmann and Hoyois [BH21].
These generalize, among other constructions, Fulton and Macpherson’s norms on Chow groups
[FM87] and Joukhovitski’s norms on K0 (see [Jou00]).
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We will also show that the ∞-categories Perf(X) of perfect quasicoherent sheaves on a
spectral Deligne–Mumford stackX have a similar structure given by a multiplicative pushforward
for finite étale maps in addition to the usual pushforward and pullback functors. In all these cases
we will obtain the canonical ‘semiring’ structures using a universal property of (∞, 2)-categories
of bispans, which is the main result of this paper.

1.1 Spans and commutative monoids
Before we explain what we mean by bispans, it is helpful to first recall the relation between
commutative monoids and spans: if F denotes the category of finite sets, then we can define a
(2,1)-category Span(F) where:

• objects are finite sets;
• morphisms from I to J are spans (or correspondences)

• composition is given by pullback, i.e. the composite

is the outer span in the diagram

• 2-morphisms are isomorphisms of spans.

If M is a commutative monoid in Set, we can use the monoid structure to define a functor

Span(F)→ Set,

which takes I ∈ F to M I :=
∏
i∈IM and a span I

f←− S g−→ J to the composite g⊗f∗ where
f∗ : M I →MS is given by composition with f (so f∗φ(s) = φ(fs)) and g⊗ is defined using
the product on M by

g⊗(φ)(j) =
∏

s∈g−1(j)

φ(s).

This is compatible with composition of spans, since a pullback square gives a canonical
isomorphism of fibres and we have (gg′)⊗ = g⊗g′⊗ as the multiplication is associative.

It can be shown that if C is any category with finite products, every functor Φ: Span(F)→ C
such that Φ(I) ∼= Φ(∗)×|I| via the canonical maps arises in this way from a commutative monoid
in C. More precisely, we can identify commutative monoids in C with product-preserving functors
Span(F)→ C. (In other words, the homotopy category of Span(F) is precisely the Lawvere theory
for commutative monoids.) This is also true homotopically as we now describe.

Theorem 1.1.1. Let C be an∞-category with finite products. There is a natural equivalence of
∞-categories between commutative monoids in C and product-preserving functors Span(F)→ C.
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The earliest proof of this seems to be the in thesis of Cranch [Cra10, Cra11]; other proofs (as
special cases of different generalizations) are due to Bachmann and Hoyois [BH21, Appendix C]
and Glasman [Gla17, Appendix A]. In addition, it appears in Harpaz [Har20, § 5.2] as the bottom
case of his theory of m-commutative monoids.

1.2 Bispans and commutative semirings
We can ask for a similar description for commutative semirings. In this case, we have two oper-
ations, addition and multiplication, so we want a (2, 1)-category Bispan(F) whose objects are
again finite sets, with a morphism from I to J given by a bispan (or polynomial diagram)

(1)

If R is a commutative semiring in Set, we want a functor

Bispan(F)→ Set

that takes a set I to RI and the bispan (1) to q⊕f⊗p∗ where:

• p∗ : RI → RX is defined by composing with p,

p∗(φ)(x) = φ(px);

• f⊗ : RX → RY is defined by multiplying in R fibrewise,

f⊗(φ)(y) =
∏

x∈f−1(y)

φ(x);

• q⊕ is defined by adding in R fibrewise,

q⊕(φ)(j) =
∑

y∈q−1(j)

φ(y).

The question is then whether there is a way to define composition of bispans so that this gives
a functor. Given a pullback square

(2)

in F, we have identities g⊗i∗ = j∗f⊗ and g⊕i∗ = j∗f⊕ as before, but now we also need to deal
with compositions of the form v⊗u⊕ for u : I → J and v : J → K. Using the distributivity of
addition over multiplication, for φ : I → R and k ∈ K we can write

v⊗u⊕(φ)(k) =
∏
j∈Jk

∑
i∈Ij

φ(i) =
∑

(ij)∈
∏

j∈Jk
Ij

∏
t∈Jk

φ(it). (3)

We can interpret this in terms of a distributivity diagram in F: if we let h : X → K be the family
of sets Xk =

∏
j∈Jk

Ij (so that h = v∗u where v∗ is the right adjoint to pullback along v), then
the pullback v∗X has a canonical map to I over J : on the fibre (v∗X)j , which is the product
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j′∈Jv(j)

Ij′ , we take the projection to the factor Ij . This gives a commutative diagram

(4)

where the square is cartesian, and we can rewrite the distributivity relation (3) as

v⊗u⊕ = h⊕ṽ⊗ε∗.

This means we will get a functor Bispan(F)→ Set from the commutative semiring R if we define
the composition of two bispans

I
s←− E p−→ B

t−→ J,

J
u←− F q−→ C

v−→ K,

as the outer bispan in the following diagram:

(5)

Here we have used a distributivity diagram for q and the pullback π.
An explicit construction of a (2, 1)-category Bispan(F) with this composition is given in the

thesis of Cranch [Cra10], where it is also proved that this has products (given by the disjoint
union of sets), so that we can define commutative semirings in S as functors Bispan(F)→ S that
preserve finite products. Alternatively, one can relate bispans of finite sets to polynomial functors,
which gives an easier definition of Bispan(F) (as the complicated composition law (5) corresponds
to the ordinary composition of such functors); this approach was carried out by Gambino and
Kock [GK13], who also show that the homotopy category of Bispan(F) is the Lawvere theory
for commutative semirings, so that commutative semirings in an ordinary category C with finite
products are equivalent to product-preserving functors

Bispan(F)→ C.

We expect that the homotopical analogue of this statement1 is also true, but this has not yet
been proved.

1.3 The universal property of spans
If C is a symmetric monoidal∞-category such that C has finite coproducts and the tensor product
preserves these in each variable, then we expect that C has a canonical semiring structure in Cat∞

1 Specifically, the definition of commutative semirings in an ∞-category with finite products in terms of Bispan(F)
should be equivalent to that of Gepner, Groth, and Nikolaus [GGN15].
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with multiplication and addition given by the tensor product and coproduct, respectively. This
follows2 from the universal property of an (∞, 2)-category of bispans in F, which is a special
case of our main result. Before we state this, it is convenient to first recall the simpler universal
property of the (∞, 2)-category SPAN(F) of spans in F, which can be used to prove that an
∞-category with finite coproducts has a canonical symmetric monoidal structure.

Here SPAN(F) has finite sets as objects, spans as morphisms, and morphisms of spans as
2-morphisms, i.e. 2-morphisms are commutative diagrams of the form

Suppose X is an (∞, 2)-category. A functor Φ: F
op → X is called left adjointable if for every

morphism f : I → J in F, the morphism f� := Φ(f) : Φ(J)→ Φ(I) in X has a left adjoint f⊕,
and for every pullback square (2) in F, the canonical (Beck–Chevalley or mate) transformation

g⊕i�→ j�f⊕

is an equivalence.

Theorem 1.3.1. Restricting along the inclusion F
op → SPAN(F) (of the subcategory containing

only the backwards maps and no non-trivial 2-morphisms) gives a natural equivalence between
functors SPAN(F)→ X and left adjointable functors F

op → X.

This is a special case of a recent result of Macpherson [Mac22], which we review in more gen-
erality below in § 2.2. Another proof is sketched in the book of Gaitsgory and Rozenblyum [GR17]
where this universal property is used to encode a ‘six-functor formalism’ for various categories of
quasicoherent sheaves on derived schemes. Lastly, we note that the analogous result for ordinary
2-categories seems to have been first proved by Hermida [Her00, Theorem A.2].

1.4 The universal property of bispans
We now want to consider a 2-category BISPAN(F) whose objects are finite sets, with morphisms
given by bispans and 2-morphisms by commutative diagrams of the form

(6)

where the middle square is cartesian. If we look at the subcategory where the morphisms are
bispans whose rightmost leg is invertible and with no non-trivial 2-morphisms, we get an inclu-
sion Span(F)→ BISPAN(F). A special case of our main result gives a universal property of
BISPAN(F) in terms of this subcategory as follows.

Theorem 1.4.1. Let X be an (∞, 2)-category. Restricting along the inclusion Span(F)→
BISPAN(F) gives an equivalence between functors BISPAN(F)→ X and distributive functors
Span(F)→ X.

2 This semiring structure is also constructed in [GGN15] by a different method.
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Here a functor Φ: Span(F)→ X is distributive if:

• for every morphism f : I → J in F, the morphism f� := Φ(J
f←− I == I) in X has a left adjoint

f⊕;
• for every pullback square (2) in F, the Beck–Chevalley transformation g⊕i�→ j�f⊕ is an

equivalence;
• for every distributivity diagram (4), the distributivity transformation

h⊕ṽ⊗ε�→ v⊗u⊕,

which is defined as a certain composite of units and counits, is an equivalence in X.

Note that the only property of F we have used in the definition of distributive functors is the
existence of distributivity diagrams. These exist in any locally cartesian closed ∞-category, and
more generally we can consider triples (C,CF ,CL) consisting of an ∞-category C with a pair of
subcategories CF and CL such that:

• pullbacks along morphisms in CF and CL exist in C, and both subcategories are preserved
under base change;

• there exist suitable distributivity diagrams in C for any composable pair of morphisms l : x→ y
in CL, f : y → z in CF .

We can then generalize the notion of distributive functors above to that of L-distributive functors
SpanF (C)→ X, where SpanF (C) is the∞-category of spans in C whose forward legs are required
to lie in CF . Our main result in this paper is then the following generalization of Theorem 1.4.1.

Theorem 1.4.2. For (C,CF ,CL) as above, there exists an (∞, 2)-category

BISPANF,L(C)

such that:

• objects are objects of C;
• morphisms are bispans

x
p←− e f−→ b

l−→ y

where f is in CF and l is in CL;
• 2-morphisms are diagrams of the form (6);
• morphisms compose as in (5).

The (∞, 2)-category BISPANF,L(C) has the universal property that restricting to the subcategory
SpanF (C) gives for any (∞, 2)-category X an equivalence between functors BISPANF,L(C)→ X

and L-distributive functors SpanF (C)→ X.

The analogue of this result for ordinary 2-categories (at least in the case where C = CF = CL)
is due to Walker [Wal19].

1.5 Equivariant and algebro-geometric bispans
We now look briefly at some examples of Theorem 1.4.2 beyond the case of finite sets, coming
from equivariant and motivic homotopy theory and derived algebraic geometry. These examples
are discussed in more detail in § 3.

Let us first consider the equivariant setting, over a finite group G. In all of our discussion
above it is straightforward to replace the category F of finite sets with the category FG of
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finite G-sets. The analogue of a commutative monoid is then a functor

M : Span(FG)→ Set

that preserves products. This is (essentially3) the same thing as a Mackey functor [Dre71], an
algebraic structure where for a subgroup H ⊆ G we have restrictions MG →MH and transfers
MH →MG satisfying a base change property that can be interpreted in terms of double cosets.
Mackey functors play an important role in group theory, and every genuine G-spectrum E has
an underlying Mackey functor π0E.

Similarly, the G-analogue of a commutative semiring is a product-preserving functor
Bispan(FG)→ Set, which is essentially4 a Tambara functor [Tam93, Str12, BH18]. This is a
structure that has both an ‘additive’ and a ‘multiplicative’ transfer, satisfying a distributivity
relation. If E is a genuine G-E∞-ring spectrum, then π0E has the structure of a Tambara functor
[Bru07].

If we replace the category of sets with the∞-category of spaces, a theorem of Nardin5 [Nar16,
Corollary A.4.1] shows that connective G-spectra are equivalently product-preserving functors
Span(FG)→ S that are grouplike, generalizing the classical description of connective spectra as
grouplike commutative monoids in S.6

The analogue for ring spectra is also expected to hold: connective genuine G-E∞-ring spectra
should be equivalent to product-preserving functors Bispan(FG)→ S.

Now we turn to the ‘categorified’ versions of these structures: for H a subgroup of G, the
(additive) transfer from H-spectra to G-spectra is classical,7 but the multiplicative transfer or
norm was only introduced fairly recently by Hill, Hopkins, and Ravenel as part of the founda-
tional setup for [HHR16]. This inspired a plethora of work on equivariant symmetric monoidal
structures [HH16, GMMO20, Rub17] and its relation to equivariant homotopy-coherent commu-
tativity (in particular, [BH15] and subsequent work on N∞-operads), culminating from our point
of view in the approach of Barwick et al. [BDG+16], where a G-symmetric monoidal∞-category
can be viewed as a product-preserving functor

Span(FG)→ Cat∞,

i.e. a ‘categorified Mackey functor’.
If the contravariant (restriction) functors have left adjoints that satisfy base change and

distributivity, Theorem 1.4.2 allows us to upgrade such G-symmetric monoidal structures to
functors from BISPAN(FG), which encodes the distributive compatibility of multiplicative and
additive transfers. We will see that this applies, in particular, to genuine G-spectra, giving a
‘categorified Tambara functor’ structure on G-spectra.

Next, we look at the motivic setting, where it is more instructive to first work in the cate-
gorified context. By this we mean Ayoub’s construction of a functor from schemes to categories
X 	→ SH(X) which satisfies a full six functors formalism [Ayo07], vastly expanding Voevodsky’s

3 Mackey functors are usually viewed as taking values in Ab rather than Set; since the functor induces commutative
monoid structures on its values, this amounts to asking for these monoid structures to be grouplike. The relation
between Mackey functors in Ab and Set is, thus, analogous to that between abelian groups and commutative
monoids.
4 Again, the usual notion of a Tambara functor takes values in Ab, which gives the equivariant version of a
commutative ring rather than a semiring.
5 Building on the description of G-spectra as ‘spectral Mackey functors’, originally due to Guillou and May [GM17].
6 This can be seen as an ∞-categorical version of more classical descriptions of equivariant infinite loop spaces,
cf. [Shi89, Ost16, MMO17, GMMO19].
7 See e.g. [LMMS86, § II.4].
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notes in [Voe99]; we also refer the reader to the book of Cisinski and Déglise [CD19] for another
exposition, [Hoy17] for an ∞-categorical enhancement of this construction in the more general
motivic-equivariant setting, as well as the more recent [DG22] for a universal property of this
construction. Here SH(X) denotes the ∞-category of motivic spectra over a scheme X.

In this context, given a smooth morphism of schemes f : X → Y over a base S, the pullback
functor f∗ : SH(Y )→ SH(X) admits a left adjoint, f� : SH(X)→ SH(Y ). This is a categorified
version of the additive pushforward : if f is the fold map ∇ : Y �I → Y , then ∇� computes the
I-indexed direct sum. The compatibility of f� with pullbacks yields a functor

SH: Spansm(SchS)→ Cat∞. (7)

An important additional functoriality of SH was recently discovered by Bachmann and Hoyois
in [BH21]: given a finite étale morphism f : X → Y we have the multiplicative pushforward or
norm f⊗ : SH(X)→ SH(Y ), which in the case when f is the fold map computes the I-indexed
tensor product. This also satisfies base change, and so can be encoded by a functor

SH: Spanfét(SchS)→ Cat∞, (8)

which leads to the correct notion of a coherent multiplicative structure in motivic homotopy
theory, a normed motivic spectrum, as a section of the unstraightening of (8) that is cocartesian
over the backwards maps in Spanfét(SchS).

The motivic bispan category should combine these two structures, giving an additive push-
forward along smooth morphisms and a multiplicative pushforward along finite étale morphisms.
For technical reasons (due to the non-existence of Weil restriction of schemes in general), for
our motivic bispan categories we either have to restrict to morphisms between schemes that are
smooth and quasiprojective or work with algebraic spaces. Thus, we consider 2-categories of the
form BISPANfét,sm(AlgSpcS) where AlgSpcS means the category of algebraic spaces over S, and
we promote SH to a functor

SH: BISPANfét,sm(AlgSpcS)→ Cat∞; (9)

see Theorem 3.5.9.
The decategorification of the above structure has been studied by Bachmann in [Bac21].

Working over a field, and restricting to a category of bispans between smooth schemes,
Bispanfét,sm(Smk), Bachmann proved that the structure of a normed algebra in the abelian
category of homotopy modules (the heart of the so-called homotopy t-structure on motivic spec-
tra) is encoded by certain functors out of this bispan category to abelian groups (appropriately
christened motivic Tambara functors), at least after inverting the exponential characteristic of k.

We also note that there is a discrepancy with the classical and finite-equivariant story:
finite étale transfers are a priori not sufficient to encode the structure of a motivic spectrum.
Instead, the correct kind of transfers are framed transfers in the sense of [EHK+21]. In particular,
the category of framed correspondences, where the backward maps encode framed transfers, is
manifestly an ∞-category. In other words, the additive and multiplicative transfers are rather
different in the motivic story; for example, we do not know if the space of units of a normed
motivic spectrum has framed transfers (see [BH21, § 1.5] for a discussion). For us, this means
that a more robust theory of bispans in the motivic setting which encodes framed transfers is
open for future investigations.

Finally, we consider an example in the context of derived algebraic geometry: If Perf(X)
denotes the ∞-category of perfect quasicoherent sheaves on a spectral Deligne–Mumford stack,
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Barwick [Bar17] has shown that the pullback and pushforward functors extend to a functor

Perf : SpanFP(SpDM)→ Cat∞,

where SpDM is the ∞-category of spectral Deligne–Mumford stacks and FP is a certain class of
morphisms (for which pushforwards preserve perfect objects and base change is satisfied). We
promote this to a functor of (∞, 2)-categories

BISPANfét,FP′(SpDM)2-op → CAT∞,

using a multiplicative pushforward functor for finite étale maps (which exists by results of
Bachmann and Hoyois [BH21]), where FP′ is a certain subclass of FP for which Weil restrictions
exist.

1.6 Norms in algebraic K-theory
A combination of the present work and [BGMN21] produces concrete examples of Tambara
functors valued in S, the ∞-category of spaces, via (connective) algebraic K-theory, which we
discuss in § 4. The motivation for our results traces back to classical representation theory: given
a finite group G, the classical representation ring of G is a certain Grothendieck ring:

Rep(G,C) ∼= K0(Fun(BG,VectfdC )). (10)

In particular, the tensor product of representations induces the multiplicative structure on
Rep(G,C). It is natural to consider the formation of representation rings as a functor in G,
where the functoriality encodes various operations in representation theory such as induction and
restrictions. From this viewpoint, one can enhance the multiplicative structure on Rep(G,C) to
one parametrized by cosets: if K ⊂ G is a subgroup, then we have a map given by the operation
of tensor induction:

Rep(K,C)→ Rep(G,C), V 	→ ⊗G/KV.
As reviewed in Example 3.4.18, all of this functoriality can be encoded as a functor out of a
bispan category formed out of finite G-sets.

Representation theory with ‘fancy coefficients’ entails replacing the category Vectfd
C

with
a more sophisticated symmetric monoidal (∞-)category C. This line of investigation arguably
began with the subject of modular representation theory, which takes C to be Vectfd

Fp
. This is

especially subtle when G is a p-group because of the failure of the category Fun(BG,Vectfd
Fp

) to
be semisimple. More recently, Treumann has also considered replacing vector spaces with KU -
module spectra, thus taking C to be PerfKU where KU is the E∞-ring spectrum representing
complex topological K-theory [Tre15]; his work suggests that, up to p-completion, representation
theory overKU is, in a precise way, a smooth deformation of representation theory over the p-adic
integers [Tre15, 1.7].

In light of the last example, which is homotopical in nature, it is natural to consider the
K-theory space Ω∞K(Fun(BG,C)) for C a small stable ∞-category; its homotopy groups are
the higher K-groups. Using the universal property of bispans, coupled with the main result of
[BGMN21], we offer the following result concerning its functoriality in the variable G.

Theorem 1.6.1. Let G be a finite group and C a symmetric monoidal ∞-category, then the
presheaf on G-orbits:

Ω∞KG(C) : O
op
G → S G/H 	→ Ω∞K(Fun(BH,C)),
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extends canonically as

The proof of Theorem 1.6.1 is quite simple given our main theorem: we use this to deduce
that Fun(BG,C) upgrades to a functor out of bispans into the ∞-category of ∞-categories.
Using a general criterion which we detail in § 4.2, we prove that the multiplicative pushforward
enjoys the property of being a polynomial functor in the sense of Goodwillie calculus. A recent
breakthrough of Barwick et al. [BGMN21] proves that the formation of algebraicK-theory spaces
is functorial in polynomial functors, which then gives Theorem 1.6.1.

We believe that Theorem 1.6.1 could have computational significance. Using an equivariant
analogue of [BH21, Example 7.25], Theorem 1.6.1 produces genuine-equivariant power operations
on these representation-theoretic gadgets. In particular, the coherence afforded by the language
of bispans results in relations between these operations.

By exactly the same methods we also show that the algebraic K-theory of a genuine G-E∞-
ring spectrum is also a Tambara functor valued in S. The latter are expected to be precisely the
connective G-E∞-ring spectra, and given this we prove the following result.

Theorem 1.6.2 (see Theorem 4.3.7). The formation of algebraic K-theory preserves G-E∞-
rings.

We believe this is a completely new structure on algebraic K-theory in equivariant homotopy
theory that significantly extends several recent results in the literature; see Remark 4.3.8.

In the algebro-geometric context the same method also shows that, for instance, the algebraic
K-theory of schemes (or more generally spectral Deligne–Mumford stacks) has multiplicative
transfers along finite étale morphisms.

1.7 Notation
This paper is written in the language of∞-categories. We use the following reasonably standard
notation:

• S is the ∞-category of spaces, i.e. ∞-groupoids;
• Cat∞ is the ∞-category of ∞-categories;
• CAT∞ is the (∞, 2)-category of ∞-categories;
• Cat(∞,2) is the ∞-category of (∞, 2)-categories;
• if C and D are ∞-categories or (∞, 2)-categories, we write Fun(C,D) for the ∞-category of

functors from C to D;
• if C and D are (∞, 2)-categories, we write FUN(C,D) for the (∞, 2)-category of functors from

C to D;
• we write (–)(1) : Cat(∞,2) → Cat∞ for the functor taking an (∞, 2)-category to its underlying
∞-category (thus, (–)(1) is right adjoint to the inclusion of Cat∞ into Cat(∞,2));

• we write (–)	 for the functors Cat∞ → S and Cat(∞,2) → S taking an ∞-category or (∞, 2)-
category to its underlying ∞-groupoid;

• if C is an ∞-category and x and y are objects of C, we write MapC(x, y) for the space of maps
from x to y in C;

• if C is an (∞, 2)-category and x and y are objects of C, we write MAPC(x, y) for the∞-category
of maps from x to y in C;
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• if X is an (∞, 2)-category we write Xop for the (∞, 2)-category obtained by reversing the
morphisms in X and X2-op for that obtained by reversing the 2-morphisms.

We also adopt the following standard notation for functors between slices of an∞-category C:

• if f : x→ y is a morphism in C, we have a functor

f! : C/x → C/y

such that f!(t→ x) = t→ x→ y, i.e. given by composition with f ;
• if pullbacks along f exist in C, then f! has a right adjoint

f∗ : C/y → C/x;

• if f∗ has a further right adjoint, this will be denoted by

f∗ : C/x → C/y

(this right adjoint exists for all f precisely when C is locally cartesian closed, for example if C

is an ∞-topos).

2. Bispans and distributive functors

2.1 (∞, 2)-categories and adjunctions
Throughout this paper we work with (∞, 2)-categories, and in this section we review some basic
results we use from the theory of (∞, 2)-categories, particularly regarding adjunctions. There
are several equivalent ways to define these objects and their homotopy theory, including Rezk’s
Θ2-spaces [Rez10] and Barwick’s 2-fold Segal spaces [Bar05]. We can also view (∞, 2)-categories
as ∞-categories enriched in ∞-categories, which can be rigidified to categories strictly enriched
in quasicategories (see [Hau15]); the latter is the model used in the papers of Riehl and Verity.
We will not review the details of any of these constructions here, as we do not need to refer to
any particular model of (∞, 2)-categories in this paper.

We will, however, use the Yoneda lemma for (∞, 2)-categories, which is a special case of
Hinich’s Yoneda lemma for enriched ∞-categories [Hin20].

Theorem 2.1.1 (Hinich). For any (∞, 2)-category X there exists a fully faithful functor of
(∞, 2)-categories

yX : X→ FUN(Xop,CAT∞)

such that for any functor Φ: Xop → CAT∞ there is a natural equivalence of ∞-categories

Φ(d)  MAPFUN(Xop,CAT∞)(yX(d),Φ).

Remark 2.1.2. Hinich’s work does use a specific model for (∞, 2)-categories, namely a certain
definition of enriched ∞-categories specialized to enrichment in Cat∞. Hinich’s definition has
been compared to the original one of Gepner and Haugseng [GH15] by Macpherson [Mac21], and
for enrichment in Cat∞ the latter is equivalent to complete 2-fold Segal spaces [Hau15], which,
in turn, is known by work of Barwick and Schommer-Pries [BSP21] to be equivalent to most
other approaches to (∞, 2)-categories (including the complicial sets of Verity by recent work of
Gagna, Harpaz, and Lanari [GHL22]).

Recall that there exists a universal adjunction. This is a 2-category ADJ with two objects
− and + and generated by 1-morphisms L : Δ1 = {− → +} → ADJ and R : Δ1 = {+→ −} →
ADJ such that L is left adjoint to R; see [RV16] for an explicit combinatorial definition of
this 2-category. An adjunction in a 2-category can then equivalently be described as a functor
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from ADJ. This universal property also holds in (∞, 2)-categories, where we can formulate it
more precisely as follows.

Theorem 2.1.3 (Riehl–Verity). Given an (∞, 2)-category X, the induced maps of spaces

L∗, R∗ : MapCat(∞,2)
(ADJ,X)→ MapCat(∞,2)

(Δ1,X),

are both inclusions of components whose images are the subspaces

MapLCat(∞,2)
(Δ1,X), MapRCat(∞,2)

(Δ1,X) ⊂ MapCat(∞,2)
(Δ1,X)

spanned by those functors that are left and right adjoints, respectively.

For details, see [RV16, Theorems 4.3.11 and 4.4.18]. See also [HNP19] for an alternative
proof, using the cotangent complex of (∞, 2)-categories.

We need to upgrade this to a statement about (∞, 2)-categories rather than just∞-groupoids.
This follows from the next observation, which identifies the morphisms and 2-morphisms in the
(∞, 2)-category of adjunctions using some results from [Hau21]; to state this we need some
terminology that will be important throughout the paper.

Definition 2.1.4. Let X be an (∞, 2)-category and consider a commutative square

in X. If g and g′ are left adjoints, with corresponding right adjoints h and h′, then we can use
the units and counits of the adjunctions to define a mate (or Beck–Chevalley) transformation
ξh′ → hη as the composite

ξh′ → hgξh′  hηg′h′ → hη.

We say the square is right adjointable if this mate transformation is an equivalence. Dually, if g
and g′ are right adjoints, with left adjoints f and f ′, we say the square is left adjointable if the
mate transformation

fη → fηg′f ′  fgξf ′ → ξf ′

is an equivalence.

Proposition 2.1.5. Let X and Y be (∞, 2)-categories. A 1-morphism in the (∞, 2)-category
FUN(X,Y), i.e. a natural transformation η : F → G of functors F,G : X→ Y, is a right (left)
adjoint if and only if:

(1) for every object x ∈ X, the morphism ηx : F (x)→ G(x) is a right (left) adjoint in Y;
(2) for every morphism f : x→ x′ in X, the commutative square

is left (right) adjointable.

Proof. We consider the case of right adjoints; the left adjoint case can be proved similarly, and
also follows by duality. Let FUN(X,Y)lax denote the (∞, 2)-category of functors from X to Y

with lax natural transformations as morphisms (see [Hau21, § 3] for a precise definition). We can
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view the natural transformation η as a morphism in FUN(X,Y)lax. By [Hau21, Theorem 4.6]
it has a right adjoint here if and only if ηx has a right adjoint in Y for every x ∈ X; this right
adjoint is given on morphisms by taking mates. If η has a right adjoint ρ in FUN(X,Y), then by
uniqueness this is also a right adjoint in FUN(X,Y)lax; hence, η must be given objectwise by left
adjoints and the naturality squares of ρ are the corresponding mate squares: in particular, these
mate squares must commute, so conditions (1) and (2) hold. Conversely, if these conditions hold
for η then η has a right adjoint ρ in FUN(X,Y)lax and the lax naturality squares of ρ actually
commute. By [Hau21, Corollary 3.17] this means that ρ is in the image of the canonical functor
FUN(X,Y)→ FUN(X,Y)lax; moreover, this functor is locally fully faithful so the unit and counit
of the adjunction also lie in FUN(X,Y), and so η has a right adjoint in FUN(X,Y), as required. �

Notation 2.1.6. Let X be an (∞, 2)-category. We write FUN(Δ1,X)ladj for the locally full sub-
(∞, 2)-category of FUN(Δ1,X) whose objects are the morphisms that are left adjoints and
whose morphisms are the right adjointable squares. Similarly, we write FUN(Δ1,X)radj for the
sub-(∞, 2)-category of right adjoints and left adjointable squares.

Corollary 2.1.7. The functors L∗, R∗ : FUN(ADJ,X)→ FUN(Δ1,X) identify the (∞, 2)-
category FUN(ADJ,X) with the sub-(∞, 2)-categories FUN(Δ1,X)ladj and FUN(Δ1,X)radj,
respectively.

Proof. We consider the case of left adjoints; the proof for right adjoints is the same. For any
(∞, 2)-category Y we have the following natural commutative square:

Here Theorem 2.1.3 implies that the right vertical map is a monomorphism of∞-groupoids with
image the components of Map(Δ1,FUN(Y,X)) that correspond to left adjoints in FUN(Y,X).
Using Proposition 2.1.5 we can identify these as precisely those in the image of the subspace
Map(Y,FUN(Δ1,X)ladj) under the bottom horizontal equivalence. By the Yoneda lemma it
follows that L∗ : FUN(ADJ,X)→ FUN(Δ1,X)ladj is an equivalence. �

2.2 Adjointable functors and spans
In this section we introduce (left and right) adjointable functors and review the universal property
of (∞, 2)-categories of spans in terms of these.

Definition 2.2.1. A span pair (C,CF ) consists of an ∞-category C together with a wide sub-

category CF (i.e. one containing all objects and equivalences) such that given morphisms x
f−→ y

in CF and z
g−→ y in C, the pullback

exists in C, and moreover f ′ is also in CF . If (C,CF ) and (C′,C′
F ) are span pairs, then a morphism

of span pairs (C,CF )→ (C′,C′
F ) is a functor φ : C→ C′ such that φ(CF ) ⊆ C′

F and φ preserves
pullbacks along morphisms in CF . We write Pair for the ∞-category of span pairs, which can be
defined as a subcategory of Fun(Δ1,Cat∞).
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Given a span pair (C,CF ) we can, as in [Bar17, § 3], define an ∞-category SpanF (C) whose
objects are the objects of C, with morphisms from x to y given by spans

where f is in CF ; we compose spans by taking pullbacks. Following [Hau18, § 5] we can upgrade
this to an (∞, 2)-category SPANF (C) whose 2-morphisms are morphisms of spans, i.e. diagrams

in C, where z → z′ can be any morphism in C.

Warning 2.2.2. In [Hau18], the (∞, 2)-category of spans in C was denoted Span+
1 (C), while

SPANn(C) was used for an n-uple ∞-category of spans.

Remark 2.2.3. In the (∞, 2)-category SPANF (C), every morphism of the form

[f ]B := x
f←− z id−→ z

with f in CF has a left adjoint, namely the reversed span

[f ]F := z
id←− z f−→ x.

The counit is the 2-morphism

and the unit is

where the fibre product x×y x is over two copies of f and Δ is the corresponding diagonal.

The (∞, 2)-category SPANF (C) enjoys a universal property: roughly speaking, it is obtained
from Cop by freely adding left adjoints for morphisms in (CF )op. To state this more precisely, we
need some definitions.

Definition 2.2.4. Let (C,CF ) be a span pair and X an (∞, 2)-category. A functor Φ: Cop → X is
left F -preadjointable if for every morphism f : x→ y in CF the 1-morphism f� := Φ(f) : Φ(y)→
Φ(x) in X has a left adjoint f⊕ in X.
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Definition 2.2.5. We say that Φ is left F -adjointable if it is left F -preadjointable and for every
cartesian square

(11)

in C with f in CF , the commutative square

in X is left adjointable. We write MapF -ladj(Cop,X) for the subspace of Map(Cop,X) whose
components are the left F -adjointable functors.

Remark 2.2.6. In other words, Φ is left F -adjointable if for every cartesian square (11) with f
in CF , the Beck–Chevalley transformation

f ′⊕g
′�→ g�f⊕ (12)

is an equivalence.

Theorem 2.2.7 (Gaitsgory and Rozenblyum [GR17], Macpherson [Mac22]). Let (C,CF ) be a
span pair, and let X be an (∞, 2)-category. The inclusion of the backwards maps Cop →
SPANF (C) gives a monomorphism of ∞-groupoids

Map(SPANF (C),X)→ Map(Cop,X)

with image MapF -ladj(Cop,X).

Remark 2.2.8. In [GR17], Gaitsgory and Rozenblyum make use of this universal property of
spans in order to encode the functoriality of various∞-categories of coherent sheaves on derived
schemes. They also sketch a proof of Theorem 2.2.7 using a particular construction of SPANF (C).
Macpherson [Mac22] has recently given an alternative, model-independent (and complete) proof.
Roughly speaking, Macpherson’s approach is to first show there exists an (∞, 2)-category that
represents left adjointable functors and then use the universal property to prove that this repre-
senting object has the expected description in terms of spans. The universal property has also
been extended to higher categories of iterated spans by Stefanich [Ste20].

Variant 2.2.9. If X is an (∞, 2)-category, then we have an equivalence of underlying
∞-categories

X(1)  (X2-op)(1),

while a 1-morphism in X is a right adjoint if and only if it is a left adjoint in X2-op. We therefore
say that a functor Φ: Cop → X is right F -adjointable if the 2-opposite functor

Cop  (Cop)2-op Φ2-op−−−→ X2-op

is left F -adjointable. Theorem 2.2.7 then tells us that the right F -adjointable functors correspond
to functors SPANF (C)2-op → X.
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Variant 2.2.10. We say a functor Φ: C→ X is right F -coadjointable if the 1-opposite functor

Φop : Cop → Xop

is left F -adjointable. Theorem 2.2.7 then tells us that the right F -coadjointable functors corre-
spond to functors SPANF (C)op → X. We can also combine both variants, and say that Φ: C→ X

is left F -coadjointable if

Cop  Cop,2-op Φop,2-op−−−−−→ Xop,2-op

is left F -adjointable. The left F -coadjointable functors then correspond to functors
SPANF (C)op,2-op → X.

Remark 2.2.11. Unpacking the definition, and recalling that reversing the 1-morphisms in
an (∞, 2)-category swaps left and right adjoints, we see that a functor Φ: C→ X is right
F -coadjointable if for every morphism f : x→ y in CF the 1-morphism f� := Φ(f) : Φ(x)→ Φ(y)
in X has a right adjoint f⊕, and for every pullback square (11) the square

is right adjointable. Note that this is not the same as Φ being right F -adjointable in the previous
sense: this condition would involve adjointability for pushout squares in C; indeed, to even be
defined this condition would require (Cop,Cop

F ) to be a span pair, which may well not be the case.

2.3 The (∞, 2)-category of spans
For the sake of completeness, in this subsection we include a proof of Theorem 2.2.7. However,
our argument is at most a minor variation of the proof of Macpherson [Mac22] and we make no
claims to originality. We start by observing that the presentability of Cat(∞,2) implies that left
F -adjointable functors are corepresented by some (∞, 2)-category.

Proposition 2.3.1. Let (C,CF ) be a span pair, with C a small ∞-category. Then the functor

MapF -ladj(C, –) : Cat(∞,2) → S

is corepresentable by a small (∞, 2)-category SPANF (C), so that there is a natural equivalence

MapF -ladj(C,X)  MapCat(∞,2)
(SPANF (C),X) (13)

for any X ∈ Cat(∞,2).

Proof. The ∞-category Cat(∞,2) is presentable, for instance because it can be described as
presheaves on Θ2 satisfying Segal and completeness conditions, which gives an explicit presen-
tation as an accessible localization of an ∞-category of presheaves. To prove that a copresheaf
on Cat(∞,2) is corepresentable it therefore suffices by [Lur09, Proposition 5.5.2.7] to show that
it is accessible and preserves limits.

We first show that this holds for the copresheaf MapF -lpreadj(Cop, –) of left F -preadjointable
functors. By definition, a functor C→ X is left F -preadjointable if it takes every morphism in X
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to a left adjoint in X. We can therefore write MapF -lpreadj(Cop,X) as the pullback

where the product is over the set S of equivalence classes of morphisms in CF and R : Δ1 → ADJ
is the inclusion of the right adjoint of the universal adjunction. From this description, it is
immediate that MapF -lpreadj(Cop,X) preserves limits in X, since this is clear for the other three
corners of the square. Moreover, since Cat(∞,2) is presentable we can choose a regular cardinal κ
such that S is κ-small and the objects Cop, ADJ, and Δ1 are all κ-compact in Cat(∞,2). Then we
see that MapF -lpreadj(Cop, –) preserves κ-filtered colimits, since the other corners of the pullback
square do so (as κ-filtered colimits in S commute with κ-small limits, such as our product over S).

For MapF -ladj(Cop,X) we impose the additional requirement that every cartesian square
(11) in C where the horizontal maps are in CF is taken to a left adjointable square in X. By
Proposition 2.1.5 the left adjointable squares are the right adjoints in XΔ1

, so if S′ denotes the
set of equivalence classes of relevant cartesian squares in C, we can write MapF -ladj(Cop,X) as
the following pullback:

The same argument as for left F -preadjointable maps now implies that the presheaf
MapF -radj(C, –) is also accessible and preserves limits and, hence, is corepresentable. �

Remark 2.3.2. The identity of SPANF (C) corresponds under (13) to a left F -adjointable functor

i : Cop → SPANF (C),

such that the equivalence (13) arises by restriction along i.

Remark 2.3.3. From the universal property we immediately obtain a functor from span pairs
to (∞, 2)-categories: for any (∞, 2)-category X, composition with a morphism of span pairs
φ : (C,CF )→ (C′,C′

F ′) restricts to a morphism

MapF ′-ladj(C
′,X)→ MapF -ladj(C,X),

natural in X ∈ Cat(∞,2). We obtain a functor

Map(–)-ladj(–, –) : Pairop × Cat(∞,2) → S.

Proposition 2.3.1 says that the corresponding functor Pairop → Fun(Cat(∞,2), S) takes values in
corepresentable copresheaves, and so by the Yoneda lemma factors through a canonical functor
SPAN: Pair→ Cat(∞,2).

We can upgrade the equivalence of Proposition 2.3.1 to a statement at the level of (∞, 2)-
categories, rather than just ∞-groupoids. To state this we first need some notation.

Definition 2.3.4. Let (C,CF ) be a span pair and X an (∞, 2)-category. We say that a natural
transformation η : Cop ×Δ1 → X is left F -adjointable if it corresponds to a left F -adjointable
functor Cop → FUN(Δ1,X). From Proposition 2.1.5 it follows that η is left F -adjointable if and
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only if the components η0, η1 are both left F -adjointable, and for every morphism f : x→ y in
CF , the following naturality square is left adjointable.

Let FunF -ladj(Cop,X) denote the subcategory of Fun(Cop,X) whose objects are the left
F -adjointable functors and whose morphisms are the left F -adjointable transformations. From
Proposition 2.1.5 we also know that a morphism C× C2 → X (where C2 is the 2-cell) corresponds
to a left F -adjointable morphism C→ FUN(C2,X) if and only if the component functors and nat-
ural transformations are left F -adjointable. We therefore write FUNF -ladj(Cop,X) for the locally
full sub-(∞, 2)-category of FUN(Cop,X) whose underlying ∞-category is FunF -ladj(Cop,X).

Corollary 2.3.5. Let (C,CF ) be a span pair and X an (∞, 2)-category. Composition with
i : Cop → SPANF (C) gives an equivalence of (∞, 2)-categories

FUN(SPANF (C),X) ∼−→ FUNF -ladj(Cop,X).

Proof. For any (∞, 2)-category Y we have a natural equivalence

Map(Y,FUN(SPANF (C),X))  Map(SPANF (C),FUN(Y,X))

 MapF -ladj(C
op,FUN(Y,X))

 Map(Y,FUNF -ladj(Cop,X)),

where the last equivalence follows from the description of adjoints in functor (∞, 2)-categories
in Proposition 2.1.5. �
Variant 2.3.6. Using analogous notation for right F -coadjointable functors, we have a natural
equivalence

FUNF -rcoadj(C,X)  FUN(SPANF (C)op,X).

As a first step toward getting a handle on the (∞, 2)-category SPANF (C) we have the
following observation.

Lemma 2.3.7. The functor i : Cop → SPANF (C) (corresponding to the identity under (13)) is
essentially surjective.

Proof. Let I denote the full sub-(∞, 2)-category of SPANF (C) spanned by the objects in the
image of i. Then i factors through i′ : Cop → I, and i′ is again left F -adjointable (since the relevant
adjoints and 2-morphisms all live in I). Hence, i′ corresponds to a functor SPANF (C)→ I such
that the composite

SPANF (C)→ I→ SPANF (C)

is the identity. It follows that the inclusion of I must be essentially surjective, which means that
i is also essentially surjective. �

To get a handle on the ∞-categories of morphisms in SPANF (C), we will use two further
ingredients: (1) the Yoneda Lemma for (∞, 2)-categories (Theorem 2.1.1) due to Hinich; and
(2) the construction of the free (co)cartesian fibrations due to Gepner, Nikolaus, and the second
author [GHN17]. Applying the Yoneda lemma to SPANF (C) we get a canonical family of left
F -adjointable functors to CAT∞.
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Proposition 2.3.8. There is a left F -adjointable functor

Y : Cop → FUNF -rcoadj(C,CAT∞)

such that for any right F -coadjointable functor (in the sense of Variant 2.2.10) Φ: C→ CAT∞
there is a natural equivalence

Φ(c)  MAPF -rcoadj(Y(c),Φ),

where the latter denotes the ∞-category of right F -coadjointable natural transformations.

Proof. Applying Hinich’s Yoneda embedding (Theorem 2.1.1) to SPANF,L(C) we get a functor

y : SPANF (C)→ FUN(SPANF (C)op,CAT∞).

By Proposition 2.3.1 this corresponds to a left F -adjointable functor

Y : Cop → FUN(SPANF (C)op,CAT∞)  FUNF -rcoadj(C,CAT∞)

via the equivalence of Variant 2.3.6. Translating the universal property of representable
presheaves through the latter equivalence now gives the result. �

To proceed further, we will work unstraightened, i.e. with the cocartesian fibrations
corresponding to Y(c) : C→ Cat∞.

Lemma 2.3.9. The straightening equivalence

Fun(C,Cat∞)  Catcocart
∞/C

identifies the subcategory FunF -rcoadj(C,CAT∞) with a full subcategory

CatF -rcoadj
∞/C ⊆ Catcocart+F -cart

∞/C := Catcocart
∞/C ×Cat∞/CF

Catcart
∞/CF

,

where the right-hand side is the ∞-category of cocartesian fibrations over C that have carte-
sian morphisms over CF , and whose morphisms are functors over C that preserve cocartesian
morphisms as well as cartesian morphisms over CF .

Proof. By [Lur09, Corollary 5.2.2.4] a cocartesian fibration to C has cartesian morphisms over
CF if and only if it has locally cartesian morphisms over CF , which is equivalent to the cor-
responding morphisms in Cat∞ having right adjoints (cf. [Lur09, Definition 5.2.2.1]). Thus,
the unstraightening of a right F -coadjointable functor gives an object of Catcocart+F -cart

∞/C .
Moreover, by [Lur17, Proposition 4.7.4.17] a morphism over C that preserves cocartesian
morphisms and cartesian morphisms over CF corresponds to a natural transformation whose nat-
urality squares over CF are right adjointable, which is precisely the requirement for coadjointable
natural transformations. �

Definition 2.3.10. For c ∈ C, let Yc → C denote the cocartesian fibration classified by the right
F -coadjointable functor Y(c) : C→ Cat∞ that corresponds via Proposition 2.3.8 to the functor
SPANF (C)op → CAT∞ represented by i(c).

The idea is now to construct a ‘candidate’ for Yc using a result from [GHN17] together with
the following observation.

Lemma 2.3.11. If p : E→ C is a functor such that E has p-cartesian morphisms over morphisms
in CF , then the functor

FunF -cart
/C (CF/x,E)→ Fun/C({x},E)  Ex
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given by restriction along the inclusion

{x}  {idx} ↪→ CF/x,

is an equivalence, where CF/x denotes the full subcategory of C/x spanned by morphisms to x

in CF , and FunF -cart
/C (CF/x,E) is the full subcategory of Fun/C(CF/x,E) spanned by functors that

preserve cartesian morphisms over CF .

Proof. We use the results on relative Kan extensions from [Lur09, § 4.3.2]. For every object
f : y → x of CF/x the ∞-category

{x}f/ := {x} ×CF
/x

(CF/x)f/  MapCF
/x

(f, idx)

is contractible, since idx is a terminal object in CF/x. Hence, a morphism

{x}�f/  Δ1 → E

is a p-limit if and only if it’s a cartesian morphism by [Lur09, Example 4.3.1.4]. It follows that a
functor Φ: CF/x → E over C is a p-right Kan extension from {x} if and only if for every f : y → x

in CF it takes the unique morphism f → idx (which is cartesian over f) to a cartesian morphism
in E. By the 3-for-2 property of cartesian morphisms this is equivalent to Φ preserving cartesian
morphisms over CF . Hence, [Lur09, Proposition 4.3.2.15] implies that, since E has p-cartesian
morphisms over CF , the functor Fun/C(CF/x,E)→ Fun/C({x},E) restricts to an equivalence from
the full subcategory FunF -cart

/C (CF/x,E). �

Construction 2.3.12. Since Yc corresponds to a right F -coadjointable functor, it has cartesian
morphisms over CF . Applying Lemma 2.3.11 to Yc and x = c, we see that there is a unique
commutative square

such that the top horizontal functor preserves cartesian morphisms over CF and takes idc in CF/c
to the identity morphism idi(c) in SPANF (C)(i(c), i(c))  Yc,c.

Now since Yc → C is also a cocartesian fibration, we can extend this to a unique functor from
the free cocartesian fibration [GHN17, Theorem 4.5]

Bc := CF/c ×C C[1] → C, (14)

giving a unique commutative triangle

where the horizontal functor preserves cocartesian morphisms and restricts to α−
c on CF/c.

Remark 2.3.13. To understand the (∞, 2)-category SPANF (C), we are going to show that
the functor αc is an equivalence. The explicit construction of the ∞-category Bc in (14)
allows us to unpack it easily, revealing the expected definition of spans. We carry this out as
follows.
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• An object of Bc consists of an object x
f−→ c in CF/c, i.e. a morphism f to c in CF , together with

a morphism from x in C; in other words, it is precisely a span

y
g←− x f−→ c

with f in CF . The functor (14) to C takes this to the object y.
• A morphism from this object to another object

y
g′←− x′ f ′−→ c

in the fibre By,c consists of a morphism

in C/c and a commutative triangle

in C, i.e. precisely a morphism of spans

• Moreover, the cocartesian morphism over y
η−→ y′ in C is given by composition in C[1] and so

takes the span

y
g←− x f−→ c

to
y′ ηg←− x f−→ c.

To prove that αc is an equivalence we want to use the universal property of Yc (i.e. the
Yoneda lemma) to produce a functor βc : Yc → Bc, which will be the inverse of αc. This requires
knowing the following.

Proposition 2.3.14. The functor Bc : C→ Cat∞ classifying the cocartesian fibration Bc → C

is right F -coadjointable.

Proof. For f : x→ y in C, let us denote the value of Bc at f by

f� : Bx,c → By,c;

here Bx,c can be identified with the fibre product C/x ×C CF/c, and the functor f� is given by
composing with f in the first factor, i.e.

x
g←− z → c 	→ y

f◦g←−− z → c.
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We first prove that the functor Bc → C is cartesian over CF . In other words, we must show that
for every morphism φ : y′ → y in CF , the functor

φ� : By′,c → By,c,

has a right adjoint, which we will denote by φ⊕. To see that φ� has a right adjoint it suffices

(by a reformulation of [Lur09, Lemma 5.2.4.1]) to show that for any span σ = (y
g←− x f−→ c) (f

in CF ), the ∞-category By′,c/σ := By′,c ×By,c By,c/σ has a terminal object.
An object of By′,c/σ is a commutative diagram of the form

(15)

More formally, we can identify By,c/σ with the full subcategory C/x ×C/c
CF/c of C/x spanned by

morphisms x′ → x such that x′ → x→ c is in CF . The fibre product By′,c/σ we can then identify
with the full subcategory of C/p, where p is the diagram y′ → y ← x, spanned by commutative
squares

such that the composite x′ → x→ c lies in CF . A terminal object in C/p is precisely a fibre
product x×y y′, which exists since by assumption C admits all pullback along φ. Moreover, this
terminal object lies in the full subcategory By′,c/σ since the projection x×y y′ → x is a base
change of φ and so lies in CF .

To complete the proof we must show that given a pullback square

(16)

in C with φ in CF , the Beck–Chevalley transformation

γ̃�φ̃⊕ → φ⊕γ�

is an equivalence. Evaluating at a span ỹ ← x→ c this transformation is given by the canonical
dashed map in the diagram

where the two squares containing squiggly arrows are cartesian. Since the square (16) is by
assumption cartesian, it follows from the pasting lemma for pullback squares that this is indeed
an equivalence. �
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Translating Proposition 2.3.8 through the equivalence of Lemma 2.3.9, we see that
Proposition 2.3.14 implies that any object X ∈ Bc over c′ ∈ C corresponds to a morphism
Yc′ → Bc. In particular, we have the following result.

Corollary 2.3.15. There is a canonical functor βc : Yc → Bc over C corresponding to the
identity span of c; this preserves cocartesian morphisms and cartesian morphisms over CF .

We now need to prove that the functor αc has the same property.

Proposition 2.3.16. The functor αc : Bc → Yc over C preserves cocartesian morphisms and
cartesian morphisms over CF .

Remark 2.3.17. For the proof we first need to discuss the naturality of Beck–Chevalley transfor-
mations in the following situation: suppose we have a commutative triangle of ∞-categories

where p and q have both cartesian and cocartesian morphisms over f : a→ b in B, but F does not
necessarily preserve these. We write f! for the cocartesian pushforward and f∗ for the cartesian
pullback along f for both p and q (so the functor f! is left adjoint to f∗). Then we can make the
following commutative diagrams for x ∈ Ea, y ∈ Eb.

(17)

In particular, the top left and bottom right squares here encode the compatibility of F with the
units and counits of the two adjunctions f! � f∗. Now suppose we have a commutative square

where p and q have cocartesian morphisms over f, f ′ and both cartesian and cocartesian mor-
phisms over g, g′. Then we claim that the two Beck–Chevalley transformations f ′! g

′∗ → g∗f!,
intertwined by F , are related by a commutative diagram

(18)
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This can be extracted from the following diagram, where we have used (17) together with
naturality:

Proof of Proposition 2.3.16. The universal property we used to define αc implies that it preserves
cocartesian morphisms. Moreover, since αc was extended from a functor CF/c → Yc that preserved
cartesian morphisms over CF , we know αc preserves cartesian morphisms in the image of CF/c.
In other words, for f : x→ c in CF , the map αc(φ⊕[h]F )→ φ⊕αc([h]F ) is an equivalence for all
φ : x′ → x in CF .

More generally, for a span σ = (y
g←− x f−→ c), we need to show that αc(φ⊕σ)  φ⊕αc(σ) for

any morphism φ : y′ → y in CF . To proceed, let us view σ as g�[f ]F .
Forming the pullback square

the Beck–Chevalley transformation yields an equivalence:

g′�ξ
⊕[f ]F

∼−→ φ⊕g�[f ]F .

Moreover, from (18) we get a natural commutative diagram
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where the map labelled (1) is an equivalence since αc preserves cartesian morphisms from CF/c,
those labelled (2) are equivalences since αc preserves cocartesian morphisms, and those labelled
(3) are equivalences because the Beck–Chevalley transformations are invertible. Hence, the last
morphism in the diagram is also an equivalence, which shows that αc preserves the cartesian
morphism φ⊕g�[f ]F → g�[f ]F . �

Corollary 2.3.18. The functors βc : Yc → Bc and αc : Bc → Yc satisfy

βcαc  idBc , αcβc  idYc .

Thus, αc is an equivalence with inverse βc.

Proof. By construction αc takes the identity span of c to

idc ∈ Yc,c  MAPSPANF,L(C)(i(c), i(c)).

The composite βcαc is a functor Bc → Bc that preserves cocartesian morphisms, hence it is
determined by its restriction to CF/c → Bc. This restriction preserves cartesian morphisms over
CF and so by Lemma 2.3.11 it is determined by its value at idc, which is the identity span
in Bc. The same holds for the identity of Bc and so idBc  βcαc. Conversely, αcβc is a
functor Yc → Yc that preserves cocartesian morphisms and cartesian morphisms over CF by
Proposition 2.3.16. By Proposition 2.3.8, interpreted in terms of fibrations, this functor is deter-
mined by where it sends the identity of c; since we know this is taken to itself, this functor must
be the identity idYc . �

The equivalence Yc  Bc allows us to identify morphisms in SPANF (C) with spans, and
2-morphisms with morphisms of spans. We now check that composition of spans works as
expected.

Proposition 2.3.19. Composition of spans in SPANF (C) is given by taking pullbacks.

Proof. By construction, the cocartesian morphisms in Yc encode precomposition with the images
of morphisms in Cop under the functor i: given a morphism g : x→ y in C we have

σ ◦ i(g)  g�σ

for any span σ. In particular, from our description of the right-hand side we have

i(g)  idx ◦ i(g)  g�(idx)  (y
g←− x == x)  [g]B,

and, more generally,

x
g←− y f−→ z  g�[f ]F  [f ]F ◦ [g]B.

This means that to describe an arbitrary composition in SPANF (C) it suffices (by associativity of
composition) to understand compositions of the form [g]B ◦ [f ]F . Note that [f ]B is in the image
of C

op
F under i, and therefore admits a left adjoint in SPANF (C) since i is left F -adjointable; let

us denote this by [f ]�B. We claim that

[f ]�B  [f ]F .

To see this, we note that precomposition with [f ]B is the functor f�, which admits a right
adjoint f⊕. Therefore, by uniqueness of adjoints we conclude that precomposition with [f ]�B
must coincide with f⊕. Therefore, the span [f ]�B is computed as

[f ]�B  f⊕(id)  [f ]F .
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Furthermore,

[g]B ◦ [f ]F  [g]B ◦ [f ]�B  f⊕[g]B,

which we saw above is computed by taking the pullback of g along f , as required. �

Proposition 2.3.20. A span σ = (y
g←− x f−→ z) is invertible as a morphism in SPANF (C) if and

only if the components f and g are both invertible in C.

Proof. Since we now know composition is given by taking pullbacks, this follows as in the proof
of [Hau18, Lemma 8.2]. �

Corollary 2.3.21. The functor i : Cop → SPANF (C) gives an equivalence on underlying
∞-groupoids

Cop,	 ∼−→ SPANF (C)	.

Proof. We know the functor i is essentially surjective on objects, so it is enough to show that
for any objects x, y the map

MapC(x, y)eq → MapSpanF (C)(ix, iy)
eq

is an equivalence, where we are taking the components of the mapping spaces that correspond
to equivalences. This is immediate from Proposition 2.3.20 and our description of the mapping
spaces in SpanF (C). �

Combining the results of this section, we have shown the following.

Theorem 2.3.22. Let (C,CF ) be a span triple. Then left F -adjointable functors out of Cop

are corepresented by an (∞, 2)-category SPANF (C) via a left F -adjointable functor i : Cop →
SPANF (C) with the following properties:

(i) i gives an equivalence

SPANF (C)	  C	

on underlying ∞-groupoids;
(ii) morphisms from i(x) to i(y) can be identified with spans

y
g←− x f−→ z

where f is in CF ;
(iii) 2-morphisms correspond to morphisms of spans diagrams; and
(iv) composition of morphisms is given by taking pullbacks.

We end this section by deducing a description of the functor of (∞, 2)-categories correspond-
ing to a left F -adjointable functor.

Proposition 2.3.23. For a left F -adjointable functor φ : Cop → X, the corresponding functor
Φ: SPANF (C)→ X can be described as follows.

(1) On objects, Φ(c)  φ(c) for c ∈ C.
(2) On morphisms, Φ takes a span

σ = (y
g←− x f−→ z)

to the composite f⊕g� : φ(x)→ φ(y), where f⊕ is the left adjoint to f� := φ(f).
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(3) On 2-morphisms, Φ takes the 2-morphism β : σ → σ′ given by the commutative diagram

to the composite

f⊕g�  f⊕h�g′�→ f⊕h�f ′�f ′⊕g
′�  f⊕f�f ′⊕g

′�→ f ′⊕g
′�, (19)

where the first noninvertible arrow is an adjunction unit and the second noninvertible arrow
is a counit.

Proof. We know that Φ ◦ i  φ and that i is an equivalence on underlying ∞-groupoids by
Corollary 2.3.21, which gives part (1). To prove part (2), observe that the bispan σ is the
composite [f ]F ◦ [g]B in SPANF (C). Here [g]B is i(g), and so

g� := Φ([g]B)  Φ(i(g))  φ(g).

Moreover, the span [f ]F is left adjoint to [f ]B, hence its image Φ([f ]F ) is the left adjoint f⊕ to f�.
In other words, we have Φ(σ)  Φ([f ]F ) ◦ Φ([g]B)  f⊕g�. To prove part (3), first observe that
the 2-morphism β is the composite (‘whiskering’) of the morphism [g′]B with the 2-morphism λ
given by

and this whiskering corresponds to the first equivalence in (19).
It thus suffices to show that Φ takes λ to the composite

f⊕h�→ f⊕h�f ′�f ′⊕  f⊕f�f ′⊕ → f ′⊕

using the unit for f ′⊕ � f ′� and the counit for f⊕ � f�. To show this we will check that the
morphism λ has the corresponding decomposition in SPANF (C). Indeed, we can decompose λ
as the composite

where π, π′ are the projections from x′ ×z x to x and x′, respectively, and φ is the unique
morphism such that πφ  idx, π′φ  h. Now unpacking the description of units and counits in
SPANF (C) implies that the top morphism in this decomposition is the composite of the unit for

[f ′]F � [f ′]B with the morphism x′ h←− x f−→ z and the bottom is the composite of [f ′]F with the
counit for [f ]F � [f ]B. �
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2.4 Distributive functors
We now start our discussion of distributivity. In this section we introduce the notion of a dis-
tributive functor, which we will prove in the next subsection is corepresented by (∞, 2)-categories
of bispans. For the definition we first need to introduce the notion of a distributivity diagram,
which dictates how the multiplicative and additive pushforwards for a distributive functor should
interact.

Definition 2.4.1. Let x l−→ y
f−→ z be morphisms in an ∞-category C. A distributivity diagram

for l and f is a commutative diagram

(20)

where the square is cartesian, with the property that for any morphism φ : u→ z, the composite
map

Map/z(φ, g)→ Map/y(f
∗φ, g̃) ε∗−→ Map/y(f

∗φ, l) (21)

is an equivalence. The distributivity diagram for l and f is necessarily unique if it exists.

Remark 2.4.2. Consider the ∞-category of diagrams of shape (20) (with the square cartesian).
If all pullbacks along f exist in C, then this is equivalently an object of the fibre product of
∞-categories

C/z ×C/y
C/x,

with the functors in the pullback being f∗ : C/z → C/y and l! : C/x → C/y. The universal property
of the distributivity diagram can then be reformulated as that of being a terminal object in this
∞-category.

Definition 2.4.3. A bispan triple (C,CF ,CL) consists of an ∞-category C together with two
subcategories CF ,CL such that the following assumptions hold:

(a) (C,CF ) is a span pair;
(b) (C,CL) is a span pair;
(c) for l : x→ y in CL and f : y → z in CF there exists a distributivity diagram (20) where g is

in CL (and, hence, f̃ is in CF by assumption (a) and g̃ is in CL by assumption (b)).

Notation 2.4.4. For x ∈ C we write CL/x for the full subcategory of C/x spanned by morphisms
y → x in CL.

Remark 2.4.5. For a fixed f : y → z in CF , if the distributivity diagram (20) exists for all l in CL,
then the functor f∗ : CL/z → CL/y given by pullback along f has a right adjoint f∗. Indeed, from
(21) we see that we have

(w
g−→ z)  f∗(x l−→ y),

which determines the rest of the diagram. Note, however, that if the ∞-category CL is not all of
C then the property of (21) is slightly stronger than the existence of the right adjoint: for this to
exist it suffices to consider maps from φ in CL/z, while (21) asks for an equivalence on maps from
any φ in C/z. We can characterize the additional assumption on these right adjoints needed to
have a bispan triple in terms of a base change property.
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Lemma 2.4.6. Suppose we have a triple (C,CF ,CL) consisting of an∞-category C together with
two subcategories CF ,CL such that:

(a) (C,CF ) is a span pair;
(b) (C,CL) is a span pair;
(c) for any f : x→ y in CF the functor f∗ : CL/y → CL/x given by pullback along f has a right

adjoint f∗.

Then (C,CF ,CL) is a bispan triple if and only if for every cartesian square

with f in CF the commutative square

is right adjointable, i.e. the mate transformation

η∗f∗ → f ′∗ξ
∗

is invertible.

Proof. First suppose we have a bispan triple. Then for l ∈ CL/x and l′ ∈ CL/y′ we have natural
equivalences

Map/y′(l
′, f ′∗ξ

∗l)  Map/x′(f
′∗l′, ξ∗l)  Map/x(ξ!f

′∗l′, l)

 Map/x(f
∗η!l

′, l)  Map/y(η!l
′, f∗l)

 Map/y(l
′, η∗f∗l),

using the functors η! and ξ! given by composition with η and ξ, respectively, which act as left
adjoints to η∗ and ξ∗ when pullbacks along η and ξ exist, and the full strength of condition
(21) for distributivity diagrams, which implies that we have the second-to-last equivalence even
though η!l

′ is not necessarily in CL.
Now suppose our triple satisfies the assumption on Beck–Chevalley transformations. To check

that it is a bispan triple we must show that for l : c→ x in CL and f : x→ y in CF the push-
forward f∗l has the universal property (21), i.e. that for every morphism η : y′ → y we have a
natural equivalence

Map/y(η, f∗l)  Map/x(f
∗η, l).

Denoting the pullback square containing η and f as above, we have

Map/y(η, f∗l)  Map/y(η!idy′ , f∗l)  Map/y′(idy′ , η
∗f∗l)

 Map/y′(idy′ , f
′
∗ξ

∗l)  Map/x′(f
′∗idy′ , ξ∗l)

 Map/x′(idx′ , ξ
∗l)  Map/x(ξ!idx′ , l)

 Map/x(f
∗η, l),

where the fourth equivalence holds because idy′ is in CL. �
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Remark 2.4.7. If C is locally cartesian closed, then all distributivity diagrams exist in C for any
choice of CL; this is the case if C is an ∞-topos, for example.

Notation 2.4.8. We use the following notation for a functor Φ: SpanF (C)→ X: for any morphism
f : x→ y in C, we write

f� := Φ([f ]B) : Φ(y)→ Φ(x),

and if f lies in CF we also write

f⊗ := Φ([f ]F ) : Φ(x)→ Φ(y).

For the next definitions we fix a bispan triple (C,CF ,CL), an (∞, 2)-category X, and a functor

Φ: SpanF (C)→ X.

Definition 2.4.9. Given l : x→ y in CL and f : y → z in CF , we have by assumption a dis-
tributivity diagram as in (20) in C. If Φ|Cop is left L-adjointable we define the distributivity
transformation for l and f as the composite

g⊕f̃⊗ε�→ g⊕f̃⊗ε�l�l⊕  g⊕f̃⊗g̃�l⊕  g⊕g�f⊗l⊕ → f⊗l⊕, (22)

where the first map uses the unit for the adjunction l⊕ � l�, the second equivalence uses the
functoriality of Φ for compositions of spans, and the last map uses the counit of the adjunction
g⊕ � g�.

Definition 2.4.10. We say the functor Φ is L-distributive if Φ|Cop is left L-adjointable, and the
distributivity transformation (22) is an equivalence for all l in CL and f in CF . If the context is
clear, we simply call Φ distributive. We write

MapL-dist(SpanF (C),X) ⊂ MapCat(∞,2)
(SpanF (C),X),

for the subspace spanned by the L-distributive functors.

Remark 2.4.11. The distributivity transformation (22) is precisely the mate transformation for
the following commutative square:

(23)

We can therefore reformulate the condition for the functor Φ to be L-distributive as: for every
distributivity diagram (20), the square (23) is left adjointable.

Variant 2.4.12. Let (C,CF ,CL) be a bispan triple and X an (∞, 2)-category. We say that a
functor Φ: SpanF (C)op → X is L-codistributive if the opposite functor

Φop : SpanF (C)→ Xop

is L-distributive. Similarly, we say that a functor Φ: SpanF (C)→ X is right L-distributive if the
functor

SpanF (C)  SpanF (C)2-op Φ2-op−−−→→ X2-op

is L-distributive. Since left adjoints in X2-op correspond to right adjoints in X, this amounts to:
for every morphism l ∈ CL the morphism l� has a right adjoint l�, and the restriction of Φ to
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Cop → X is right L-adjointable. Moreover, given a distributivity diagram as in (20) with l in CL
and f in CF , we have a right distributivity transformation

f⊗l�→ g�g�f⊗l�  g�f̃⊗ε�l�l�→ g�f̃⊗ε�,

which is required to be an equivalence.

Just as for adjointability, there is a natural notion of an L-distributive transformation.

Definition 2.4.13. By Proposition 2.1.5, an L-distributive functor SpanF (C)→ XΔ1
corre-

sponds to a natural transformation

η : SpanF (C)×Δ1 → X

such that both η0 and η1 are L-distributive functors, and the mate square for the
required left adjoints commutes. We call such a natural transformation an L-distributive
transformation. We let FunL-dist(SpanF (C),X) denote the subcategory of Fun(SpanF (C),X) con-
sisting of L-distributive functors and L-distributive transformations. From Proposition 2.1.5 we
also know that a functor SpanF (C)→ XC2 is L-distributive if and only if its underlying functors
and natural transformations to X are L-distributive, i.e. if and only if the adjoint morphism

C2 → FUN(SpanF (C),X)

factors through FunL-dist(SpanF (C),X) on underlying ∞-categories. We therefore write
FUNL-dist(SpanF (C),X) for the locally full subcategory of FUN(SpanF (C),X) whose underlying
∞-category is FunL-dist(SpanF (C),X).

Proposition 2.4.14. For any (∞, 2)-category Y there is a natural equivalence

MapCat(∞,2)
(Y,FUNL-dist(SpanF (C),X))  MapL-dist(SpanF (C),FUN(Y,X)).

Proof. We claim that the two sides are identified under the natural equivalence

MapCat(∞,2)
(Y,FUN(SpanF (C),X))  Map(SpanF (C),FUN(Y,X)).

Indeed, the subspace MapCat(∞,2)
(Y,FUNL-dist(SpanF (C),X)) of the left-hand side consists of

those functors Φ: Y→ FUN(SpanF (C),X) such that for every object y ∈ Y the image Φ(y) is
an L-distributive functor and for every morphism f : y → y′ the image Φ(f) is an L-distributive
natural transformation. Since the distributivity transformation is given pointwise by distribu-
tivity transformations in X, and equivalences in FUN(Y,X) are detected by evaluation at all
objects of Y, these conditions precisely correspond to L-distributivity for the adjoint functor
SpanF (C)→ FUN(Y,X) by Proposition 2.1.5. �

2.5 The (∞, 2)-category of bispans
Our goal in this subsection is to prove our main theorem.

Theorem 2.5.1. Suppose (C,CF ,CL) is a bispan triple. Then there exists an (∞, 2)-category
BISPANF,L(C) equipped with an L-distributive functor

j : SpanF (C)→ BISPANF,L(C)

such that:

(i) composition with j gives an equivalence

FUN(BISPANF,L(C),X) ∼−→ FUNL-dist(SpanF (C),X)

for any (∞, 2)-category X;
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(ii) on underlying ∞-groupoids j gives an equivalence

C	  SpanF (C)	 ∼−→ BISPANF,L(C)	;

(iii) morphisms in BISPANF,L(C) are bispans

with f in CF and l in CL, with composition given by (5);
(iv) 2-morphisms in BISPANF,L(C) are given by diagrams of the form (6).

In order to prove this we will reinterpret the notion of distributivity as a special case of left
adjointability, as follows.

Theorem 2.5.2. Suppose (C,CF ) is a span pair:

(1) (C,CF ,CL) is a bispan triple if and only if (SpanF (C)op,CL) is a span pair;
(2) if case (1) holds, a functor Φ: SpanF (C)→ X is L-distributive if and only if it is left

L-adjointable.

Given this, the universal property we want is precisely that of the (∞, 2)-category
SPANL(SpanF (C)op); this amounts to interpreting a bispan as a ‘span in spans’:

The observation that the composition law for bispans can be interpreted as a pullback in spans
is due to Street [Str20]. To prove this in our ∞-categorical setting we must first describe certain
pullback squares in SpanF (C)op.

Notation 2.5.3. Let us write Sq(C) := Fun([1]× [1],C) for the ∞-category of squares in an
∞-category C, and given two morphisms f, g in C with common codomain we write Sqf,g(C)
for the fibre of Sq(C) at (f, g) ∈ Fun(Λ2

2,C) (where we view [1]× [1] as (Λ2
2)
�). Then a pullback

of f and g is precisely a terminal object in Sqf,g(C). Note also that evaluation at the initial
object in [1]× [1] gives a right fibration Sqf,g(C)→ C.

Notation 2.5.4. We can identify SpanF (C)op as the∞-category of spans in C where the backwards
map must lie in CF , with composition given by pullbacks in C as usual. To emphasize this,
we will use the notation

SpanF,all(C) := SpanF (C)op.

For f : x→ y in CF , we then write [f ]B for the morphism y
f←− x =−→ x in SpanF,all(C), and for

any f in C we write [f ]F for the span x =←− x f−→ y.

Remark 2.5.5. A square in SpanF,all(C) can then be identified with a diagram of the shape
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where the two indicated squares are cartesian and the backwards maps all lie in CF . Composing
this with a span (indicated by squiggly arrows) we get the diagram

(24)

which exhibits a cartesian morphism in Sqφ,ψ(SpanF,all(C)) where φ and ψ are the bottom and
right sides of the square.

Warning 2.5.6. To avoid cluttering the notation too much in the many diagrams that follow,
throughout this section we will often abuse notation and denote as identities what should more
correctly be arbitrary equivalences; the justification for this is that in each case we are really
looking at a contractible space of diagrams that has the diagram with identities as one of its
points.

Remark 2.5.7. As a special case of Remark 2.5.5, we can identify objects of Sqσ,[g]F (SpanF,all(C))
with diagrams of the form

where σ is the bottom span. We can simplify this to

(25)

where the map φ is required to lie in CF . Simplifying (24) similarly, we see that the cartesian
morphism in Sqσ,[g]F (SpanF,all(C)) over a span is given by a diagram of the form

(26)

where the squiggly arrows indicate the source object, the dashed arrows indicate the target
object, and the double arrows indicate the span we compose with.

The following observation will be useful to describe both classes of pullbacks we are
interested in.
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Lemma 2.5.8. Suppose the diagram

is a terminal object in Sqσ,[g]F (SpanF,all(C)), where σ is the bottom span. Then φ is an
equivalence.

Proof. The diagram

is also an object of Sqσ,[g]F (SpanF,all(C)), and so there exists a unique span

y
α←− u β−→ z

with α in CF , such that composing the terminal object with the span gives this object, i.e. we
have a diagram

But this means that if we compose the terminal object with the span z
φα←−− u β−→ z, then we get

the terminal object back. Hence, by uniqueness this span must be equivalent to the identity span
of z. Thus, we may take u = z, and under this identification φα and β are identified with idz. We
may then identify the pullback φ′ with φ, so that we have αφ  idy as well as φα  idy. Thus,
φ is indeed an equivalence. �
Remark 2.5.9. Specializing Remark 2.5.7 further, we can identify objects of

Sq[f ]F ,[g]F (SpanF,all(C))

with diagrams of the form

which we can simplify to

(27)

where the top left arrow is required to lie in CF . Simplifying (26) similarly, we see that
the cartesian morphism in Sq[f ]F ,[g]F (SpanF,all(C)) over a span is given by a diagram of
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the form

(28)

where the squiggly arrows indicate the source object, the dashed arrows indicate the target
object, and the double arrows indicate the span we compose with.

Proposition 2.5.10. Let (C,CF ) be a span pair. Given morphisms f : a→ c and g : b→ c in C,
the fibre product of [f ]F and [g]F exists in SpanF,all(C) if and only if the fibre product d := a×c b
of f and g exists in C, in which case it is given by the diagram

Proof. By Lemma 2.5.8 we know that a terminal object of Sq[f ]F ,[g]F (SpanF,all(C)), if it exists,
must be of the form

(29)

Now observe that composing (29) with a span z α←− y β−→ x, we obtain the object

Thus, an object

of Sq[f ]F ,[g]F (SpanF,all(C)) has a unique map to (29) if and only if there is a unique diagram

in C. This is true for all objects of Sq[f ]F ,[g]F (SpanF,all(C)) if and only if the square in (29) is
cartesian in C, which is what we wanted to prove. �
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Remark 2.5.11. Returning to Remark 2.5.7, an object of Sq[f ]B ,[g]F (SpanF,all(C)) can be identified
with a diagram

which we can simplify to

(30)

Composing this with a span gives, by simplifying (26), a diagram of the form

(31)

with the squiggly arrows indicating the source object, the dashed arrows the target object, and
the double arrows the span we compose with.

Proposition 2.5.12. Let (C,CF ) be a span pair. Given morphisms g : a→ b in C and f : b→ c
in CF , the fibre product of [f ]B and [g]F exists in SpanF,all(C) if and only if there exists a
distributivity diagram

in C, in which case it is given by the diagram
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Proof. By Lemma 2.5.8, a terminal object of Sq[f ]B ,[g]F (SpanF,all(C)), if it exists, must necessarily
be of the form

(32)

Composing this diagram with a span y
β←− z γ−→ w, we see from (28) that we get the outer part

of the diagram

Thus, from Remark 2.4.2 we get that every object of Sq[f ]B ,[g]F (SpanF,all(C)) admits a unique
morphism to an object (32) if and only if this is given by a distributivity diagram in C, as
required. �

Proof of Theorem 2.5.2. Every morphism in SpanF,all(C) is a composite of morphisms of the
form [f ]B (with f in CF ) and [g]F . Thus, (SpanF,all(C),CL) is a span pair if and only if for
all l in CL the pullbacks of [l]F along [g]F and [f ]B exist for all g in C and f in CF , and
these pullbacks lie in CL. From Propositions 2.5.10 and 2.5.12 we see that these conditions are
equivalent to (C,CF ,CL) being a bispan triple, which proves part (1). To prove part (2), observe
that since adjointable squares compose, the functor Φ is left L-adjointable if and only if we get
left adjointable squares for both types of pullbacks along morphisms in CL separately. From
Proposition 2.5.10 adjointability for the first type corresponds to Φ|Cop being left L-adjointable,
and adjointability for the second type then corresponds to L-distributivity by Remark 2.4.11. �

Definition 2.5.13. In light of Theorem 2.5.2, if (C,CF ,CL) is a bispan triple it makes sense to
define

BISPANF,L(C) := SPANL(SpanF (C)op).

Notation 2.5.14. In keeping with our conventions so far, we will denote the underlying
∞-category of BISPANF,L(C) by

BispanF,L(C) := BISPANF,L(C)(1).

In examples we will often have CL  C, in which case we abbreviate BISPANF (C) :=
BISPANF,L(C). If we also have CF  C, we write BISPAN(C) for BISPANF (C). We also adopt
the same conventions for the ∞-category of bispans BispanF,L(C).

Applying Corollary 2.3.5, we obtain the following result.
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Corollary 2.5.15. Let (C,CF ,CL) be a bispan triple. The∞-category BISPANF,L(C) satisfies

FUN(BISPANF,L(C),X)  FUNL-dist(SpanF (C),X)

for any (∞, 2)-category X.

This proves part (i) of Theorem 2.5.1. We now prove the remainder.

Proof of Theorem 2.5.1. Part (ii) is immediate from Corollary 2.3.21. A morphism in
SPANL(SpanF,all(C)) is a ‘span of spans’

with f in CF and l in CL, which we can think of as a bispan by contracting the identity. To
compose these we take pullbacks in SpanF,all(C), which we can unpack to give the expected
composition law for bispans using Propositions 2.5.10 and 2.5.12. Unpacking the definition of a
2-morphism in SPANL(SpanF,all(C)), we get a diagram

where the upward-pointing map is necessarily an equivalence, as indicated. Contracting the
invertible edges, we get a diagram of shape (6), as required. �

The universal property also implies that our (∞, 2)-categories of bispans are functorial for
morphisms of bispan triples, in the following sense.

Definition 2.5.16. A morphism of bispan triples (C,CF ,CL)→ (C′,C′
F ′ ,C′

L′) is a functor
φ : C→ C′ such that φ(CF ) ⊆ C′

F ′ , φ(CL) ⊆ C′
L′ , and φ preserves pullbacks along CF and CL as

well as distributivity diagrams. We define Trip to be the subcategory of Fun(Λ2
2,Cat∞) containing

the bispan triples and the morphisms thereof.

Proposition 2.5.17. There is a functor BISPAN: Trip→ Cat(∞,2) that takes (C,CF ,CL) to
BISPANF,L(C).

Proof. Composition with a morphism of bispan triples φ : (C,CF ,CL)→ (C′,C′
F ′ ,C′

L′) restricts
for any (∞, 2)-category X to a morphism

MapL′-dist(SpanF ′(C′),X)→ MapL-dist(SpanF (C),X),

so we get a functor

Map(–)-dist(Span(–)(–), –) : Tripop × Cat(∞,2) → S.
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By Theorem 2.5.1 the associated functor Tripop → Fun(Cat(∞,2), S) factors through the full sub-
category of corepresentable copresheaves, and so by the Yoneda lemma arises from a functor
BISPAN: Trip→ Cat(∞,2), as required. �

Applying Proposition 2.3.23 to SPANL(SpanF,all(C), we obtain the following description of
the functor of (∞, 2)-categories corresponding to a distributive functor.

Corollary 2.5.18. For an L-distributive functor φ : SpanF (C)→ X, the corresponding functor
Φ: BISPANF,L(C)→ X can be described as follows.

(1) On objects, Φ(c)  φ(c) for c ∈ C.
(2) On morphisms, Φ takes a bispan

B = (x s←− e f−→ b
l−→ y)

to the composite l⊕f⊗s� : φ(x)→ φ(y), where l⊕ is the left adjoint to l�.
(3) On 2-morphisms, Φ takes the 2-morphism β : B → B′ given by the commutative diagram

to the composite

l⊕f⊗s�  l⊕f⊗g�s′�  l⊕h�f ′⊗s
′�→ l⊕h�l′�l′⊕f

′
⊗s

′�  l⊕l�l′⊕f ′⊗s′�→ l′⊕f
′
⊗s

′�,

where the first noninvertible arrow is a unit and the second noninvertible arrow is a counit.

We end this section with some useful observations about distributivity diagrams that follow
easily from Proposition 2.5.12.

Lemma 2.5.19. Let (C,CF ,CL) be a bispan triple, and suppose given morphisms l1 : x→ y and
l2 : y → z in L and f : z → w in F . Then we can make the following diagram:

(33)

Here all three squares are cartesian and the two rightmost give distributivity diagrams (so
g2 = f∗l2, g1 = f ′∗l′1). Then the outer diagram is a distributivity diagram for l2l1 and f .

Proof. This follows immediately from the pasting lemma for pullback squares applied to [l2l1]F 
[l2]F ◦ [l1]F and [f ]B in SpanF,all(C). �
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Lemma 2.5.20. Let (C,CF ,CL) be a bispan triple, and suppose given morphisms l : x→ y in L
and f1 : y → z, f2 : z → w in F . Then we can make the following diagram:

(34)

Here all three squares are cartesian and two give distributivity diagrams (exhibiting g1 = f1,∗l
and g2 = f2,∗g1. Then the outer diagram is a distributivity diagram for l and f2f1. (Note that
the composite square is indeed cartesian since the two left squares are cartesian and the middle
triangle just exhibits g′2 as a composite.)

Proof. This is the pasting lemma for pullback squares applied to [f2f1]B  [f1]B ◦ [f2]B
and [l]F . �

Lemma 2.5.21. Let (C,CF ,CL) be a bispan triple, and suppose we have morphisms
l : x→ y in CL, f : y → z in CF and an arbitrary morphism ζ : z′ → z. Then we can form the
diagram

(35)

where the front face is a distributivity diagram for l and f , and the rest of the diagram is obtained
by pulling this back along ζ. Then the back face in (35) is a distributivity diagram for l′ and f ′.

Proof. This follows yet again from the pasting lemma for pullback squares, now applied to the
pullback of [l]F along [f ]B ◦ [ζ]F  [η]F ◦ [f ′]B. �

The following proposition can be interpreted as saying that distributivity transformations
are compatible with base change.

Proposition 2.5.22. Let (C,CF ,CL) be a bispan triple, and suppose we have the diagram (35).
Then the distributivity transformations for (l, f) and (l′, f ′) are related by a commutative square
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of the form

(36)

Proof. We have the following commutative cube:

This means the following pair of diagrams are identified under the equivalences f ′⊗η�  ζ�f⊗,
h′⊗ε′�ξ�  ω�h⊗ε� given by the left and right faces of the cube:

We get a corresponding identification of the mates of the outer squares in these two diagrams,
which, in turn, decompose (since mate transformations are compatible with vertical pasting of
squares) into the mates of the two smaller squares; according to Remark 2.4.11 these are the
base change transformation g′⊕ω�→ ζ�g⊕ and the distributivity transformation for (l, f) on
the left, and the distributivity transformation for (l′, f ′) and the base change transformation
l′⊕ξ�→ η�l⊕ on the right. This identification gives precisely a commutative diagram

which we can reorganize into the commutative diagram in the statement. �
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2.6 Symmetric monoidal structures
In this subsection we will prove that the functor SPAN: Pair→ Cat(∞,2) preserves products.
Applying this in the special case of bispans, we will see that in some cases a symmetric monoidal
structure on C induces a symmetric monoidal structure on BISPANF,L(C), and also show that
BISPAN(–) is a functor of (∞, 2)-categories. The construction of symmetric monoidal structures
on spans is also discussed in [GR17, Part III, Chapter 9] (where it is used to encode Serre
duality for Ind-coherent sheaves) and [Mac22, § 3.2]. An explicit construction (not relying on the
universal property) of symmetric monoidal structures on ∞-categories of spans is also given in
[BGS20].

Proposition 2.6.1. The ∞-categories Pair and Trip have finite products, given by

(C,CF )× (C′,C′
F ′)  (C× C′,CF × C′

F ′),

(C,CF ,CL)× (C′,C′
F ′ ,C′

L′)  (C× C′,CF × C′
F ′ ,CL × C′

L′).

Proof. It follows from the definition of Pair that the morphism

MapPair((C,CF ), (C′,C′
F ′))→ MapCat∞(C,C′)

is a monomorphism (and similarly for Trip), so it suffices to show that for any span pair (D,DF )
(or bispan triple (D,DF ,DL)) a functor D→ C× C′ is a morphism of span pairs (or bispan
triples) if and only if the functors D→ C and D→ C′ are both morphisms of span pairs (or
bispan triples). This is clear, since a pair of cartesian squares in C and C′ gives a cartesian square
in C× C′ and vice versa, and similarly for distributivity diagrams. �

Proposition 2.6.2. Suppose (C,CF ) and (C′,C′
F ′) are span pairs. Then a functor Φ: Cop ×

C′op → X is left (F, F ′)-adjointable if and only if it is left adjointable in each variable, that is:

• for every c ∈ C, the functor Φ(c, –) is left F ′-adjointable;
• for every c′ ∈ C′, the functor Φ(–, c′) is left F -adjointable;
• for every morphism c1 → c2 in C, the transformation Φ(c2, –)→ Φ(c1, –) is left F ′-adjointable;
• for every morphism c′1 → c′2 in C′, the transformation Φ(–, c′2)→ Φ(–, c′1) is left F -adjointable.

Proof. We first observe that Φ is left (F, F ′)-preadjointable if and only if (f, idc′)� has a left
adjoint for all f in F and c′ in C′, and (idc, f ′)� has a left adjoint for all c in C and f ′ in F ′,
since (f, f ′)�  (f, id)�(id, f ′)� and left adjoints compose. Thus, Φ is left (F, F ′)-preadjointable
if and only if Φ(c, –) is left F ′-preadjointable for all c ∈ C and Φ(–, c′) is left F -preadjointable
for all c′ in C′.

A pair of cartesian squares gives a cartesian square in C× C′, so if Φ is left (F, F ′)-
preadjointable then it is left (F, F ′)-adjointable if and only if for cartesian squares

with f in CF and f ′ in C′
F ′ , the square

(37)
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is left adjointable. Taking f = g = idc this implies that Φ(c, –) is left F ′-adjointable, while
taking f ′ = idy′ and f = idy we see that the transformation Φ(g, –) : Φ(y, –)→ Φ(z, –) is left
F ′-adjointable. The same goes in the other variable, so if Φ is left (F, F ′)-adjointable, then the
four given conditions hold.

Conversely, if these conditions hold, then we want to show that the square (37) is left
adjointable. We can decompose this square into the following commutative diagram:

Here all four squares are left adjointable:

• the top left square since Φ(–, y′) is left F -adjointable;
• the top right square since Φ(u, –) is a left F ′-adjointable transformation;
• the bottom left square since Φ(–, g′) is a left F -adjointable transformation;
• the bottom right square since Φ(w, –) is left F ′-adjointable.

Since mate transformations are compatible with horizontal and vertical compositions of squares,
left adjointable squares are closed under both horizontal and vertical compositions. Thus, the
outer square (37) is left adjointable, which completes the proof. �

Corollary 2.6.3. Suppose (C,CF ) and (C′,C′
F ′) are span pairs. Then there is a natural

equivalence

Map(F,F ′)-ladj(C
op × C′op,X)  MapF -ladj(C

op,FUNF ′-ladj(C′op,X))

for X ∈ Cat(∞,2).

To prove this we also need the following lemma.

Lemma 2.6.4. Suppose (C,CF ) is a span pair. A morphism η : φ→ ψ in the (∞, 2)-category
FUNF -ladj(Cop,X) has a left adjoint if and only if:

(1) the morphism ηc : φ(c)→ ψ(c) has a left adjoint in X for every c ∈ C;
(2) the commutative square

is left adjointable for every morphism c→ c′ in C. Moreover, a commutative square

in FUNF -ladj(Cop,X) is left adjointable if and only if the commutative square in X obtained by
evaluation at c is left adjointable in X for every c ∈ C.
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Proof. By Corollary 2.3.5 we have an equivalence

FUNF -ladj(Cop,X)  FUN(SPANF (C),X).

Suppose H : Φ→ Ψ is the morphism corresponding to η : φ→ ψ under this equivalence. Then
we know that H has a left adjoint if and only if:

• Hc : Φ(c)→ Ψ(c) has a left adjoint for every c ∈ C;
• the square

is left adjointable for every morphism c1 → c2 in SPANF (C). In terms of η, these conditions say

that ηc has a left adjoint for every c ∈ C, and for every span c1
g←− x f−→ c2 with f in F , the outer

square in the diagram

is left adjointable. Since left adjointable squares compose, and the two squares here are those
associated to spans where one leg is the identity, it is equivalent to require these two squares to
be left adjointable. For the top square this is the condition we want, while the bottom square is
automatically left adjointable since its mate is obtained by passing to left adjoints everywhere
in the commutative square

Since the mate of a square of natural transformations is given by taking mates objectwise, the
characterization of left adjointable squares is immediate. �

Proof of Corollary 2.6.3. Unpacking definitions, a functor Φ: Cop × C′op → X corresponds to a
functor Cop → FunF ′-ladj(C′op,X) if and only if Φ(c, –) is a left F ′-adjointable functor for every
c ∈ C, and Φ(c2, –)→ Φ(c1, –) is a left F ′-adjointable transformation for every morphism c1 → c2
in C.

Moreover, it follows from Lemma 2.6.4 that such a functor

Cop → FunF ′-ladj(C′op,X)  Fun(SPANF ′(C′),X)

is left F -adjointable precisely when the following conditions hold:

• for every morphism f : c1 → c2 in F and every object c′ ∈ C′, the morphism
(f, id)� : Φ(c2, c′)→ Φ(c1, c′) has a left adjoint;
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• for every morphism f : c1 → c2 in F and every morphism c′1 → c′2 in C′, the commutative
square

is left adjointable;
• for every pullback square

in C with f in F , the commutative square

is left adjointable.

These conditions say precisely that Φ(–, c′) is a left F -adjointable functor for every c′ ∈ C′ and
Φ(–, c′2)→ Φ(–, c′1) is a left F -adjointable transformation for every morphism c′1 → c′2 in C′. We
have thus shown that a functor Φ: Cop × C′op → X corresponds to a left F -adjointable functor
Cop → FunF ′-ladj(C′op,X) if and only if it satisfies the four conditions that we saw characterized
left (F, F ′)-adjointable functors in Proposition 2.6.2. �

From Corollary 2.6.3 we can now deduce that spans preserve products.

Corollary 2.6.5. Suppose (C,CF ) and (C′,C′
F ′) are span pairs. Then the natural morphism

SPAN(F,F ′)(C× C′)→ SPANF (C)× SPANF ′(C′)

is an equivalence.

Proof. For X an (∞, 2)-category we have natural equivalences

Map(SPAN(F,F ′)(C× C′),X)  Map(F,F ′)-ladj(C
op × C′op,X)

 MapF -ladj(C
op,FUNF ′-ladj(C′op,X))

 MapF -ladj(C
op,FUN(SPANF ′(C′),X))

 Map(SPANF (C),FUN(SPANF ′(C′),X))

 Map(SPANF (C)× SPANF ′(C′),X). �

Corollary 2.6.6. Suppose (C,CF ) is a span pair and C has a (symmetric) monoidal structure
such that the tensor product functor is a morphism of span pairs

⊗ : (C× C,CF × CF )→ (C,CF ),
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i.e. given morphisms f : x→ y and f ′ : x′ → y′ in F , the morphism f ⊗ f ′ : x⊗ x′ → y ⊗ y′ is
also in F , and given a pair of pullback squares

with f and f ′ in CF , the commutative square

is cartesian. Then SPANF (C) inherits a (symmetric) monoidal structure from that on C.

Proof. Since the functor SPAN preserves products, it takes (commutative) algebras in span pairs
to (commutative) algebras in (∞, 2)-categories. �

Example 2.6.7. Suppose (C,CF ) is a span pair where C has finite products and morphisms in CF
are closed under products. Products of cartesian squares are always cartesian, so in this case
Corollary 2.6.6 implies that the cartesian product induces a symmetric monoidal structure on
SPANF (C). This recovers the discussion in [GR17, Chapter 9, 2.1] and some cases of [BGS20,
Theorem 2.15].

Definition 2.6.8. We say an ∞-category C is extensive if C has finite coproducts and these
satisfy descent in the sense that the coproduct functor

� :
n∏
i=1

C/xi
→ C/

∐n
i=1 xi

is an equivalence. (Equivalently, pullbacks of the component inclusions in finite coproducts always
exist, and coproducts are disjoint and stable under pullback.)

Example 2.6.9. Suppose (C,CF ) is a span pair where C has finite coproducts and morphisms
in CF are closed under coproducts. If C is extensive, then coproducts of cartesian squares are
again cartesian. Hence, in this case the coproduct induces a symmetric monoidal structure on
SPANF (C) by Corollary 2.6.6. The descent condition is satisfied, for instance, if C is an∞-topos,
or in the category of sets. See also [Bar17, § 4], where C is called ‘disjunctive’ if C is extensive and
has pullbacks; in this case the coproduct in C gives both the product and coproduct in Span(C)
by [Bar17, Proposition 4.3].

Specializing the preceding discussion to bispans, we obtain the following result.

Corollary 2.6.10. Suppose (C,CF ,CL) and (C′,C′
F ′ ,C′

L′) are bispan triples. Then the natural
morphism

BISPAN(F,F ′),(L,L′)(C× C′)→ BISPANF,L(C)× BISPANF ′,L′(C′)

is an equivalence.

Proof. From Corollary 2.6.5 we get a product of span pairs

(SpanF (C)op,CL)× (SpanF ′(C′)op,C′
L′)  (Span(F,F ′)(C× C′),CL × C′

L′),
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and, hence, using Corollary 2.6.5 again we have

SPAN(L,L′)(Span(F,F ′)(C× C′)op)  SPANL(SpanF (C)op)× SPANL′(SpanF ′(C′)op),

as required. �
Corollary 2.6.11. Suppose (C,CF ,CL) is a bispan triple and C has a (symmetric) monoidal
structure such that the tensor product is a morphism of bispan triples

⊗ : (C× C,CF × CF ,CL × CL)→ (C,CF ,CL),

that is:

(1) both CF and CL are closed under ⊗;
(2) given a pair of pullback squares

with f and f ′ either both in F or both in L, the commutative square

is cartesian;
(3) given morphisms f : x→ y, f ′ : x′ → y′ in CL and g : y → z, g′ : y′ → z′, the diagram

obtained as the tensor product of the distributivity diagrams for (f, g) and (f ′, g′), is a
distributivity diagram for (f ⊗ f ′, g ⊗ g′).8

Then BISPANF,L(C) inherits a (symmetric) monoidal structure from that on C.

Example 2.6.12. Suppose (C,CF ,CL) is a bispan triple such that C is extensive and mor-
phisms in CF and CL are closed under coproducts. Then the coproduct satisfies the conditions
of Corollary 2.6.11: The descent condition implies that coproducts of cartesian squares are
cartesian, and the condition on distributivity diagrams amounts to asking for the natural
map

g∗f � g′∗f ′ → (g � g′)∗(f � f ′)

8 Note that the previous condition implies that the square in this diagram is cartesian; the condition can therefore
be interpreted as asking for the natural map

g∗f ⊗ g′
∗f

′ → (g ⊗ g′)∗(f ⊗ f ′)

arising from this cartesian square to be an equivalence.
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to be an equivalence; this is true because by descent we have

Map/z�z′(u� u′, g∗f � g′∗f ′)  Map/z(u, g∗f)×Map/z′(u
′, g′∗f

′)

 Map/y(g
∗u, f)×Map/y′(g

′∗u′, f ′)

 Map/y�y′(g
∗u� g′∗u′, f � f ′)

 Map/y�y′((g � g′)∗(u� u′), f � f ′)
 Map/y�y′(u� u′, (g � g′)∗(f � f ′)).

for an object u� u′ over z � z′. The coproduct therefore induces a symmetric monoidal structure
on BISPANF,L(C).9

Remark 2.6.13. Suppose C is a locally cartesian closed and extensive ∞-category. Then the
symmetric monoidal structure on Bispan(C) induced by the coproduct in C is a cartesian product:
we have

MapBispan(C)(c, x� y)  {c← a→ b→ x� y}
 {c← ax � ay → bx � by → x� y}
 {c← ax → bx → x} × {c← ay → by → y}
 MapBispan(C)(c, x)×MapBispan(C)(c, y).

Moreover, we have the same identification for ∞-categories of morphisms, so this is actually an
(∞, 2)-categorical product. However, this is not a coproduct in bispans: in particular, ∅ is not
an initial object, since we have

MapBispan(C)(∅, x)  {∅ ← ∅ → b→ x}  C	
/x

which is not, in general, contractible.

Remark 2.6.14. For any ∞-category C we can consider the minimal bispan triple C :=
(C,C	,C	) where the morphisms in CF and CL are just the equivalences. Any functor gives
a morphism of minimal bispan triples, so we have a functor

(–) : Cat∞ → Trip

that is, moreover, fully faithful. The ∞-category Trip is then a Cat∞-module via cartesian
products with (–). We also have a natural equivalence BISPAN(C)  C as all functors are dis-
tributive. This means the functor BISPAN: Trip→ Cat(∞,2) is a morphism of Cat∞-modules,
which we can view as a functor of (∞, 2)-categories using the recent results of Heine [Hei23].
Moreover, the natural transformation SpanF (C)→ BISPANF,L(C) is a transformation of
Cat∞-modules, which means the universal property of BISPANF,L(C) is actually Cat∞-natural.

3. Examples of distributivity

3.1 Bispans in finite sets and symmetric monoidal ∞-categories
In this subsection we consider the relationship between symmetric monoidal ∞-categories and
bispans in finite sets. We first recall that symmetric monoidal ∞-categories can be described in
terms of functors from spans of finite sets, and then show that the resulting functor is distributive
if and only if the tensor product commutes with finite coproducts in each variable. Our universal

9 However, the cartesian product in C does not typically give a symmetric monoidal structure on bispans: we do
not , in general, have an equivalence between g∗f × g′

∗f
′ and (g × g′)∗(f × f ′).
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property then gives a (product-preserving) functor from bispans in finite sets, which we can
interpret as a semiring structure with the coproduct as addition and the tensor product as
multiplication.

Notation 3.1.1. We write F for the category of finite sets and F∗ for the category of finite pointed
sets and base-point-preserving maps; every object of F∗ is isomorphic to one of the form 〈n〉 :=
({0, . . . , n}, 0). For I ∈ F we write I+ for the pointed set (I � {∗}, ∗) obtained by adding a disjoint
base point to I.

Definition 3.1.2. If C is an ∞-category with finite products, a commutative monoid in C is a
functor Φ: F∗ → C such that for every n = 0, 1, . . . the map

Φ(〈n〉) (Φ(ρi))i=1,...,n−−−−−−−−−→
n∏
i=1

Φ(〈1〉)

is an equivalence, where ρi : 〈n〉 → 〈1〉 is defined by

ρi(j) =

{
1 if i = j,
0 otherwise.

We write CMon(C) for the full subcategory of Fun(F∗,C) spanned by the commutative monoids.

Notation 3.1.3. If C,D are ∞-categories with finite products, we write Fun×(C,D) for the full
subcategory of Fun(C,D) spanned by the functors that preserve finite products.

Remark 3.1.4. The category F∗ can be identified with the subcategory of Span(F) whose mor-

phisms are the spans I
f←− J g−→ K where f is injective, with this corresponding to the morphism

I+ → K+ given by

i 	→
{
g(j), i = f(j),
∗, otherwise;

we write j : F∗ → Span(F) for this subcategory inclusion.

The following description of commutative monoids in terms of spans seems to have been first
proved by Cranch [Cra10, Cra11]; other proofs, as special cases of various generalizations, can
be found in [Gla17, Har20, BH21].

Proposition 3.1.5. Let C be an ∞-category with finite products. Restriction along the
inclusion j : F∗ → Span(F) gives an equivalence

Fun×(Span(F),C) ∼−→ CMon(C),

with the inverse given by right Kan extension along the functor j.

Proof. In the stated form, this is [BH21, Proposition C.1]. �
Remark 3.1.6. The functor Φ: Span(F)→ Cat∞ corresponding to a symmetric monoidal
∞-category C admits the following description:

• Φ(I) ∏
i∈I C  Fun(I,C);

• for f : I → J , the functor f� : Fun(J,C)→ Fun(I,C) is that given by composition with f ;
• for f : I → J , the functor

f⊗ : Fun(I,C) 
∏
j∈J

∏
i∈Ij

C→
∏
j∈J

C

is given by tensoring the components corresponding to the preimages of each j ∈ J .
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In particular, for q : I → ∗ the functor q⊗ : Fun(I,C)→ C takes φ : I → C to
⊗

i∈I φ(i), while
q� : C→ Fun(I,C) is the diagonal functor.

Proposition 3.1.7. Suppose Φ: Span(F)→ Cat∞ is a product-preserving functor, correspond-
ing to a symmetric monoidal structure on C = Φ(∗). Then Φ is distributive if and only if C has
finite coproducts and the symmetric monoidal structure is compatible with these, i.e. the tensor
product preserves finite coproducts in each variable.

Proof. For I ∈ F, the functor q� : C→ Fun(I,C) corresponding to the morphism q : I → ∗ is the
diagonal. This has a left adjoint if and only if C admits all I-indexed colimits, i.e. C has I-indexed
coproducts. Moreover, if C has finite coproducts, then the functor f� : Fun(J,C)→ Fun(I,C)
given by composition with f : I → J has a left adjoint for any f , since all pointwise left Kan
extensions along f exist in C. Given a cartesian square

in F, the mate transformation
g′⊕f

′�→ f�g⊕

is then automatically an equivalence, since for φ : J ′ → C this is given at i ∈ I by the natural
map ∐

x∈I′i
φ(f ′x)→

∐
y∈J ′

f(i)

φ(y),

which is an equivalence since these fibres are canonically isomorphic. This proves that Φ is left
adjointable if and only if C admits finite coproducts.

Given morphisms l : I → J and f : J → K in F, we have the distributivity square

where K ′
k
∼= ∏

j∈Jk
Ij . The distributivity transformation h⊕f ′⊗ε�→ f⊗l⊕ is given for φ : I → C

at k ∈ K by the canonical map∐
(ij)j∈

∏
j∈Jk

Ij

⊗
j∈Jk

φ(ij)→
⊗
j∈Jk

( ∐
i∈Ij

φ(i)
)
.

This is an equivalence if ⊗ preserves finite coproducts in each variable. Conversely, for K ∈ F

we have, in particular, the distributivity diagram

(38)

2376

https://doi.org/10.1112/S0010437X23007388 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007388


On distributivity in higher algebra I: the universal property of bispans

where q is the unique map K → ∗ and ∇ are fold maps. The corresponding distributivity
transformation is given for α : K � ∗ → C by∐

k∈K

(
α(k)⊗ α(∗))→ ( ∐

k∈K
α(k)

)
⊗ α(∗).

If Φ is distributive, then this is an equivalence for all K and α, which is precisely the condition
that ⊗ preserves finite coproducts in each variable. �

Corollary 3.1.8. Product-preserving functors BISPAN(F)→ CAT∞ correspond to symmet-
ric monoidal ∞-categories that are compatible with finite coproducts.

Proof. By Theorem 2.5.1, functors BISPAN(F)→ CAT∞ correspond to distributive functors
Span(F)→ CAT∞. Moreover, from Remark 2.6.13 we know that the product in BISPAN(F)
is given by the coproduct in F, just as in Span(F), so product-preserving functors from
BISPAN(F) correspond to product-preserving distributive functors under this equivalence. By
Propositions 3.1.7 and 3.1.5, the latter are equivalent to symmetric monoidal ∞-categories that
are compatible with finite coproducts. �

3.2 Bispans in spaces and symmetric monoidal ∞-categories
In this section we consider a variant of the results of the preceding one: symmetric monoidal
∞-categories can also be described in terms of spans of spaces, and we will prove that the resulting
functor is distributive (with respect to all morphisms of spaces) if and only if the tensor product
commutes with colimits indexed by ∞-groupoids. This applies in many examples, since most
naturally occurring tensor products are compatible with all colimits.

Notation 3.2.1. We write Sfin for the subcategory of S containing only the morphisms whose
fibres are equivalent to finite sets. Then (S, Sfin) is a span pair.

Remark 3.2.2. If f : X → I is a morphism in Sfin and I is a finite set, then the straightening
equivalence

colimI : Fun(I, S) ∼−→ S/I

implies that X is an I-indexed coproduct of finite sets, and so is itself a finite set. It follows
that the functor Span(F)→ Spanfin(S) induced by the morphism of span pairs (F,F)→ (S, Sfin)
is fully faithful.

Proposition 3.2.3. Let C be a complete ∞-category. Right Kan extension along the fully
faithful functor Span(F)→ Spanfin(S) identifies Fun×(Span(F),C) with the full subcategory
FunRKE(Spanfin(S),C) of Fun(Spanfin(S),C) spanned by functors Φ such that Φ|Sop is right Kan
extended from {∗}.
Proof. This is a special case of [BH21, Proposition C.18]. �

Combining this with Proposition 3.1.5, we have the following.

Corollary 3.2.4. Let C be a complete ∞-category. There is an equivalence

CMon(C) ∼−→ FunRKE(Spanfin(S),C),

given by right Kan extension along F∗ → Span(F) ↪→ Spanfin(S).

Remark 3.2.5. In particular, symmetric monoidal ∞-categories can be identified with functors
Spanfin(S)→ Cat∞ whose restrictions to Sop preserve limits. If C is a symmetric monoidal
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∞-category, the corresponding functor Φ: Spanfin(S)→ Cat∞ admits the following description
(analogous to Remark 3.1.6):

• for X ∈ S, Φ(X)  limx∈X Φ({x})  Fun(X,C);
• for f : X → Y in S, the functor f� : Fun(Y,C)→ Fun(X,C) is given by composition with f ;
• for g : E → B in Sfin, the functor g⊗ : Fun(E,C)→ Fun(B,C) is given by tensoring fibrewise

along g, i.e. for φ : E → B we have

(g⊗φ)(b) 
⊗
e∈Eb

φ(e).

In particular, for q : X → ∗ the functor q� is the diagonal functor, while if X is a finite set, the
functor q⊗ is the X-indexed tensor product.

We will identify when such functors from Spanfin(S) are distributive with respect to bispan
triples of the following form.

Lemma 3.2.6. Let K be a full subcategory of S with the following properties:

• if p : E → B is a morphism in S such that B ∈ K and Eb ∈ K for all b ∈ B, then E ∈ K;
• K is closed under finite products.

This implies that morphisms in S whose fibres lie in K are closed under composition, giving a
subcategory SK of S. Then (S, Sfin, SK) is a bispan triple.

Proof. Suppose f : X → Y and g : Y → Z are morphisms whose fibres lie in K. We have a mor-
phism Xz → Yz between the fibres of gf and g at z ∈ Z, whose fibre at y ∈ Yz is equivalent to
Xy. Since Yz and Xy lie in K for all z ∈ Z, y ∈ Y , it follows that Xz also lies in K. Thus, we do
indeed have a subcategory SK of morphisms whose fibres lie in K. Such morphisms are obviously
preserved under base change, and so (S, SK) is a span pair.

All distributivity diagrams exist in S since this is a locally cartesian closed ∞-category; see
Remark 2.4.7. To show that (S, Sfin, SK) is a bispan triple it therefore only remains to check
that if l : X → Y is a morphism in SK and f : Y → Z is a morphism in Sfin, then f∗l is also a
morphism in SK. But we have

(f∗l)z 
∏
y∈Yz

Xy,

which is a finite product of objects of K, and so again lies in K by assumption. �
Examples 3.2.7. We can take K in Lemma 3.2.6 to consist of:

• finite sets;
• all spaces;
• π-finite spaces,10 as follows by examining the long exact sequence in homotopy groups

associated to a fibre sequence;
• κ-compact spaces11 for any regular cardinal κ, since κ-filtered colimits in S commute with
κ-small limits, and the κ-compact spaces are precisely the (retracts of) κ-small ∞-groupoids.

Proposition 3.2.8. Suppose Φ: Spanfin(S)→ Cat∞ corresponds to a symmetric monoidal
structure on C = Φ(∗), and let K be as in Lemma 3.2.6. Then Φ is K-distributive if and only if

10 These are the spaces X such that (1) X is n-truncated for some n, (2) π0(X) is finite, and (3) for each x ∈ X,
the homotopy group πk(X, x) is finite for each k ≥ 1.
11 Meaning κ-compact objects of the ∞-category S of spaces.
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C has K-indexed colimits (meaning K-indexed colimits for all K ∈ K), and the tensor product
on C is compatible with such colimits (i.e. preserves them in each variable).

Proof. For K ∈ K, the functor q� : C→ Fun(K,C) corresponding to the morphism q : K → ∗ is
the diagonal. This has a left adjoint if and only if C admits all K-indexed colimits. Moreover,
if C has K-indexed colimits, then the functor f� : Fun(Y,C)→ Fun(X,C) given by composition
with f : X → Y has a left adjoint for any f in SK, since all pointwise left Kan extensions along
f then exist in C. Given a cartesian square

in S with g in SK, the mate transformation

g′⊕f
′�→ f�g⊕

is then automatically an equivalence, since for φ : Y ′ → C this is given at x ∈ X by the natural
map

colimp∈X′
x
φ(f ′p)→ colimy∈Y ′

f(y)
φ(y),

which is an equivalence since these fibres are canonically equivalent. This proves that Φ is left
adjointable if and only if C admits K-indexed colimits.

Given morphisms l : X → Y in SK and f : Y → Z in Sfin, we have the distributivity diagram

where Z ′
z 

∏
y∈Yz

Xy. The distributivity transformation h⊕f ′⊗ε�→ f⊗l⊕ is given for φ : X → C

at z ∈ Z by the canonical map

colim(xy)y∈
∏

y∈Yz
Xy

⊗
y∈Yz

φ(xy)→
⊗
y∈Yz

(
colimx∈Xy φ(x)

)
.

This is an equivalence if ⊗ preserves K-indexed colimits in each variable. Conversely, for K ∈ K

we have, in particular, the distributivity diagram

where q is the unique map K → ∗ and ∇ are fold maps. The corresponding distributivity
transformation is given for φ : K � ∗ → C by

colimk∈K
(
φ(k)⊗ φ(∗))→ (

colimk∈K φ(k)
)⊗ φ(∗).

If Φ is distributive, then this is an equivalence for all K ∈ K and φ, which is precisely the
condition that ⊗ preserves K-indexed colimits in each variable. �
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Corollary 3.2.9. Let K be as in Lemma 3.2.6. Then functors Φ: BISPANfin,K(S)→ CAT∞
such that the restriction to Sop preserves limits correspond to symmetric monoidal ∞-categories
that are compatible with K-indexed colimits.

Proof. By Theorem 2.5.1, functors BISPANfin,K→ CAT∞ correspond to K-distributive func-
tors Spanfin(S)→ CAT∞. On the other hand, we know from Corollary 3.2.4 that such functors
whose restriction to Sop is right Kan extended from {∗} correspond to symmetric monoidal
∞-categories, and in this case the functor is K-distributive if and only if the tensor product is
compatible with K-indexed colimits by Proposition 3.2.8. �

3.3 Bispans in spaces and analytic monads
Our goal in this section is to relate bispans in the ∞-category of spaces to the polynomial and
analytic functors studied in [GHK22], where it is shown that analytic monads are equivalent
to ∞-operads. Using the results of the previous section we will see that there is a canoni-
cal action of every analytic monad on any symmetric monoidal ∞-category compatible with
∞-groupoid-indexed colimits.

We first give a general construction of a functor from bispans to ∞-categories using slice
∞-categories.

Proposition 3.3.1. Suppose (C,CF ,CL) is a bispan triple. Then there is a functor of (∞, 2)-
categories Sl : BISPANF,L(C)→ CAT∞ such that:

• Sl(c)  CL/c, the full subcategory of C/c spanned by the morphisms to c that lie in CL;

• for f : c→ c′ in C, the functor f� is the functor f∗ : CL/c′ → CL/c given by pullback along f ;

• for f : c→ c′ in CL, the functor f⊕ is the functor f! : CL/c → CL/c′ given by composition with f ;

• for f : c→ c′ in CF , the functor f⊗ is the functor f∗ : CL/c → CL/c′ given by the partial right
adjoint to f∗ : C/c′ → C/c.

Proof. Let X be the full subcategory of CΔ1
spanned by the morphisms in CL. Then the restriction

of ev1 : CΔ1 → C to a functor X→ C is a cartesian fibration, with cocartesian morphisms over
morphisms in CL ⊆ C. This corresponds to a functor λ : Cop → Cat∞, which takes c ∈ C to the
∞-category CL/c and f : x→ y to the functor f∗ : CL/y → CL/x given by pullback along f . The
functor λ is right F -adjointable: since (C,CF ,CL) is a bispan triple, the functor f∗ for f : x→ y
in CF has a right adjoint f∗ : CL/x → CL/y by Remark 2.4.5, and given a cartesian square

with f and f ′ in CF , the mate transformation

η∗f∗ → f ′∗ξ
∗

is an equivalence by Lemma 2.4.6. The functor λ therefore extends canonically to a functor

Λ: SPANF (C)2-op → CAT∞

by Theorem 2.2.7. We claim the underlying functor of ∞-categories λ′ : SpanF (C)→ Cat∞ is
L-distributive. Certainly if l : x→ y is a morphism in CL, then the pullback functor l∗ : CL/y → CL/x
has a left adjoint l! given by composition with l; to see that the restriction of λ′ to Cop is left
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L-adjointable it remains to observe that for any cartesian square

with l and l′ in CL, the natural transformation l′!ξ
∗ → η∗l! is an equivalence, since for g : z → x

in CL/x in the diagram

the left square is cartesian if and only if the composite square is cartesian. To see that λ′ is also
L-distributive, consider l : x→ y in CL and f : y → z in CF and form a distributivity
diagram (20). The distributivity transformation

g!f̃∗ε∗ → f∗l!

evaluated at l′ : c→ x is a canonical map

f∗l ◦ f̃∗ε∗l→ f∗(l ◦ l′);
this is an equivalence by Lemma 2.5.19. It follows by Theorem 2.5.1 that λ′ extends uniquely to
a functor Sl : BISPANF,L(C)→ CAT∞, which, by construction, has the required properties. �

Applying this to the bispan triple (S, S, S) we get, in particular, the following result.

Corollary 3.3.2. There is a functor Sl : BISPAN(S)→ CAT∞ taking X ∈ S to S/X and a
bispan

X
s←− E p−→ B

t−→ Y

to the functor t!p∗s∗ : S/X → S/Y , where s∗ is given by pullback along s, p∗ is the right adjoint
to p∗, and t! is given by composition with t.

Definition 3.3.3. A polynomial functor F : S/X → S/Y is an accessible functor that preserves
weakly contractible limits. By [GHK22, Theorem 2.2.3] the polynomial functors are equivalently
those functors obtained as composites t!p∗s∗ for some bispan of spaces

X
s←− E p−→ B

t−→ Y.

Let PolyFun(S) be the sub-(∞, 2)-category of CAT∞ whose objects are the slices S/X for
X ∈ S, whose 1-morphisms are the polynomial functors, and whose 2-morphisms are the cartesian
natural transformations.

Remark 3.3.4. The (∞, 2)-category PolyFun(S) is the underlying (∞, 2)-category of the double
∞-category of polynomial functors considered in [GHK22].

Corollary 3.3.5. The functor Sl : BISPAN(S)→ CAT∞ restricts to an equivalence

BISPAN(S) ∼−→ PolyFun(S).
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Proof. We apply the description from Corollary 2.5.18 to understand Sl: on objects, Sl takes
X ∈ S to the ∞-category S/X , and on morphisms it takes the bispan

X
s←− E p−→ B

t−→ Y

to the functor t!p∗s∗. The functors of this form are precisely the polynomial functors, by [GHK22,
Theorem 2.2.3]. The description of Sl on 2-morphisms from Corollary 2.5.18(3) implies that
they are sent to composites of equivalences and (co)unit transformations that are cartesian by
[GHK22, Lemma 2.1.5]. Hence, Sl factors through PolyFun(S), and is essentially surjective on
objects and morphisms. To show that Sl factors through an equivalence it then suffices to show
it gives an equivalence

MAPBISPAN(S)(X,Y )→ MAPPolyFun(S)(X,Y )

on mapping ∞-categories for all X,Y in S. Using Corollary 2.3.18 we can identify this with the
functor shown to be an equivalence in [GHK22, Proposition 2.4.13]. �
Remark 3.3.6. We expect that there is an analogue of Corollary 3.3.5 for bispans in any
∞-topos X, but this requires working with internal ∞-categories in X (or, equivalently, sheaves
of∞-categories on X): a key step in the identification of polynomial functors with bispans is the
description of colimit-preserving functors between slices of S as spans, i.e. the equivalence

FunL(S/X , S/Y )  Fun(X, S/Y )  Fun(X × Y, S)  S/X×Y .

This certainly fails for any other ∞-topos X, but an analogous statement should hold if we view
X instead as an ∞-category internal to itself.

Definition 3.3.7. An analytic functor F : S/X → S/Y is a functor that preserves sifted col-
imits and weakly contractible limits. By [GHK22, Proposition 3.1.9] the analytic functors are
equivalently those functors obtained as composites t!p∗s∗ for some bispan of spaces

X
s←− E p−→ B

t−→ Y,

where p has finite discrete fibres.

As a consequence, we obtain the following.

Corollary 3.3.8. The functor Sl : BISPAN(S)→ CAT∞ factors through an equivalence

BISPANfin(S) ∼−→ AnFun(S), (39)

where AnFun(S) is the locally full sub-(∞, 2)-category of PolyFun(S) containing all objects, with
the analytic functors as morphisms, as well as all 2-morphisms between these.

Definition 3.3.9. An analytic monad is a monad in the (∞, 2)-category AnFun(S), i.e. an
associative algebra in the monoidal ∞-category MAPAnFun(S)(X,X) of endomorphisms of some
object X, or a functor mnd→ AnFun(S), where mnd is the universal 2-category containing a
monad. In other words, it is a monad on the ∞-category S/X whose underlying endofunctor is
analytic and whose unit and multiplication transformations are cartesian. From the equivalence
(39) we see that analytic monads are equivalently monads in the (∞, 2)-category BISPANfin(S).

Corollary 3.3.10. Suppose T is an analytic monad on S/X and V is a symmetric monoidal
∞-category compatible with ∞-groupoid-indexed colimits. Then T induces a canonical monad
TV on Fun(X,V).

Proof. We can identify T with a monad on X ∈ BISPANfin(S). By Corollary 3.2.9 V induces a
functor BISPANfin(S)→ CAT∞ that takes Y ∈ S to Fun(Y,V). Any functor of (∞, 2)-categories
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preserves monads, since they can be described as simply functors of (∞, 2)-categories from mnd.
Hence under the functor induced by V the monad T maps to a monad in CAT∞ which indeed
acts on Fun(X,V). �
Remark 3.3.11. Suppose the underlying bispan of the monad T is

X
s←− E p−→ B

t−→ X.

Then the underlying endofunctor of the monad TV is given by

(TVφ)(x)  colimb∈Bx

⊗
e∈Eb

φ(s(e)).

This has the same form as the formula for the free algebra monad of an∞-operad, and the main
result of [GHK22] is that analytic monads are equivalent to∞-operads in the form of dendroidal
Segal spaces. We therefore expect that if O is the∞-operad corresponding to T , then the monad
TV is the free O-algebra monad for O-algebras in V.

3.4 Equivariant bispans and G-symmetric monoidal ∞-categories
In this section we look at the G-equivariant version of our results from § 3.1 on symmetric
monoidal ∞-categories compatible with finite coproducts, where G is a finite group: we replace
the category of finite sets by the category FG of finite G-sets, and consider when a G-symmetric
monoidal∞-category, defined as a product-preserving functor Span(FG)→ Cat∞, is distributive,
and so extends to a functor BISPAN(FG)→ CAT∞.

Definition 3.4.1. Let G be a finite group, and BG the corresponding 1-object groupoid. We
write FG for the category Fun(BG,F) of finite G-sets, and OG for the full subcategory of orbits,
i.e. finite G-sets of the form G/H where H is a subgroup of G. Then FG is obtained from OG
by freely adding finite coproducts, so that for any∞-category C with finite products, restriction
along the inclusion OG ↪→ FG gives an equivalence

Fun×(Fop
G ,C) ∼−→ Fun(Oop

G ,C).

If C is the ∞-category of spaces, this says that the ∞-category SG := P(OG) of G-spaces12 is
equivalent to Fun×(Fop

G , S). By analogy with the case of G-spaces, we can think of a functor
F : O

op
G → C as an ‘object of C with G-action’, with FH := F(G/H) the object of ‘H-fixed points’

of F. We will, in particular, apply this notation for functors O
op
G → Cat∞, which we will call

G-∞-categories.

Remark 3.4.2. The category FG is extensive, and so by [Bar17, Proposition 4.3] the coproduct
in FG gives both the product and coproduct in Span(FG).

Definition 3.4.3. Let C be an ∞-category with finite products. A G-commutative monoid in
C is a product-preserving functor Span(FG)→ C. We write

CMonG(C) := Fun×(Span(FG),C)

for the ∞-category of G-commutative monoids in C. A G-symmetric monoidal ∞-category is a
G-commutative monoid in Cat∞.

Remark 3.4.4. When G is the trivial group this is equivalent to the usual definition of commu-
tative monoids (in terms of functors from F∗ satisfying a Segal condition) by Proposition 3.1.5.

12 By Elmendorf’s theorem [Elm83] the ∞-category SG is equivalent to that obtained from the category of topo-
logical spaces with G-action by inverting the maps that give weak homotopy equivalences on all spaces of fixed
points.
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More generally, see [Nar16, Theorem 6.5] for an alternative description of G-commutative
monoids in terms of ‘finite pointed G-sets’ (where this must be read in a non-trivial parametrized
sense).

Remark 3.4.5. A functor F : Span(FG)→ C preserves products if and only if the restriction to
F

op
G → C preserves products, and so is determined by its restriction to O

op
G → C. The additional

structure given by the forwards maps in Span(FG) can be decomposed into:

• multiplication maps FH × FH → FH for each subgroup H of G, coming from the fold map
G/H �G/H → G/H;

• multiplicative transfer maps FH → FK for each inclusion H ⊆ K of subgroups, coming from
the quotient map G/H → G/K;

together with various homotopy-coherent compatibilities that, in particular, make each FH a
commutative monoid.

Remark 3.4.6. Grouplike G-commutative monoids in S can be identified with connective genuine
G-spectra, by [Nar16, Corollary A.4.1]. Applying π0, such a grouplike G-commutative monoid
induces a G-commutative monoid in Set, which factors through a product-preserving functor

Span(FG)→ Ab

because it is grouplike. This is precisely a Mackey functor, which is well-known as the structure
appearing as π0 of a genuine G-spectrum.

For a functor Span(FG)→ Cat∞ we can simplify the condition that it is left adjointable as
follows.

Proposition 3.4.7. Suppose F : F
op
G → Cat∞ is a product-preserving functor. Then F is left

adjointable if and only if:

(1) for every subgroup H ⊆ G, the ∞-category FH has finite coproducts;
(2) for every inclusion of subgroups H ⊆ K the functor (qKH )� : FK → FH , corresponding to the

quotient map qKH : G/H → G/K, has a left adjoint (qKH )⊕;
(3) for every inclusion of subgroups H ⊆ K the functor (qKH )� preserves finite coproducts;
(4) for subgroups H,K ⊆ L, let X be defined by the pullback

then the square

is left adjointable, i.e. the mate transformation

fK,⊕f�
H → (qLK)�(qLH)⊕

is an equivalence.
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Remark 3.4.8. The pullback X in condition (4) can be decomposed into a sum of orbits indexed
by double cosets:

X ∼=
∐

[g]∈H\L/K
H ∩Kg,

where Kg denotes the conjugate gKg−1. The left adjointability in condition (4) then amounts
to the following double coset formula:

(qLK)�(qLH)⊕ 
∐

[g]∈H\L/K
cg,⊕(qKg

H∩Kg
)⊕(qHH∩Kg

)�,

where cg is the isomorphism G/K ∼= G/Kg.

Proof of Proposition 3.4.7. Since FG is extensive, a morphism φ : X → Y in FG where Y ∼=∐
iG/Hi decomposes as a coproduct

∐
i φi for φi : Xi → G/Hi. Since F is product-preserving,

to show that φ� has a left adjoint it suffices to consider the case where Y is an orbit G/H.
Moreover, for φ : X → G/H where X ∼= ∐

j G/Kj we can decompose φ as

∐
j

G/Kj

∐
j φ|G/Kj−−−−−−−→

∐
j

G/H
∇−→ G/H,

where ∇ denotes the fold map. Since adjunctions compose, to prove that left adjoints exist it
is enough to consider fold maps and morphisms between orbits. In the first case, the functor
∇� induced by the fold map ∇ :

∐
j∈J G/H → G/H can be identified with the diagonal functor

FH → Fun(J,FH) and so has a left adjoint for all finite sets J if and only if FH admits finite
coproducts, i.e. if and only if assumption (1) holds. In the second case, a morphism φ : G/K →
G/H can be decomposed as G/K ∼−→ G/gKg−1

qH
gKg−1−−−−→ G/H and so φ� has a left adjoint for all

such maps φ if and only if assumption (2) holds.
Now we consider the adjointability condition. Again using that FG is extensive, a pullback

square

where W ∼= ∐
iG/Hi decomposes as a coproduct of pullback squares

Since F preserves products and taking mate squares commutes with products, we see that F is
left adjointable if and only if it is left adjointable for pullback squares
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over an orbit. If Y ∼= ∐
iG/Ki and Z ∼= ∐

j G/Lj , then we can decompose our pullback square
into the diagram

where the top left square decomposes as a coproduct of pullback squares

of the form considered in condition (4) and the other squares are defined using fold maps.
Since mate squares are compatible with both vertical and horizontal composition of squares, the
functor F will be left adjointable if the images of the four squares in such decompositions are
left adjointable. Using again the assumption that F preserves finite products, we see that this
holds if and only if condition (4) holds and we have left adjointability for squares of the form

The latter means the canonical map ∇K,⊕(
∏
i φ

�)→ φ�∇H,⊕ is an equivalence, i.e. the functor
φ� preserves I-indexed coproducts where φ is a map between orbits in FG. Since such maps are
composites of isomorphisms and maps coming from subgroup inclusions, this is equivalent to
condition (3). �
Definition 3.4.9. We say a G-∞-category F has additive transfers if it satisfies the conditions
of Proposition 3.4.7 when viewed as a product-preserving functor F

op
G → Cat∞.

Remark 3.4.10. In the terminology of [Sha23, Nar16] a G-∞-category has finite G-coproducts if
and only if it has additive transfers in our sense, cf. [Nar16, Proposition 2.11].

Proposition 3.4.11. Suppose F : Span(FG)→ Cat∞ is a G-symmetric monoidal ∞-category
whose underlying G-∞-category has additive transfers. Then F is distributive if and only if for
all morphisms φ : X → Y, ψ : Y → G/H in FG, the distributivity transformation

g⊕ψ̃⊗ε�→ ψ⊗φ⊕

from the distributivity square

is an equivalence.
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Remark 3.4.12. Decomposing Z = ψ∗X in such a distributivity diagram as a coproduct of orbits
is often a non-trivial problem in finite group theory, so we do not expect that this distributivity
condition can be simplified further in general.

Proof of Proposition 3.4.11. Since FG is extensive, we know from Example 2.6.12 that finite
coproducts of distributivity diagrams are again distributivity diagrams. Since F preserves prod-
ucts, distributivity transformations associated to such coproducts decompose as products, hence
the distributivity condition reduces to the case where the target of the second map is an orbit. �
Definition 3.4.13. We say a G-symmetric monoidal ∞-category F : Span(FG)→ Cat∞ is
compatible with additive transfers if it satisfies the condition of Proposition 3.4.11.

Corollary 3.4.14. Product-preserving functors BISPAN(FG)→ Cat∞ correspond to
G-symmetric monoidal ∞-categories that are compatible with additive transfers.

Proof. By Theorem 2.5.1, functors BISPAN(FG)→ CAT∞ correspond to distributive functors
Span(FG)→ CAT∞. Moreover, from Remark 2.6.13 we know that the product in BISPAN(FG)
is given by the coproduct in FG, just as in Span(FG), so product-preserving functors from
BISPAN(FG) correspond to product-preserving distributive functors under this equivalence. By
Propositions 3.4.7 and 3.4.11, the latter are equivalent to G-symmetric monoidal ∞-categories
that are compatible with additive transfers. �

We now consider some examples of G-symmetric monoidal ∞-categories compatible with
additive transfers.

Example 3.4.15 (Finite G-sets). As a special case of Proposition 3.3.1 we get a functor

BISPAN(FG)→ CAT

taking X ∈ FG to the slice (FG)/X . Here we can identify (FG)/(G/H) with FH , so the underlying
G-category is given by (G/H) 	→ FH . Since FG is extensive, this is a product-preserving functor;
the underlying G-symmetric monoidal category encodes the cartesian products of finite G-sets
and their compatibility with the left and right adjoints to the restriction functor FG → FH for
H a subgroup of G.

Example 3.4.16 (G-spaces). As a variant of the previous example, we can consider the
G-∞-category of G-spaces. Since SG is locally cartesian closed (being a (presheaf) ∞-topos),
we can apply Proposition 3.3.1 to it and then restrict to bispans in FG to get a functor

BISPAN(FG)→ CAT∞

that takes X ∈ FG to (SG)/X ; here we can identify (SG)/(G/H) with SH . Since SG is extensive, this
is a product-preserving functor. The underlying G-symmetric monoidal∞-category (compatible
with additive transfers) encodes the cartesian products of H-spaces for all subgroups H of G
and their compatibility with the left and right adjoints to the restriction functor SG → SH .

Example 3.4.17 (G-actions in a symmetric monoidal ∞-category). Let C be a symmetric
monoidal ∞-category. By Proposition 3.2.3 this determines a functor Spanfin(S)→ Cat∞ tak-
ing X ∈ S to Fun(X,C). For a finite group G we have a functor G : FG → S by restricting the
colimit functor Fun(BG, S)→ S; this takes a finite G-set X to the groupoid X//G = XhG. The
functor G preserves pullbacks since the colimit functor factors as the straightening equivalence
Fun(BG, S) ∼−→ S/BG followed by the forgetful functor to S, which preserves all weakly con-
tractible limits. Moreover, G takes values in Sfin, and so yields a functor Span(G) : Span(FG)→
Spanfin(S). This functor preserves products, since G preserves coproducts. It follows that we
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can restrict along Span(G) and obtain for any symmetric monoidal∞-category C a G-symmetric
monoidal structure on Fun(BG,C). Moreover, if the tensor product in C is compatible with finite
coproducts, this G-symmetric monoidal structure will be compatible with additive transfers.

Example 3.4.18 (G-representations). As a special case of the previous example, we can take C

to be the category Vectk of k-vector spaces with the tensor product as symmetric monoidal
structure. We then obtain a functor

ρk : BISPAN(FG)→ CAT

such that ρk(G/H) is the category RepH(k) := Fun(BH,Vectk) of H-representations and for
subgroups H ⊆ K ⊆ G:

• (qKH )� is the restriction functor ResKH : RepK(k)→ RepH(k);
• (qKH )⊕ is the induced representation functor IndKH : RepH(k)→ RepK(k), left adjoint to ResKH ,

and given on objects by taking an H-representation V to
⊕

K/H V with induced action of K;
• (qKH )⊗ is the tensor-induction functor RepH(k)→ RepH(k), given on objects by taking an
H-representation V to

⊗
K/H V with induced action of K.

As a more sophisticated version of this construction, we can instead consider the ∞-category
PerfR of perfect (i.e. dualizable) modules over an E∞-ring spectrum R. Plugging this into the
previous example we see that the ∞-categories Rep∞

H (R) := Fun(BH,PerfR) fit together into a
functor

ρ∞R : BISPAN(FG)→ CAT

such that ρ∞R (G)(G/H) = Rep∞
H (R). This example will be important when we discuss Tambara

functors arising from the algebraic K-theory of group actions in the next section.

Our final example of a G-symmetric monoidal∞-category compatible with additive transfers
is the ∞-category of genuine G-spectra. This is less formal than our previous examples, but the
input we need is already in the literature.

Proposition 3.4.19. The ∞-category SpG of genuine G-spectra is a G-symmetric monoidal
∞-category compatible with additive transfers.

Proof. Taking fixed point spectra for subgroups ofG gives a functor O
op
G → Cat∞ that takes G/H

to the ∞-category SpH of genuine H-spectra; this is the G-∞-category of G-spectra. The corre-
sponding product-preserving functor F

op
G → Cat∞ extends to a functor σG : Span(FG)→ Cat∞

such that for H ⊆ K ⊆ G the functor (qKH )⊗ : SpH → SpK is the multiplicative norm of [HHR16];
this follows from the results of [BH21, § 9] by restricting the functor from spans of profi-
nite groupoids defined there. For φ : X → Y in FG, the functor φ� : σG(Y )→ σG(X) has a
left adjoint by [BH21, Lemma 9.7(2)]; for H ⊆ K ⊆ G the left adjoint (qKH )⊕ is the classi-
cal (additive) transfer or induction functor. To see that the functor σG is left adjointable we
check the three remaining conditions in Proposition 3.4.7: conditions (1) and (3) hold since the
∞-categories of G-spectra are stable (hence, any right adjoint functor between them automat-
ically preserves finite colimits). To check condition (4) we use that any H-spectrum is a sifted
colimit of desuspensions of suspension spectra Σ∞

+X with X a finite H-set, and the functors
involved preserve (sifted) colimits and desuspensions. Hence, it suffices to check that the canonical
map

fK,⊕f�
HΣ∞

+X → (qLK)�(qLH)⊕Σ∞
+X

is an equivalence for X ∈ FH . But here all the functors are given on suspension spectra of
finite H-sets by the suspension spectra on the corresponding functors for finite H-sets, so this
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follows from Example 3.4.15. The same argument works for distributivity, since we also have
f⊗Σ∞

+X  Σ∞
+ f∗X. �

Remark 3.4.20. The adjointability condition here reduces by Remark 3.4.8 to a double coset
formula for additive transfers. This is a basic fact in equivariant stable homotopy theory that
has surely long been well-known to the experts, but the only explicit references we could find
are [HHR16, Proposition A.30] (applied to the direct sum in orthogonal spectra) and [Pat16,
Corollary 5.2]. The distributivity condition also appears (in terms of orthogonal spectra) as
[HHR16, Proposition A.37].

Variant 3.4.21. Following Blumberg and Hill [BH18] we can consider subcategories FG,I where
I is an indexing system as in [BH18, Definition 1.2]; by [BH18, Theorem 1.4] these are precisely
the subcategories of FG such that (FG,FG,I) is a span pair. Since FG is locally cartesian closed,
we then have a bispan triple (FG,FG,I,FG). Product-preserving functors out of SpanI(FG) are
G-symmetric monoidal∞-categories where only some subclass of multiplicative norms exist, and
we can characterize distributivity for such functors by the analogue of Proposition 3.4.11 with
the map ψ restricted to lie in FG,I.

Variant 3.4.22. We can also consider a G-equivariant analogue of § 3.2: using [BH21,
Proposition C.18] a G-symmetric monoidal ∞-category determines by right Kan extension a
functor Spanfin(SG)→ Cat∞, where SG,fin denotes the subcategory of SG containing the maps
φ : X → Y such that for every map G/H → Y , the pullback X ×Y G/H is a finite G-set. Here
(SG, SG,fin, SG) is a bispan triple, and we might say that the G-symmetric monoidal∞-category is
‘compatible with G-space-indexed G-colimits’ if this is distributive. We expect that this should
hold for the G-symmetric monoidal ∞-category of genuine G-spectra and, by analogy with
[GHK22], that monads in the (∞, 2)-category BISPANfin(SG) should be related to a notion of
G-∞-operads (see [BDG+16]).

Variant 3.4.23. In [BH21, Chapter 9], Bachmann and Hoyois define ∞-categories of equivari-
ant spectra for profinite groupoids, and we can also consider distributivity in this setting. We
can take the (2, 1)-category of finite groupoids FinGpd ⊂ S to be the full subcategory of spaces
spanned by 1-truncated spaces with finite π0, π1. We then form the (2, 1)-category of profinite
groupoids by taking pro-objects: ProfGpd := Pro(FinGpd). Let ProfGpdfp be the subcategory
containing only the finitely presented maps as in [BH21, § 9.1]. It then follows from [BH21,
Lemmas 9.3 and 9.5] and Lemma 2.4.6 that we have a bispan triple

(ProfGpd,ProfGpdfp,ProfGpd).

In [BH21, Chapter 9] equivariant spectra are defined as a functor

Spanfp(ProfGpd)→ Cat∞;

we expect that this is distributive, giving a functor of (∞, 2)-categories

BISPANfp(ProfGpd)→ CAT∞.

3.5 Motivic bispans and normed ∞-categories
In this section we will relate the normed ∞-categories of Bachmann–Hoyois to functors from
certain bispans in schemes (and, more generally, algebraic spaces) to CAT∞. As an example of
this, we will see that the results of [BH21] imply that ∞-categories of motivic spectra give such
a functor. We begin by describing some bispan triples on schemes.
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Warning 3.5.1. Throughout this section, schemes and algebraic spaces are always assumed to
be quasi-compact and quasi-separated (qcqs).13

Notation 3.5.2. If S is a (qcqs) scheme, we write SchS for the category of (qcqs) schemes over
S. (This has pullbacks since qcqs morphisms are closed under base change, see [Sta, Tags 01KU
and 01K5].)

Proposition 3.5.3. The following are bispan triples:

(i) (SchS ,Schflf
S ,Schqp

S ) for any scheme S, where Schflf
S consists of finite locally free (meaning

finite, flat, and of finite presentation) morphisms of S-schemes and Schqp
S of quasiprojective

morphisms of S-schemes;
(ii) (SchS ,Schfét

S ,Schqp
S ) for any scheme S, where Schfét

S consists of finite étale morphisms of
S-schemes;

(iii) (SchS ,Schflf
S ,Schsmqp

S ) for any scheme S, where Schsmqp
S consists of smooth and quasiprojec-

tive morphisms of S-schemes;
(iv) (SchS ,Schfét

S ,Schsmqp
S ) for any scheme S;

(v) (SchS ,Schfét
S ,Schproj

S ) for any scheme S, where Schproj
S consists of projective morphisms of

S-schemes.

Proof. The classes of morphisms of schemes that are finite locally free, quasiprojective, smooth,
finite, and étale are all closed under base change by [Sta, Tags 02KD,0B3G,01VB,01WL,02GO],
respectively. Hence, the subcategories Schflf

S , Schqp
S , Schsmqp

S , and Schfét
S of SchS all give span

pairs.
Now the main point is the existence of Weil restrictions for schemes: if f : S′ → S is a

morphism of schemes and X is an S′-scheme, the Weil restriction RfX, if it exists, is an S-scheme
that represents the functor

Hom/S′((–)×S′ S,X) : Schop
S → Set;

note that this is exactly the requirement (21) for a distributivity diagram for X → S′

and f .
By [BLR17, Theorem 7.6.4], the Weil restriction RfX exists if f is a finite locally free mor-

phism andX is quasiprojective. Moreover, RfX is quasiprojective over S by [BH21, Lemma 2.13].
This gives the bispan triple (i), from which bispan triple (ii) is trivially obtained by restricting
from finite locally free morphisms to the subclass of finite étale ones. For bispan triples (iii) and
(iv) the only additional input needed is that Rf takes smooth morphisms to smooth morphisms,
which holds by [BLR17, Proposition 7.6.5(h)], while for bispan triple (v) we use that Rf preserves
proper morphisms if f is finite étale by [BLR17, Proposition 7.6.5(f)] and that a morphism is
projective if and only if it is proper and quasiprojective by [Sta, Tag 0BCL]. �

We now review the construction of a distributive functor for the bispan triple (iv) from
motivic spectra, due to Bachmann and Hoyois.

Notation 3.5.4. We write SH(S) for the ∞-category of motivic spectra over a base scheme S
and H(S) for that of motivic spaces over S. For any morphism of schemes f : S → S′ we have
a pullback functor f∗ : SH(S′)→ SH(S), and similarly in the unstable case. This gives functors
SH,H: Schop → Cat∞.

13 Note that every morphism between qcqs schemes is automatically a qcqs morphism (see [Sta, Tags 01KV and
03GI]); this means we do not need to distinguish between morphisms of finite presentation and locally of finite
presentation, since the additional qcqs assumption is automatic.
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In [BH21], Bachmann and Hoyois promoted the contravariant functor X 	→ SH(X) to include
a multiplicative pushforward for finite étale morphisms, encoded as a functor out of a span
category

SH: Spanfét(Sch)→ Cat∞, X
f←− Z g−→ Y 	→ g⊗f∗. (40)

Given a finite étale morphism g : X → Y , the functor

g⊗ : SH(X)→ SH(Y )

is first constructed unstably as a functor on the level of the pointed unstable motivic homotopy
∞-category,

g⊗ : H(X)∗ → H(Y )∗.

This functor is, in turn, induced by the functor of Weil restriction [BLR17, § 7.6], Rg : SmQPX →
SmQPY , where SmQPX denotes the full subcategory of SchX spanned by smooth and quasipro-
jective X-schemes, using the fact that the inclusion SmQPX ⊂ SmX into the full subcategory
of smooth X-schemes induces equivalent motivic unstable categories (since every smooth
X-scheme is Zariski-locally also quasiprojective). We refer to [BH21, § 1.6] for a summary of
the construction and [BH21, § 6.1] for a detailed construction of (40).

Given a smooth morphism f : X → Y of schemes, the pullback functor f∗ admits a left
adjoint

f� : SH(X)→ SH(Y ).

This left adjoint should be thought of as an additive pushforward along f ; indeed, if I is a finite
set and ∇I :

∐
I X → X is the fold map, then, under the identification SH(

∐
I X)  SH(X)×I ,

the functor (∇I)� is given by

(Xi)i∈I 	→
⊕
i∈I

Xi.

The functor f� is first constructed unstably as a functor

f� : H(X)→ H(Y ),

which, in turn, is induced by the functor SmX → SmY given by composition with f (i.e. the
functor that sends a smooth X-scheme T to itself regarded as a Y -scheme); see [Hoy17, § 4.1,
Lemma 6.2] for a construction in the language of this paper in the more general context of
equivariant motivic homotopy theory.

The importance of this additional left adjoint functoriality in formulating smooth base change
was first pointed out by Voevodsky [Voe99] and worked out by Ayoub in [Ayo07]; see [Hoy17,
§ 6.1, Proposition 4.2] for an∞-categorical formulation (in the more general equivariant context).
In our language, smooth base change for motivic spectra says that the functor SH: Schop →
Cat∞ is left adjointable with respect to smooth maps. Moreover, combining this with [BH21,
Proposition 5.10(1)] we get that the functor (40) is smqp-distributive. Applying Theorem 2.5.1,
these results imply the following.

Theorem 3.5.5. Motivic spectra give a smqp-distributive functor

SH: Spanfét(Sch)→ Cat∞,

and so a functor of (∞, 2)-categories

BISPANfét,smqp(Sch)→ CAT∞.
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As indicated already in [BH21, Remark 2.14], the restriction to those smooth morphisms that
are quasiprojective here is an artifact of the restriction of SH to schemes instead of algebraic
spaces. We will therefore extend this result by working with algebraic spaces.

Notation 3.5.6. For a (qcqs) scheme S, we write AlgSpcS for the category of (qcqs) algebraic
spaces over S.14 This category has pullbacks since qcqs morphisms of algebraic spaces are closed
under base change by [Sta, Tags 03KL,03HF]; note also that for an S-scheme S′ we have an
equivalence

AlgSpcS′  (AlgSpcS)/S′

by [Sta, Tag 04SG].

Here we again have several bispan triples.

Proposition 3.5.7. The following are bispan triples:

(i) (AlgSpcS ,AlgSpcflf
S ,AlgSpcS) for any scheme S, where AlgSpcflf

S consists of finite locally
free morphisms of algebraic spaces over S;

(ii) (AlgSpcS ,AlgSpcfét
S ,AlgSpcS) for any scheme S, where AlgSpcfét

S consists of finite étale
morphisms of algebraic spaces over S;

(iii) (AlgSpcS ,AlgSpcflf
S ,AlgSpcsm

S ) for any scheme S, where AlgSpcsm
S consists of smooth

morphisms of algebraic spaces over S;
(iv) (AlgSpcS ,AlgSpcfét

S ,AlgSpcsm
S ) for any scheme S;

(v) (AlgSpcS ,AlgSpcfét
S ,AlgSpcprop

S ) for any scheme S, where AlgSpcprop
S consists of proper

morphisms of algebraic spaces over S.

Proof. Morphisms of algebraic spaces that are finite locally free, finite, étale, and smooth
are closed under base change by [Sta, Tags 03ZY, 03ZS, 0466, 03ZE], respectively. Thus, the
subcategories AlgSpcflf

S , AlgSpcfét
S , AlgSpcsm

S of AlgSpcS all give span pairs.
Suppose f : Y → Z is a finite locally free morphism of algebraic spaces. Then the functor

f∗ : AlgSpcZ → AlgSpcY
admits a right adjoint Rf , given by Weil restriction of algebraic spaces, by a result of Rydh
[Ryd11, Theorem 3.7]; note that Rf preserves the qcqs property we require by [Ryd11,
Proposition 3.8(xiii,xix)]. This gives the bispan triples (i) and (ii) (since finite étale morphisms
are in particular finite locally free).

To obtain bispan triples (iii) and (iv) it suffices to note that Rf converts smooth morphisms
to smooth morphisms. If f : X → Y is a finite locally free morphism of schemes this follows from
[Ryd11, Proposition 3.5(i,iv)] and [Sta, Tag 0DP0]. The extension to the general case is easy:
first note that for W over X we have that RfW → Y is smooth if and only if its pullback along
any morphism g : T → Y with T a scheme is smooth, by [Sta, Tag 03ZF]. In the pullback square

the algebraic space U is a scheme since f is finite and so, by definition, representable. We also
have the base change equivalence g∗RfW ∼= Rf ′g

′∗W , and if W is smooth over X, then Rf ′g′∗W
is smooth over T since the base change g′∗W is smooth over U and f ′ is a finite locally free

14 Every morphism between qcqs algebraic spaces is a qcqs morphism by [Sta, Tag 03KR,03KS]; thus, we can still
ignore the distinction between morphisms of finite presentation and locally of finite presentation.
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morphism of schemes. Finally, bispan triple (v) holds since by the same argument starting with
[Ryd11, Remark 3.9] Rf preserves proper morphisms if f is finite étale. �

In order to work with motivic spectra over algebraic spaces effectively we record the following
lemma which amounts to saying that any Nisnevich sheaf on algebraic spaces is right Kan
extended from schemes.

Lemma 3.5.8. Let C be a complete ∞-category and S a scheme, and let

ι : SchS ↪→ AlgSpcS
be the inclusion. Then the restriction functor ι∗ : PShv(AlgSpcS ,C)→ PShv(SchS ,C) induces an
equivalence of ∞-categories:

ι∗ : ShvNis(AlgSpcS ,C) ∼−→ ShvNis(SchS ,C),

with the inverse given by right Kan extension.

Proof. Let
ι∗ : PShv(SchS ,C)→ PShv(AlgSpcS ,C)

denote the right adjoint to ι∗ which is computed by right Kan extension. We first claim that ι∗
preserves Nisnevich sheaves, i.e. there exists a filler in the following diagram.

According to [GH23, Lemma 2.23], it suffices to verify that the functor ι is topologically cocon-
tinuous15 for the Nisnevich topology on SchS and on AlgSpcS , as this implies that ι∗ preserves
Nis-local equivalences and, thus, ι∗ preserves sheaves.

Unwinding definitions, this means we need to prove the following claim.

(*) For any X ∈ SchS and any Nisnevich sieve R′ ↪→ ι(X) of algebraic spaces, the sieve on SchS
generated by morphisms of schemes X ′ → X such that ι(X ′)→ ι(X) factors through R′ is
a Nisnevich sieve of X.

This condition is verified by [Knu71, Chapter II, Theorem 6.4]; indeed for x ∈ X and f : Y → X
an étale morphism such that we have a lift

this result tells us that we can find a completely decomposed étale morphism U → Y with U
an affine scheme such that Specκ(x)→ Y factors through U . Since the composite U → X is an
étale morphism, the desired claim is verified.

Now we claim that ι∗ also preserves sheaves. Indeed, if {Uα → X} is a family which gen-
erates a Nisnevich covering family of schemes, then it is still a Nisnevich covering family of
algebraic spaces. Therefore ι is also a morphism of sites,16 and, thus, ι∗ preserves sheaves,

15 In the sense of [SGA4, Éxpose III, Définition 2.1] where this is called ‘continuous’; to avoid confusion with the
notion of a functor that preserves limits, we borrow this terminology from [Kha19].
16 In the sense reviewed in, say, [ES21, Appendix B.1].
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i.e. there exists a filler in the following diagram:

Therefore, we have an adjunction on the level of Nisnevich sheaves

ι∗ : ShvNis(AlgSpcS ,C) � ShvNis(SchS ,C) : ι∗,

where ι∗ is fully faithful since it is given by right Kan extension along the fully faithful functor ι.
Equivalently, the counit transformation ι∗ι∗ → id is an equivalence.

It then suffices to prove that the unit transformation id→ ι∗ι∗ is also an equivalence.
According to [Lur18, Theorem 3.4.2.1], any qcqs algebraic space admits a scalloped decomposi-
tion in the sense of [Lur18, Definition 2.5.3.1]. In this context, this means that any X ∈ AlgSpcS
admits a sequence of open immersions

∅ = U0 ↪→ U1 ↪→ U2 ↪→ · · ·Ui ↪→ · · ·Un = X,

such that for any 1 ≤ i ≤ n we have a bicartesian diagram in algebraic spaces

where each pi is étale. A result of Morel and Voevodsky [MV99] (in the form [Lur18,
Theorem 3.7.5.1]) states that any Nisnevich sheaf converts the above square to a cartesian
square. Now although Wi is not necessarily a scheme, it is an open sub-algebraic space of an
affine scheme and, hence, is separated. Therefore, by induction and the fact that ι∗ is computed
on the level of presheaves, the map F → ι∗ι∗F is an equivalence for any Nisnevich sheaf F as
soon as we know that it is an equivalence when evaluated on a separated algebraic space.

Now, if X is a separated algebraic space then, in the scalloped decomposition of X, we see
that Wi is, in fact, affine, as argued in the proof of [Kha19, Proposition 2.2.13]. Therefore, by
induction again, we need only check that F → ι∗ι∗F is an equivalence on affine schemes which
is tautologically true. �

We can now prove the following.

Theorem 3.5.9. The functor (40) extends canonically to a sm-distributive functor

SH: Spanfét(AlgSpcS)→ Cat∞
and, hence, to a functor of (∞, 2)-categories

SH: BISPANfét,sm(AlgSpcS)→ CAT∞.

Proof. First, by Lemma 3.5.8, the right Kan extension of the Nisnevich sheaf

SH: Schop → CAT∞
to algebraic spaces defines a Nisnevich sheaf

SH: AlgSpcop → CAT∞.

Therefore, we can apply [BH21, Proposition C.18] to obtain an extension

SH: Spanfét(AlgSpc)→ Cat∞
of (40).
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Now in order to use Theorem 2.5.1, we need to verify that this extension satisfies the
distributivity property with respect to smooth morphisms. Since the functors involved in the
adjointability and distributivity transformations are stable under base change, we are reduced
to the case of schemes we discussed previously. �
Remark 3.5.10. In the more general setting of spectral algebraic spaces, Khan has constructed
the unstable motivic homotopy ∞-category (defined in [Kha19, Definition 2.4.1]). By Nisnevich
descent, this agrees with the right Kan extended version appearing in the proof of Theorem 3.5.9,
using the uniqueness part of Lemma 3.5.8.

3.6 Bispans in spectral Deligne–Mumford stacks and Perf
In this subsection we promote the functor Perf : SpDM→ Cat∞ to a functor out of an (∞, 2)-
category of bispans. This extends a result of Barwick [Bar17, Example D], which gives a functor

Perf : SpanFP(SpDM)→ Cat∞

encoding the usual pullback f∗ and pushforward f∗ for a morphism in SpDM, with FP a class
of morphisms for which f∗ restricts to perfect objects and satisfies base change. Our version
adds a multiplicative pushforward f⊗ where f is finite étale (at the cost of restricting the class
FP in order to guarantee the existence of Weil restrictions). We note that the multiplicative
pushforward in this situation is right Kan extended from the symmetric monoidal structure in
Perf and is, thus, not as complicated as in the motivic and equivariant cases we considered
previously. However, we include this section with a view towards applications in algebraic K-
theory in the following section.

We will freely use the language of spectral Deligne–Mumford stacks introduced in [Lur18].
We denote by SpDMS the ∞-category of spectral Deligne–Mumford stacks over a base S. We
also adopt the following terminology from [Bar17, Example D].

Definition 3.6.1. Recall that for X ∈ SpDM an object E ∈ QCoh(X) is called perfect if for
every map x : SpecA→ X, where A is an E∞-ring spectrum, the A-module x∗E is perfect (i.e.
dualizable or equivalently compact in the symmetric monoidal∞-category ModA). Now suppose
that f : X → Y is a morphism in SpDM. We say that f is perfect if the pushforward functor

f∗ : QCoh(X)→ QCoh(Y ),

takes perfect objects to perfect objects.

The following theorem of Lurie furnishes a large class of perfect morphisms.

Theorem 3.6.2 [Lur18, Theorem 6.1.3.2]. Let f : X → Y be a morphism in SpDM. If f is
proper, locally almost of finite presentation, and of finite Tor-amplitude, then f is perfect.

Notation 3.6.3. Following [Bar17, Notation D.17], we label the class of morphisms in
Theorem 3.6.2 by FP.

We will also make use the existence of the spectral version of Weil restriction; see the dis-
cussion of [Lur18, § 19.1] and note that the definitions are completely analogous to the classical
situation. There Lurie proves the following existence theorem.

Theorem 3.6.4 [Lur18, Theorem 19.1.0.1]. Suppose that f : X → Y is a morphism in SpDM
that is proper, flat, and locally almost of finite presentation. Let p : Z → X be a relative spectral
algebraic space that is quasi-separated and locally almost of finite presentation. Then the Weil
restriction Rf (p) ∈ SpDMY exists.
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Notation 3.6.5. In light of this, let us write:

• W for the class of morphisms in SpDM that are proper, flat, and locally almost of finite
presentation;

• Q for the class of morphisms in SpDM that are relative spectral algebraic spaces, quasi-
separated, and locally almost of finite presentation;

• FP′ ⊂ FP for the class of morphisms in FP which are furthermore relative spectral algebraic
spaces;

• fét for the class of finite étale morphisms in SpDM.

Then Weil restrictions of morphisms in Q along ones in W exist in SpDM. Here FP′ ⊆ Q

since proper morphisms are always quasi-separated, and fét ⊆W.

Lemma 3.6.6. Suppose that f : X → Y is a morphism in SpDM of class W and p : Z → X is one
of class Q. Then Rf (p) is again of class Q. Assuming f is moreover finite étale, we also have:

(a) if p is quasi-compact, then Rf (p)→ Y is quasi-compact;
(b) if p is proper, then Rf (p)→ Y is proper;
(c) if p is of finite Tor-amplitude, then Rf (p)→ Y is of finite Tor-amplitude.

Proof. The statement that Rf (p) is of class Q is part of [Lur18, Theorem 19.1.0.1].
Now let us verify properties (a)–(c). To verify properties (a) and (c), note that quasi-

compactness and having finite Tor-amplitude can be detected étale locally on the target (for
the former, this is [Lur18, Remark 2.3.2.5] and the equivalences of [Lur18, Proposition 2.3.2.1]
and for the latter this is [Lur18, Proposition 6.1.2.2]). Therefore, we may work étale locally on
Y . Since f was assumed to be finite étale, it is étale locally a fold map f : X ∐n

i=1 Y → Y .
In this case, we can write p : Z → X as a coproduct

∐
i fi :

∐
i Zi →

∐
i Y . Therefore, the Weil

restriction takes the form Rf (p)  Z1 ×Y Z2 ×Y · · · ×Y Zn → Y . To conclude property (a), we
note that quasi-compactness is stable under base change [Lur18, Proposition 2.3.3.1], while for
property (c), we note that Tor-amplitudes add up under base change [Lur18, Lemma 6.1.1.6].

To prove property (b), we use the valuative criterion for properness in the form [Lur18,
Corollary 5.3.1.2]. To apply this, we need to know that Rf (p) is quasi-compact, quasi-separated,
and locally of finite type. These properties follow from what we have already proved, since a
morphism locally almost of finite presentation is also locally of finite type by [Lur18, Remark
4.1.1.5]. The properness criterion of [Lur18, Corollary 5.3.1.2] now follows from the functor-of-
points description of the Weil restriction. �

Proposition 3.6.7. Let S be a spectral Deligne–Mumford stack. Then

(SpDMS ,SpDMfét
S ,SpDMFP′

S )

is a bispan triple.

Proof. After Lemma 3.6.6 it suffices to note that morphisms in fét and FP′ are stable under
base change. This follows from [Lur18, Propositions 5.1.3.1, 4.2.1.6, 6.1.2.2, 1.4.1.11(2), and
3.3.1.8]. �

Theorem 3.6.8. Let S be a spectral Deligne–Mumford stack. The functor

Perf : SpDMop
S → Cat∞,

canonically extends to a functor

Perf : Spanfét(SpDMS)→ Cat∞.
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Moreover, this is right FP′-distributive (in the sense of Variant 2.4.12), and so canonically extends
further to a functor of (∞, 2)-categories

Perf : BISPANfét,FP′(SpDMS)2-op → CAT∞.

Proof. We first apply [BH21, Proposition C.9] to extend Perf to a functor

Spanfold(SpDMS)→ Cat∞,

where SpDMfold
S consists of the finite fold maps, i.e. the maps

∐
I X →

∐
J X with I → J a map

of finite sets. Here the pushforward

∇⊗ : Perf
(∐

I

X

)
∼= Perf(X)×I → Perf(X)

is just the tensor product, and the base change simply encodes the fact that the pullback functors
are symmetric monoidal.

Next, we use [BH21, Corollary C.13] for C = SpDM, t the étale topology and m the class of
finite étale maps to obtain a functor

Perf : Spanfét(SpDMS)→ Cat∞.

The content of this result is that since Perf is an étale sheaf and finite étale morphisms are étale-
locally contained in the class of fold maps, we can extend the symmetric monoidal structure to
norms along finite étale morphisms.

In order to show that this functor is right FP′-distributive, we first check that its restriction
Perf : SpDMS → Cat∞ is right FP′-adjointable. For any morphism f : X → Y in SpDMS the
functor f∗ : QCoh(Y )→ QCoh(Y ) has a right adjoint f∗. Given a pullback square

the commutative square

is right adjointable by [Lur18, Corollary 3.4.2.2] provided f is quasi-compact and quasi-separated.
This is true by definition [Lur18, Definition 5.1.2.1] for any proper morphism and so for any
morphism in FP′. Moreover, if f is of finite Tor amplitude, then f∗ preserves perfect complexes
by Theorem 3.6.2, so in this case the adjunction restricts to an adjunction

f∗ : Perf(Y ) � Perf(X) : f∗

on the full subcategories of perfect objects, which still satisfies the right adjointability condition
if f is also quasi-compact and quasi-separated. This holds, in particular, if f is in FP′, so that
Perf is indeed right FP′-adjointable.
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It remains to check the (right) distributivity condition for p : X → Y in FP′ and f : Y → Z
finite étale: given a distributivity diagram

(41)

the (right) distributivity transformation

f⊗p∗ → g∗f̃⊗ε∗

must be invertible. Since Perf is an étale sheaf and distributivity transformations satisfy base
change by Proposition 2.5.22, we may check this étale-locally on Z. Since finite étale morphisms
are étale-locally given by finite fold maps, this means we may assume that f is a fold map

∇ : Y 
n∐
i=1

Z → Z.

Since SpDM is extensive, we get a decomposition of p as
n∐
i=1

pi :
n∐
i=1

Xi →
n∐
i=1

Z,

and an equivalence

R∇(p)  X1 ×Z X2 ×Z · · · ×Z Xn,

since the universal property of R∇(p) is equivalent to that of this iterated fibre product:

MapSpDMS/
∐

i Z
(W,R∇(p))  MapSpDMS/

∐
i Z

(∇∗W,X)

 MapSpDMS/
∐

i Z

(∐
i

W,
∐
i

Xi

)


∏
i

MapSpDMS/Z
(W,Xi)

 MapSpDMS/Z
(W,X1 ×Z · · · ×Z Xn).

If πi denotes the projection X1 ×Z · · · ×Z Xn → Xi, then ε ∐
i πi. Now given F ∈ Perf(X)

corresponding to Fi ∈ Perf(Xi) under the equivalence Perf(X) ∏
i Perf(Xi), we can write

∇⊗p∗F  p1,∗F1 ⊗ · · · ⊗ pn,∗Fn,
g∗∇̃⊗ε∗F  g∗(π∗1F1 ⊗ · · · ⊗ π∗nFn),

with the distributivity map ∇⊗p∗F → g∗∇̃⊗ε∗F given by the composite

p1,∗F1 ⊗ · · · ⊗ pn,∗Fn → g∗g∗(p1,∗F1 ⊗ · · · ⊗ pn,∗Fn)
 g∗(g∗p1,∗F1 ⊗ · · · ⊗ g∗pn,∗Fn)
 g∗(π∗1p∗1p1,∗F1 ⊗ · · · ⊗ π∗np∗npn,∗Fn)
→ g∗(π∗1F1 ⊗ · · · ⊗ π∗nFn).
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That this is an equivalence now follows from base change and the projection formula (which
applies for maps in FP′ by [Lur18, Remark 3.4.2.6]). To keep the notation bearable we spell this
out only in the case n = 2, where it follows from Remark 2.4.11 that the distributivity condition is
equivalent to the following commutative square being right adjointable (where V := X1 ×Z X2):

We can decompose this diagram as follows:

Since horizontal and vertical pastings of right adjointable squares are again right adjointable, it
suffices to check that the three smaller squares in this diagram are all right adjointable. This is
true since the mate of the left square is the projection formula transformation for p1,

p1,∗(–)⊗ – → p1,∗(–⊗ p∗1(–)),

while the mate of the bottom right square is the projection formula transformation for π1, and
finally the mate of the top right square is idPerf(X1) times the base change transformation

p∗1p2,∗ → π1,∗π∗2

corresponding to the pullback square

We have shown that the functor

Perf : Spanfét(SpDMS)→ Cat∞

is right FP′-adjointable, and it therefore extends canonically to a functor of (∞, 2)-categories

BISPANfét,FP′(SpDMS)→ CAT∞

by Theorem 2.5.1. �
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4. Norms in algebraic K-theory

4.1 Algebraic K-theory and polynomial functors
Our goal in this final section is to combine our results so far with recent work of Barwick, Glas-
man, Mathew, and Nikolaus [BGMN21] in order to construct additional structure on algebraic
K-theory spectra. In this subsection we will review the polynomial functoriality of K-theory
constructed in [BGMN21].

Assume that C,D are small ∞-categories; a functor

f : C→ D

is then to be a polynomial functor if it is n-excisive in the sense of Goodwillie calculus [Goo91]
for some n. For our purposes it is more convenient to follow the inductive definition in [BGMN21,
Definitions 2.4 and 2.11], which is based on work of Eilenberg and Maclane [EML54]:

Definition 4.1.1. Let A and B be additive ∞-categories and assume that B is idempotent-
complete. Then we inductively define what it means for a functor F : A→ B to be polynomial
of degree ≤ n:

• if n = −1, then f must be the zero functor;
• if n = 0, then f must be constant;
• if n > 0, then for each fixed x ∈ A, the functor

Dx(f) : A→ B, y 	→ Fib(F (x⊕ y)→ F (y)),

must be polynomial of degree ≤ n− 1 (this fibre exists since B is assumed to be idempotent-
complete: it is the complementary summand to F (y) in F (x⊕ y)).

Remark 4.1.2. Via the comparison result of [BGMN21, Proposition 2.15], this definition of poly-
nomial functors agrees with the one via Goodwillie calculus for all idempotent-complete stable
∞-categories.

Warning 4.1.3. The notion of polynomial functor from Definition 4.1.1, which makes sense in
additive contexts, is completely unrelated to the concept with the same name that we considered
in Definition 3.3.3, which only exists for slices of the ∞-category S.

Remark 4.1.4. Any exact functor between stable∞-categories is polynomial of degree ≤ 1. Note
that this applies in particular to any functor that has a left or right adjoint.

Proposition 4.1.5. Suppose F,G : C→ D are polynomial of degree ≤ n. Then F ⊕G : C→ D

is also polynomial of degree ≤ n.

Proof. This is a special case of [BH21, Lemma 5.24(3)]. �
Definition 4.1.6. We have the (non-full) subcategory

Catpoly
∞ ⊂ Cat∞

whose objects are the small, idempotent-complete stable∞-categories and whose morphisms are
the polynomial functors between them.

Recall that (connective) algebraic K-theory can be defined as a functor from stable
∞-categories to spectra. Passing to the underlying infinite loop spaces, we get a functor

Ω∞K : Catstab
∞ → S,

where Catstab
∞ denotes the∞-category of stable∞-categories and exact functors. This is equipped

with a transformation (–)	 → Ω∞K that exhibits Ω∞K as the universal additivization of (–)	
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in the sense of [Bar16, BGT13]. The main result of [BGMN21] shows that if we restrict to the
full subcategory Catstab,idem

∞ of idempotent-complete stable ∞-categories, then we can extend
this to be functorial in all polynomial functors (rather than only the exact ones).

Theorem 4.1.7 (Barwick, Glasman, Mathew, and Nikolaus). The space-valuedK-theory func-
tor extends to a functor Ω∞Kpoly : Catpoly

∞ → S rendering the following diagram commutative:

(We will usually just refer to this extension as Ω∞K.)

We want to apply this to construct additional norms in K-theory, in the following way.

Corollary 4.1.8. Suppose (C,CF ,CL) is a bispan triple, and that Φ: SpanF (C)→ Cat∞ is a
functor such that:

(1) Φ(X) is an idempotent-complete stable ∞-category for every X ∈ C;
(2) f� : Φ(Y )→ Φ(X) is a polynomial functor for every f : X → Y in C;
(3) f⊗ : Φ(X)→ Φ(Y ) is a polynomial functor for every f : X → Y in CF ;
(4) Φ is L-distributive.

Then Φ induces a functor

BispanF,L(C)→ S,

which takes X ∈ C to Ω∞K(Φ(X)).

Proof. Since Φ is L-distributive, it extends to a functor BISPANF,L(C)→ CAT∞ by
Theorem 2.5.1. The induced functor BispanF,L(C)→ Cat∞ on underlying ∞-categories then
factors through the subcategory Catpoly

∞ : on objects and for the maps of the form f� and f⊗ this
is true by assumption, and for f⊕ because this is a left adjoint and so polynomial by Remark 4.1.4.
We can then combine the resulting functor with that of Theorem 4.1.7 to complete the proof. �

Remark 4.1.9. If CL = C, then condition (2) is automatic, since f� is a right adjoint for all f .

4.2 Polynomial functors from distributivity
In order to apply Corollary 4.1.8 in practice, we need to know that the functors p⊗ are polynomial
for p in CF . Our goal in this section is to derive a convenient criterion for this using distributivity,
by generalizing an argument due to Bachmann and Hoyois [BH21, § 5.5]. We start by introducing
some conditions and extra structure on bispan triples.

Definition 4.2.1. A span pair (C,CF ) is said to be an extensive span pair if:

(1) the ∞-category C is extensive;
(2) CF is closed under coproducts;
(3) for any x ∈ C the unique morphism ∅ → x is in CF ;
(4) for any x ∈ C the fold map ∇ : x

∐
x→ x is in CF .

Remark 4.2.2. If (C,CF ) is an extensive span pair, then the symmetric monoidal structure on
SpanF (C) induced by the coproduct in C via Example 2.6.9 is both cartesian and cocartesian. In
other words, in this case the coproduct in C gives both the product and coproduct in SpanF (C).
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Definition 4.2.3. Suppose (C,CF ) is an extensive span pair. Then a degree structure on (C,CF )
consists of a collection of morphisms Fn ⊆ Map([1],CF ) for each n ∈ N, called morphisms of
degree n, such that:

(1) for each morphism f : x→ y in CF , there exists a natural number N <∞ and an essentially
unique (finite) coproduct decomposition (called the degree decomposition)

y 
N∐
n=0

y(f)
n ,

such that for each 0 ≤ n ≤ N , the morphism

fn := f ×y y(f)
n : x(f)

n = x×y y(f)
n → y(f)

n

is of degree n;
(2) the collection F0 consists of the morphisms ∅ → X;
(3) morphisms in Fn are stable under base change: if f : x→ y is degree n, then for any w → y,

the morphism w ×y x→ w is also of degree n;
(4) given morphisms f : x→ y, g : z → y in CF which are of degrees n and m, respectively, then

the morphism

x
∐

z
f

∐
g−−−→ y

∐
y

∇−→ y

in CF is of degree m+ n;
(5) if n �= m, then

Fn ∩ Fm = {∅ → ∅}.
Furthermore, given a degree structure, we say a morphism f : x→ y is of degree ≤ n if in the
degree decomposition we have y(f)

i  ∅ for i > n. We also say that a morphism is of degree −1 if it
is the essentially unique morphism ∅ → ∅. Lastly, we say that a morphism f : x→ y is surjective
if y(f)

0 = ∅.
Remark 4.2.4. Suppose that (C,CF ) is equipped with a degree structure. We note that not all
morphisms have a well-defined degree although each morphism does have a degree decomposition.
In addition, the reader is encouraged to think of x(f)

0 as the ‘locus’ in x where f has empty fibres,
i.e. fails to be surjective.

Lemma 4.2.5. Given a degree structure on (C,CF ), then:

(1) surjective morphisms are stable under pullbacks;
(2) if f : ∅ → y is a surjective morphism, then y  ∅.
Proof. To prove part (1), assume that f : x→ y is a morphism with a degree decomposition
y ∐N

n=0 y
(f)
n . If g : z → y is another morphism, then from Definition 4.2.3(3) and the uniqueness

of the degree decomposition, we have that the degree decomposition of the base change

f ′ : x×y z → z

is given by z ∐N
n=0(z ×y y(f)

n ). The degree 0 part of f ′ is, thus,

z ×y y(f)
0  z ×y ∅  ∅,

as required.
Next we prove part (2). Let y ∐N

n=0 y
(f)
n be the degree decomposition of f . Then the map

∅  ∅ ×y y(f)
n → y

(f)
n has degree n, but by Definition 4.2.3(2) it also has degree 0; hence, by
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Definition 4.2.3(5) we must have y(f)
n  ∅ for n > 0. Since, by assumption, we also have y(f)

0  ∅,
we must have y  ∅. �

Example 4.2.6. Here are the main examples of degree structures on the span pairs that have
appeared throughout this paper.

(1) Consider the extensive span pair (F,F). There is a degree structure where a morphism of
finite sets f : X → Y is of degree n when the fibres all have cardinality exactly n.

(2) Consider the extensive span pair (S, Sfin). There is a degree structure where a morphism
f : X → Y in Sfin is of degree n if all its fibres have cardinality exactly n.

(3) Consider the extensive span pair (FG,FG). Then we say that morphism of finite G-sets
f : X → Y is of degree n when (the underlying sets of) the fibres all have cardinality
exactly n.

(4) Consider the extensive algebro-geometric span pairs (SchS ,Schflf
S ), (SchS ,Schfét

S ),
(AlgSpcS ,AlgSpcflf

S ), (AlgSpcS ,AlgSpcfét
S ), and (SpDMS ,SpDMfét

S ). In each of these, the
degree of a morphism f : X → Y can be defined to be n if the sheaf of finite, locally free
OY -modules given by f∗(OX) is of constant rank n.

Remark 4.2.7. In all the examples from Example 4.2.6, the degree 1 morphisms are precisely the
equivalences. This is not assumed for a general degree structure since we do not need it for our
main results.

Construction 4.2.8. We will need to compute how the degree decomposition interacts with
coproducts of morphisms. Thus, let f : x→ y, g : z → y be two morphisms. Each morphism then
induces a coproduct decomposition (where the index runs through a finite set)

y 
∐
n

y(f)
n y 

∐
m

y(g)
m .

We set

ymn := y(f)
n ×y y(g)

m .

From this, we can form the following diagram where each square is cartesian:

Lemma 4.2.9. Let (C,CF ) be an extensive pair with a degree structure. Let f : x→ y, g : z → y
be two morphisms in CF . Then in the degree decomposition of the map ∇y ◦ (f � g) : x� z → y,
the degree-k component is ∐

m+n=k

(xmn � zmn)→
∐

m+n=k

ymn,

where zmn → ymn is of degree m and xmn → ymn is of degree n.
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Proof. Since coproduct decompositions are stable under pullbacks we have that for each n ∈ N,

y(f)
n  y ×y y(f)

n 
(∐

m

y(g)
m

)
×y y(f)

n 
∐
m

ymn.

By Definition 4.2.3(3) the pullback xmn → ymn of f is therefore also of degree n. Similarly, the
pullback of g to zmn → ymn is of degree m, and so by Definition 4.2.3(4) the composite

xmn � zmn → ymn � ymn → ymn

is of degree m+ n. Now note that we have

y 
∐
n

y(f)
n 

∐
n

∐
m

ymn 
∐
k

∐
m+n=k

ymn.

Here ∇y ◦ (f � g) restricts over ymn to the map xmn � zmn → ymn of degree m+ n, so this is
a decomposition into components of fixed degree; by uniqueness this is therefore the degree
composition. �

The purpose of a degree structure as in Definition 4.2.3 is to allow us to prove that cer-
tain functors are polynomial by induction on degrees using distributivity, by abstracting the
arguments in [BH21, § 5.5].

Definition 4.2.10. We say a bispan triple (C,CF ,CL) is an extensive bispan triple if both
(C,CF ) and (C,CL) are extensive span pairs.

Remark 4.2.11. If (C,CF ,CL) is an extensive bispan triple, then the symmetric monoidal struc-
ture on BispanF,L(C) induced by the coproduct in C as in Example 2.6.12 is cartesian, i.e. the
coproduct in C gives a product in BispanF,L(C).

Definition 4.2.12. Suppose (C,CF ,CL) is an extensive bispan triple where C is idempotent-
complete. For p : y → z in CF , we say that p∗ preserves summand inclusions if given any maps
x, x′ → y the morphism p∗x→ p∗(x� x′) is a summand inclusion in the sense that there exists
a morphism c→ p∗(x� x′) such that

p∗x� c→ p∗(x� x′)
is an equivalence.

Lemma 4.2.13. Suppose (C,CF ,CL) is an extensive bispan triple where (C,CF ) is equipped with
a degree structure and C is idempotent-complete. If p∗ preserves summand inclusions for some
surjective morphism p : y → z in CF , then for maps x, x′ → y we can write

p∗(x� x′)  p∗x� cx,x′ � p∗x′

for some cx,x′ .

Proof. By assumption, we have decompositions

p∗(x� x′)  p∗x� c  d� p∗x′.
Since C is extensive, we can refine the first decomposition over the second, so that

p∗(x� x′)  (p∗x)d � (p∗x)′ � cd � c′

where

d  (p∗x)d � cd, p∗x′  (p∗x)′ � c′, p∗x  (p∗x)d � (p∗x)′, c  cd � c′.
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We claim that here (p∗x)′  ∅. Once we have shown this, we are done since we then have p∗x 
(p∗x)d and p∗x′  c′, so that

p∗(x� x′)  p∗x� cd � p∗x′.

By definition, (p∗x)′ fits in a pullback square

Since the functor p∗ preserves pullbacks (being a right adjoint), we can identify the fibre product
(p∗x)′ with p∗(x×x�x′ x′)  p∗(∅). To identify p∗(∅), we first note that we have a counit map
p∗p∗(∅)→ ∅, from which we conclude that p∗p∗(∅)  ∅. On the other hand, by definition of p∗

we have the cartesian square

Since p is by assumption surjective, so is the top horizontal map by Lemma 4.2.5(1), which
implies p∗(∅)  ∅ by Lemma 4.2.5(2). �

Construction 4.2.14. Let (C,CF ,CL) be an extensive bispan triple, where (C,CF ) is equipped
with a degree structure and the ∞-category C is idempotent-complete. Fix a morphism
p : x→ y in CF such that p∗ preserves summand inclusions, and which is surjective in the sense
of Definition 4.2.3. We then consider the following distributivity diagram for x� x ∇x−−→ x

p−→ y in
the sense of Definition 2.4.1:

(42)

Note that, according to Remark 2.4.5, w → y is equivalent to p∗(x� x→ x). From Lemma 4.2.13
we then get a coproduct decomposition of w (over y) as

w  y � c� y.
Since coproduct decompositions are preserved under pullbacks, we get p∗w  x� (c×y x)� x.
Since coproducts are disjoint, we can further decompose the restriction of ε to c×y x→ x� x
as a coproduct of two morphisms:

εL � εR : c×y x  cL � cR → x� x.
Restricting p̃ to cL and cR gives us two maps

p̃L : cL → c p̃R : cR → c.

We also have the restriction of g to c:

k : c→ y.
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All in all (42) is equivalent to

(43)

We are particularly concerned with the following diagram, which we can extract from (43),
where the middle square is cartesian:

(44)

The next lemma states that the maps p̃L, p̃R defined above must be surjective. This will be
used to prove polynomiality of p⊗ via an inductive argument.

Lemma 4.2.15. Keeping the notation of Construction 4.2.14, we have c
(p̃i)
0  ∅ for i = L,R.

Proof. We prove the case i = L. To show that p̃L has no component of degree 0, let us decompose
c as

c  c(p̃L)
0 � c(p̃L)

>0 .

Then p∗c(p̃L)
0 → p∗c  cL � cR factors through cR (since, by definition, its component over cL

is ∅) and, hence, the composite p∗c(p̃L)
0 → x� x factors through the right copy of x. But then

the adjoint map c(p̃L)
0 → p∗(x� x)  y � c� y factors through the right copy of y, which means

c
(p̃L)
0  ∅ since it also factors through c. �

For the remainder of this section, we fix an extensive bispan triple (C,CF ,CL) such that:

• C is idempotent-complete;
• (C,CF ) has a degree structure;
• p∗ preserves summand inclusions for every surjective morphism p in CF ;

and an L-distributive functor Φ: SpanF (C)→ Cat∞ such that

(1) Φ preserves finite products and
(2) for each x ∈ C, the ∞-category Φ(x) is additive.

Remark 4.2.16. The assumption that p∗ preserves summand inclusions when p is surjective holds
in all the examples from Example 4.2.6.

• In (S, Sfin), if p : Y → Z is surjective with finite discrete fibres, then for X,X ′ → Y we have

p∗(X0 �X1)z 
∏
y∈Yz

(X0,z �X1,z).

Since p is surjective (so Yz �= ∅) and products in S preserve coproducts in each variable, we can
write this as

∐
φ : Yz→{0,1}

∏
y∈Yz

Xφ(y),z, where
∏
y∈Yz

X0,z splits off as a summand, naturally
in z.
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• This argument also works in F and FG: to apply it in the latter case we can think of FG/Z

as Fun(Z,F) where Z→ BG is the unstraightening of Z : BG→ F, and then interpret p∗ as a
right Kan extension along a map of groupoids with finite discrete fibres, which is then given
fibrewise by a finite product.

• In the algebro-geometric examples, we note that a summand inclusion corresponds to a clopen
morphism of schemes (or, more generally, algebraic spaces; see Lemma 4.2.17), and the required
condition then follows from the fact that Weil restriction along finite flat morphisms pre-
serves both closed and open immersions [Ryd11, Proposition 3.5(vi)–(vii)] and, thus, preserves
summand inclusions.

Lemma 4.2.17. Let j : X → Y be a morphism of algebraic spaces. Then j is a summand
inclusion if and only if j is a clopen immersion.

Proof. We freely use the fact that the result holds if we replace ‘algebraic spaces’ with ‘schemes’
which, in turn, follows from the fact that direct sum decomposition of schemes is computed on
the level of underlying topological spaces. The ‘only if’ direction follows from [Sta, Tag 02WN].
Suppose that j is an clopen immersion. Choose a presentation of Y as a quotient U/R where q :
U → Y is surjective étale morphism and s, t : R→ U is an equivalence relation. The pullback of j
along q : U → Y then defines a clopen immersion of schemes j′ : U ′ := q−1(X) ↪→ U ; similarly we
get a clopen immersion of schemes R′ := s−1(U ′)  t−1(U ′) ↪→ R. Now, using the corresponding
result for schemes, we set the complement of U ′ in U to be U ′′, which comes equipped with a
clopen immersion U ′′ ↪→ U . Furthermore, note that the complement of R′ in R also defines an
equivalence relation R′′ on X (this can be checked on test schemes, whence the result follows
from the corresponding result on the level of sets) such that the two maps R′′ ↪→ R

s,t−→ X
factor through U ′′ as s′′, t′′ : R′′ → U ′′. We then take the quotient X ′ := U ′′/R′′, which exists
as an algebraic space. Since coequalizers and coproducts commute, we have a decomposition
Y  X∐

X ′. �

The following computation follows [BH21, Corollary 5.15] closely.

Lemma 4.2.18. For any p : x→ y in CF , we have for any E,F ∈ Φ(x) an equivalence

p⊗(E ⊕ F )  p⊗(E) ⊕ k⊕∇c,⊗
(
p̃L,⊗ε�L (E), p̃R,⊗ε�R(F )

) ⊕ p⊗(F )

in terms of (43).

Proof. The distributivity transformation (Definition 2.4.9) for (42) gives an equivalence

p⊗∇⊕  g⊕p̃⊗ε�.
The claim then follows from this equivalence, the transitivity of all the functors involved, and
the identification of ∇⊕ with the direct sum functor, which follows from the assumption that F
is product-preserving. �

Remark 4.2.19. For any morphism φ : y → x in CL, it is easy to see that the diagram
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is a distributivity diagram since for α : z → x we have an equivalence

It follows that for our L-distributive functor Φ we have an equivalence

∇x,⊗(φ⊕, id)  φ⊕∇y,⊗(id, φ�)

of functors Φ(y)× Φ(x)→ Φ(x). If we take φ = ∇x, then∇�
x is the diagonal Φ(x)→ Φ(x)× Φ(x)

(since Φ by assumption preserves products) and, hence, its left adjoint ∇x,⊕ is the coproduct on
Φ(x). From this the previous equivalence specializes for E,E′, F ∈ Φ(x) to a natural equivalence

∇x,⊗(E ⊕ E′, F )  ∇x,⊗(E,F )⊕∇x,⊗(E′, F ),

so that the functor ∇x,⊗ preserves coproducts in each variable.

Proposition 4.2.20. Suppose p : x→ y is a morphism of degree ≤ n in CF (for n ≥ −1). Then
the functor p⊗ : Φ(x)→ Φ(y) is polynomial of degree ≤ n.

Proof. By convention, a degree-(−1) morphism is given by ∅ → ∅ and, thus, defines the zero func-
tor, a polynomial functor of degree −1. We now proceed by induction. Since any morphism ∅ → y
of degree 0 induces a constant functor Φ(∅)  ∗ → Φ(y), a degree-0 morphism gives a polynomial
functor of degree ≤ 0. Now let us assume that the result has been proved for any morphism of
degree ≤ n− 1 for n ≥ 1. Consider the diagram (43). Since degree-n morphisms are stable under
pullback, the morphism p̃L � p̃R : cL � cR → c is also of degree n. Since Φ preserves coproduct
decompositions in C (which are the products in bispans) by assumption, coproducts of polyno-
mials of degree ≤ n are likewise polynomial of degree ≤ n by Proposition 4.1.5. Since we already
proved the case of degree 0, we may assume that y(p)

0  ∅ and, hence, apply Construction 4.2.14.
Now, cL � cR → c is the composite

cL � cR p̃L�p̃R−−−−→ c� c ∇c−−→ c. (45)

We claim that here p̃L and p̃R are both of degree ≤ n− 1: indeed, since both maps have no
component of degree 0 it follows from the description of the degree decomposition of (45) in
Construction 4.2.8 and the additivity condition (4) in (4.2.3) that a component of degree ≥ n in
either map would produce a component of degree > n in (45), which is impossible.

Hence, by the inductive hypothesis (p̃L)⊗ and (p̃R)⊗ are polynomial functors of degree ≤
n− 1. To conclude, we fix E and note that Lemma 4.2.18 yields an equivalence:

DE(p⊗)(–)  p⊗(E)⊕ k⊕∇c,⊗
(
p̃L,⊗ε�L (E), p̃R,⊗ε�R(–)

)
.

Here ∇c,⊗(X, –) preserves finite coproducts by Remark 4.2.19, as does k⊕ since it is a left
adjoint, so the composite k⊕∇c,⊗

(
p̃L,⊗ε�L (E), p̃R,⊗ε�R(–)

)
is polynomial of degree ≤ n− 1 by

[BH21, Lemma 5.24(4)]. Using Proposition 4.1.5 again we get that DE(p⊗)(–) is polynomial of
degree ≤ n− 1 and, hence, p⊗ is polynomial of degree ≤ n. �

Since any morphism in CF has a degree decomposition consisting of finitely many terms and
so is of degree ≤ n for some n, we have shown the following.

Corollary 4.2.21. Let p : x→ y be a morphism in CF . Then p⊗ is a polynomial functor.

Example 4.2.22. Corollary 4.2.21 applies, for instance, for any finite group G to the bispan triple
(FG,FG,FG) of finiteG-sets and the G-symmetric monoidal∞-category of G-spectra as discussed
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in Proposition 3.4.19. In this case we can conclude, in particular, that for any subgroup inclusion
H ⊆ G, the Hill–Hopkins–Ravenel norm SpH → SpG is a polynomial functor. This example has
already been studied in more detail by Konovalov [Kon20], though the proof of polynomiality is
similar to ours.

4.3 From bispans to Tambara functors
Summarizing the results of the previous two subsections, we have shown the following.

Corollary 4.3.1. Let (C,CF ,CL) be an extensive bispan triple such that C is idempotent-
complete and (C,CF ) has a degree structure. Assume, moreover, that p∗ preserves summand
inclusions for every surjective morphism p in CF , and suppose that Φ: SpanF → Cat∞ is an
L-distributive functor such that:

• Φ preserves finite products;
• for each x ∈ C, the ∞-category Φ(x) is stable and idempotent-complete;
• for each morphism f : x→ y in C, the functor f� : Φ(x)→ Φ(y) is polynomial.17

Then Φ extends to a functor Φ̃ : BispanF,L(C)→ Catpoly
∞ and, hence, induces a product-preserving

functor BispanF,L(C)→ S given on an object x ∈ C by Ω∞K(Φ(x)).

Our goal in this final subsection is to give some applications of this result towards obtaining
new structure on algebraic K-theory.

We first consider the equivariant situation, as previously discussed in § 3.4. For a finite group
G the category FG of finiteG-sets is extensive and idempotent-complete, and by Example 4.2.6(3)
it also has a degree structure. We therefore get the following.

Corollary 4.3.2. Let C : Span(FG)→ Cat∞ be a G-symmetric monoidal ∞-category that is
compatible with additive transfers. If the ∞-category CH is stable and idempotent-complete for
every H ⊆ G, then C extends to a functor

C̃ : Bispan(FG)→ Catpoly
∞ ,

and, hence, induces a product-preserving functor

Bispan(FG)→ S, G/H 	→ Ω∞K(CH).

Remark 4.3.3. A Tambara functor [Tam93] is a functor T : Bispan(FG)→ Ab, or equivalently a
functor T : Bispan(FG)→ Set such that the induced commutative monoid structure on T (G/H)
is a group for every H ⊆ G. The output of Corollary 4.3.2 is an ∞-categorical analogue of this:
it is a functor T : Bispan(FG)→ S such that the commutative monoid structure on T (G/H) is
grouplike for every H ⊆ G. We will refer to this as a homotopical Tambara functor. Note that
it is expected that connective genuine G-E∞-ring spectra are equivalent to these homotopical
Tambara functors.

Example 4.3.4. By Proposition 3.4.19 the G-symmetric monoidal∞-category of G-spectra (given
by G/H 	→ SpH) satisfies the hypotheses of Corollary 4.3.2. Hence, the G-equivariant K-theory
of the sphere spectrum is a homotopical Tambara functor: the functor

Ω∞K(SG) : O
op
G → S G/H 	→ Ω∞K(SpH),

extends canonically to a product-preserving functor Bispan(FG)→ S.

To generalize this, we introduce some terminology.

17 This is automatic if CL = C.
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Definition 4.3.5. Let G be a finite group. For us a genuine G-E∞-ring spectrum E will be a
section of the cocartesian fibration

∫
SpG → Span(FG) sending a backward arrow to a cocartesian

edge.

Remark 4.3.6. This definition mimics the definition of a normed motivic spectrum in the context
of motivic homotopy theory [BH21]; see especially [BH21, Definition 9.14]. As explained there,
it is also equivalent to the classical definition of a genuine G-E∞-ring spectrum by comparison
of associated monads.

By a similar argument as in [BH21, Proposition 7.6(4)], the formation of modules assemble
into a functor

ModE : Span(FG)→ Cat∞, G/H 	→ ModEH (SpH),

which satisfies the hypotheses of Corollary 4.3.2. We then have the following theorem.

Theorem 4.3.7. The algebraic K-theory of a genuine G-E∞-ring spectrum E is a homotopical
Tambara functor: the functor

Ω∞K(E) : O
op
G → S G/H 	→ Ω∞K(EH) := Ω∞K(ModEH (SpH)),

extends canonically to a product-preserving functor Bispan(FG)→ S.

Remark 4.3.8. As already mentioned, a homotopical Tambara functor is expected to be the same
thing as a connective G-E∞-ring spectrum. Assuming this, Theorem 4.3.7 says that algebraic
K-theory preserves G-E∞-ring structures. As far as we are aware, this is a completely new
structure on algebraic K-theory. Indeed, the recent paper [GMMO23] seems to be the first to
construct even an associative ring structure valued in G-spectra, though the results of [BGS20]
should also suffice to construct K(E) as an ordinary E∞-algebra in G-spectra.

Another interesting class of examples arises from the G-symmetric monoidal ∞-categories
obtained from group actions as in Example 3.4.17.

Corollary 4.3.9. Let C be an idempotent-complete small stable ∞-category, equipped with a
symmetric monoidal structure that is compatible with finite coproducts. Then the functor

Ω∞KG(C) : O
op
G → S G/H 	→ Ω∞K(Fun(BG,C)),

extends canonically to a homotopical Tambara functor Bispan(FG)→ S.

Remark 4.3.10. In [BGS20], the authors proved that the K-theory of a ‘näıve’ G-symmetric
monoidal ∞-category admits the structure of a Green functor. The previous corollary treats
the case of a G-symmetric monoidal ∞-category where the action is trivial and produces a
Tambara functor. We expect that a more general statement holds: the K-theory of certain ‘näıve’
G-symmetric monoidal ∞-categories should also form Tambara functors. We leave this to the
interested reader.

Example 4.3.11. As in Example 3.4.18, let R be an E∞-ring spectrum and consider the
G-symmetric monoidal∞-category from that example, given by G/H 	→ Fun(BG,Perf(R)). We
obtain a homotopical Tambara functor Bispan(FG)→ S given by

G/H 	→ K(Fun(BG,Perf(R))).

Lastly, we note that plugging in our algebro-geometric examples of bispans also gives addi-
tional structure on K-theory. Applying Corollary 4.3.1 to the extension of Perf to bispans as
in Theorem 3.6.8 gives us the following result about the K-theory of spectral Deligne–Mumford
stacks.
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Theorem 4.3.12. The K-theory presheaf

Ω∞K : SpDMop
S → S, X 	→ Ω∞K(Perf(X)),

canonically extends to a product-preserving functor Bispanfét,FP′(SpDMS)→ S.

In other words, the K-theory of spectral Deligne–Mumford stacks has multiplicative norms
along finite étale maps. On the other hand, applying Theorem 3.5.9 gives us a result about the
K-theory of SH, which is in some sense a stable analogue of the secondary K-theory explored in
the thesis of Röndigs [Rön16].

Theorem 4.3.13. The K-theory presheaf

Ω∞K : AlgSpcop → S, X 	→ K(SH(X)),

canonically extends to a product-preserving functor Bispanfét,sm(AlgSpcS)→ S.

Remark 4.3.14. The multiplicative pushforwards along finite étale morphisms on SH induce a
kind of ‘Adams operations’ on K(SH). It would be interesting to explore some computational
consequences of this structure.
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Notes in Mathematics, vol. 269 (Springer, Berlin, 1972). Séminaire de Géométrie Algébrique
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