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Attenuation of long waves through regions
of irregular floating ice and bathymetry
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Existing theoretical results for attenuation of surface waves propagating on water of
random fluctuating depth are shown to over-predict the rate of decay due to the way
in which ensemble averaging is performed. A revised approach is presented which
corrects this and is shown to conserve energy. New theoretical predictions are supported
by numerical results which use averaging of simulations of wave scattering over finite
sections of random bathymetry for which transfer matrix eigenvalues are used to accurately
measure decay. The model of wave propagation used in this paper is derived from a
linearised long-wavelength assumption whereby depth averaging leads to time harmonic
waves being represented as solutions to a simple ordinary differential equation. In this
paper it is shown how this can be adapted to incorporate a model of a continuous
covering of the surface by fragmented floating ice. Attenuation of waves through broken
ice of random thickness is then analysed in a similar manner as bed variations have
been previously. General features of the predicted attenuation are discussed in relation
to existing theoretical models for attenuation due to multiple scattering through random
ice environments and to field data, particularly in the model’s ability to capture a ‘rollover
effect’ at higher frequencies.

Key words: sea ice, shallow water flows, wave scattering

1. Introduction

It is well known that waves become attenuated as they propagate through an
inhomogeneous disordered medium that has randomly varying properties. The term
‘localisation’ is used to describe this phenomenon since the waves are localised in
space. Localisation is recognised as a multiple scattering effect caused by incoherent
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reflections from within the disordered medium and is an energy-conserving process; that
is, attenuation is not a feature of natural physical dissipative effects.

The pioneering work of Anderson (1958) which first described localisation in quantum
systems has since been applied to many other physical systems supporting wave motion.
Amongst these, considerable attention has been paid to the propagation of water waves
over randomly varying bathymetry and this is the main initial focus of this paper. Early
work in this area considered the randomness be manifested by rectangular steps in the bed.
Following the experiments of Belzons, Guazzelli & Parodi (1988), Devillard, Dunlop &
Souillard (1988) used both shallow water and wide-spacing analogous full linear potential
theory to consider the effect of random stepped bathymetry on wave propagation. Their
numerical results supported an asymptotic theory based on a long-wavelength assumption
that attenuation (the spatial rate of decay and the reciprocal of localisation length) is
proportional to the square of the wave frequency. For longer waves, their numerical
results based on shallow-water theory diverged, unsurprisingly, from the asymptotic
long-wavelength theory and from numerical simulations based on full potential theory, and
indicated that attenuation tended to a constant for high frequencies. Full linear potential
theory suggested otherwise: that attenuation becomes exponentially weak as wavelengths
tend towards the short-wavelength regime and this was explained as being associated with
the exponential decay of wave energy throughout the fluid depth.

Other work on random beds worthy of note include a series of papers by Nachbin
and coauthors (see Nachbin & Papanicolaou 1992a,b; Nachbin 1995). Much of the work
on waves over random beds have supported the findings outlined previously. Within a
linearised setting Mei, Stiassnie & Yue (2005, § 7.4) applies a multiple-scale method
(based on the work of Kawahara et al. 1976) for non-shallow potential flow and reaches
similar conclusions. The calculation results in an explicit formula for the attenuation rate
which is linked to the assumed statistical properties of the bed (now assumed to be defined
by a smoothly varying function), as well as wavelength and the mean water depth. Around
the same time, a number of papers (see Pihl et al. 2002; Grataloup & Mei 2003; Mei
& Li 2004) applied similar multiple-scale analysis to various nonlinear descriptions of
wave propagation. In particular, Mei & Li (2004) and Grataloup & Mei (2003) considered
weakly nonlinear long-wavelength theories (Boussinesq approximations). The analytically
derived formulae for wave attenuation differed in that they predicted attenuation increasing
like the frequency squared across all frequencies. Thus, there is no levelling off in the
attenuation as described by Devillard et al. (1988) nor exponential decay as predicted by
full linear potential theory.

More recently, Bennetts, Peter & Chung (2015) returned to the problem of linear full
potential theory and performed a series of careful numerical simulations, over stepped
beds, which they compared with the theory described by Mei et al. (2005, § 7.4). They
estimated the attenuation of individual waves, averaged over different realisations of
random bathymetry and showed attenuation is significantly weaker than predicted by
the theory. They correctly conclude that the ensemble averaging process used in the
multiple-scale analysis contributes to an over-prediction of the decay of wave energy due
to phase cancellation of propagating waves. Bennetts et al. (2015) also attempted to correct
for the failings of the existing modelling by including both left- and right-going waves in
the leading-order solution and by assuming a dependence on the random variables (i.e.
stochastic) in the leading-order solution, as opposed to making the usual assumption that
it is deterministic.

In this paper we revisit the problem of scattering by random bathymetry using a
long-wavelength/shallow-water model which reduces the scattering process to solving
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an ordinary differential equation (ODE) that includes a coefficient of a random variable
with given statistical properties (see § 3). In particular, the random variations in height
are considered small compared with the depth. Our analysis (§ 4) is different to previous
approaches. First, we assume the randomness occupies a semi-infinite region and define
the problem in terms of an incident wave which has the effect of introducing an energy
budget. Like Bennetts et al. (2015) we include left- and right-propagating waves, but
we assume the leading-order solution is deterministic. Like Mei et al. (2005, § 7.4) (and
others) we adopt a multiple-scale approach, but note that the ensemble averaging which
determines the attenuation requires careful consideration to remove phase cancellations
which are not associated with multiple scattering. In making this correction we also show
that energy is conserved.

Theory is compared with numerical simulations which are described in § 5 of the paper.
In § 6 we use an extension of the model (derived in the Appendix) which allows for the
surface of the water to be entirely covered by fragmented ice of variable thickness. The
ODE that results differs from the variable bathymetry case only in the definition of three
scaling coefficients and a dispersion relation; theory and numerical results are compared
in § 7.

There are a number of existing studies in the literature that have explored the relationship
between attenuation as a result of multiple scattering through randomness in ice. Only
a few are three dimensional (e.g. Bennetts et al. 2010; Montiel, Squire & Bennetts
2016) and most make the same two-dimensional simplification made here. Others such
as Mosig, Montiel & Squire (2019) have derived one-dimensional models in the form
of a transport equation derived from the work of Ryzhik, Papanicolaou & Keller (1996)
investigating elastic waves in random media. Attenuation due to changes in the thickness
of ice were considered by Kohout & Meylan (2008) who represent ice floes as a series of
thin elastic plates with free edges floating in the surface with zero (non-Archimedian)
draught. Additional dissipation models related to dependence on ice thickness were
considered by Yu, Rogers & Wang (2022), who derived a nonlinear model dependent
on ice thickness, Yu (2022), who considered Reynolds stress in a two-layer fluid system,
and Sutherland et al. (2019), who used dimensional analysis under the assumption of
their being some self-similarity scaling law. The floes are considered sufficiently long
to make a wide-spacing approximation (Porter & Evans (2006) showed this requires the
length of the floes to be of the order of the wavelength for this approximation to hold)
and averaging is performed over randomly varying length (see Williams 2006) to avoid
coherent resonant effects. Furthermore, the serial transmission method of Wadhams et al.
(1988) is used in which reflections at each ice edge are discarded, leading to attenuation
being equated to accumulated transmission across multiple floes. Squire, Vaughan &
Bennetts (2009) built on the work of Kohout & Meylan (2008) using data on the thickness
of ice from a 1670 km transect of the Arctic ocean. They also included a damping term
in their plate equation following Vaughan, Bennetts & Squire (2009) whose role was
intended to capture some natural physical dissipative effects. This approach neglects an
associated frequency dependence which depends on the physical damping process being
modelled and its contribution to attenuation is easily seen to be proportional to ω2.
The results claimed that multiple scattering dominates at low periods and damping at
higher periods. The method of Kohout & Meylan (2008) is extended further in Bennetts
& Squire (2012) to include the effects of cracks, leads and pressure ridges. Scattering
from these more sophisticated features are parametrised and the overall attenuation
from all three features are blended using the method of Dumont, Kohout & Bertino
(2011).

996 A43-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.655


L. Dafydd and R. Porter

−h0

−d0

x = 0 x = L

z = –h(x)
z = –d(x)RLe–ik0x

TLeik0xeik0x

x

z

Figure 1. Definition sketch of variable floating broken ice over a variable bed.

All the models predict some attenuation which is frequency dependent but, without
introducing a damping term of non-physical origin into the boundary conditions (see
Meylan et al. (2018) who discuss the ‘Robinson–Palmer model’), no model has yet
successfully replicated the field measurements; see discussions in Montiel, Kohout &
Roach (2022) and Meylan et al. (2018). Another feature of the field data is the onset
of a high-frequency rollover effect in which the attenuation peaks and then appears to
decrease as the frequency increases past a critical frequency. Recently Thomson et al.
(2021) have provided evidence that the rollover effect may be a byproduct of instrument
noise as opposed to a physical effect.

In the final part of § 7 we discuss the general features exhibited by our model and how
these relate to the models and the field data discussed above, taking care to note that our
modelling assumptions of shallow water and a continuum description of the broken ice
cover have limitations. Finally, the work is summarised in § 8.

2. Summary of the model

We consider a two-dimensional scattering problem in which plane-crested monochromatic
waves of small amplitude propagate in the positive x-direction in x < 0 over fluid of
constant depth with a surface covered by a continuous layer of fragmented ice of constant
thickness. There are no physical mechanisms included in the model for energy dissipation
such as fluid viscosity or ice–ice friction. Incident wave energy is partially reflected from,
and partially transmitted into, the region x > 0. This is due to either randomly varying
bathymetry or by randomly varying thickness of broken ice (both are illustrated in figure 1)
which extends over the interval 0 < x < L before returning, in x > L, to the same constant
values found in x < 0. We are interested in monitoring the reflected and transmitted wave
energy. In § 4 we set L = ∞ so that the randomness extends indefinitely into x > 0. In
this case all incoming wave energy will be reflected and the focus is determining the
attenuation of waves as a function of distance into x > 0.

Porter (2019) developed a shallow-water (long-wavelength) model for wave scattering
over variable bathymetry with no ice cover. This model results from an expansion
to second order in a small parameter representing the ratio of vertical to horizontal
lengthscales combined with depth averaging and is expressed by

( ˆ̂h(x)Ω ′(x))′ + KΩ(x) = 0, (2.1)
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where K = ω2/g, ω is the angular frequency of the motion, g represents gravitational
acceleration and

ˆ̂h(x) =
h(x)

(
1 − 1

3
Kh(x)

)

1 + 1
3
v(h)h′2(x)

(2.2)

is defined in terms of the fluid depth h(x). Here, v(h) = 1 + 1
12 Kh(x)/(1 − 1

3 Kh(x)) and
v(h) ≈ 1 is a simplification which will be adopted hereafter. The underlying assumptions
are expressed by the formal constraint that Kh � 1, although Porter (2019) showed by
comparing with exact results for reflected and transmitted wave energy for shoaling beds
of finite length, that the model produces accurate predictions up to Kh ≈ 1.

The dependent variable, Ω , in (2.1) is related to the time-independent wave elevation
η(x) obtained under the time-harmonic assumption ζ(x, t) = Re{η(x)e−iωt} by

η(x) = −(i/ω)√
1 − 1

3
Kh(x)

⎛
⎜⎝Ω(x) −

1
6

hh′

1 + 1
3

h′2
Ω ′(x)

⎞
⎟⎠ (2.3)

and is referred to as the ‘pseudo-potential’ by Toledo & Agnon (2010). It was shown in
Porter (2019) that Ω(x) and Ω ′(x) remain continuous at discontinuities in h′(x).

Porter (2019) highlighted the significant improvement in results away from the zero
frequency limit that could be achieved when ˆ̂h(x) = h(x) is replaced by the definition
in (2.2), applying in the case of the standard linear shallow-water equation. Thus, the
modification in (2.2) includes, in the numerator, the effect of weak dispersion and, in the
denominator, a geometric factor indicating a reduction in wave speed over sloping beds.
We also remark that (2.1) can also be derived from a linearisation of Boussinesq equations
(e.g. Peregrine 1967) whereby wave amplitudes are assumed sufficiently small compared
with Kh.

In the Appendix, the model developed by Porter (2019) is extended to include the
additional effect of a floating fragmented ice cover. Additional assumptions apply here.
Ice is assumed to completely cover the surface of the fluid and is broken into sections
which are sufficiently small in horizontal extent and whose thickness varies slowly enough
that the submergence of the ice is represented by a continuous function, d(x). Thus, the
model is simulating the effect of randomness within the ice cover as rather than from
incoming waves approaching the cover. The motion of the ice is constrained in heave
(vertical) motion and the expansion to second order of the depth ratio (ε in the Appendix)
in the modelling is needed to include the effect of inertia of floating ice. That is, a basic
first-order linear shallow-water model neglects vertical accelerations and the effect of ice
cover at leading order is manifested only through a reduction in the depth of the fluid from
h(x) to h(x) − d(x). Thus, our second-order model extended to incorporate floating ice of
submergence d(x) is, see (A38),

( ˆ̂d(x)Ω ′(x))′ + KΩ(x) = 0, (2.4)

where ˆ̂d(x) is defined by (A39) and the loaded surface elevation is related to Ω by (A40).
As before, Ω and Ω ′ are continuous even if d′(x) and/or h′(x) is discontinuous.
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In x < 0 and in x > L we assume h = h0, d = d0 are both constant. Then (2.4) can be
solved explicitly and

Ω(x) = eik0x + RLe−ik0x, x < 0, (2.5)

Ω(x) = TLeik0x, x > L, (2.6)

where RL and TL are reflection and transmission coefficients, satisfying |RL|2 + |TL|2 = 1
(energy conservation) and

k2
0(h0 − d0) = K

1 − 1
3

K(h0 + 2d0)

(2.7)

defines the wavenumber, k0, in terms of the frequency, ω. This shallow-water dispersion
relation is weakly dispersive, but for sufficiently small frequencies we note that k0 ∝ ω.

3. Description of randomness

We consider wave propagation over a region 0 < x < L in which either the bed or the ice
thickness randomly varies. We could consider both simultaneously varying, but for clarity
consider the two effects separately.

We say that either
d = 0, h(x) = h0(1 + σ r(x)) (3.1a,b)

or that
h = h0, d(x) = d0(1 + σ r(x)) (3.2a,b)

such that r(x) is a random function with mean zero and unit variance. That is,

〈r〉 = 0, 〈r2〉 = 1, (3.3a,b)
implying that σ is the root mean square (r.m.s.) of the vertical variations of h(x) or d(x).
We ensure that the r(0) = r′(0) = r(L) = r′(L) = 0 so that the bed/ice thickness joins the
constant values in x < 0 and x > L smoothly. The random function r(x) also satisfies the
Gaussian correlation relation

〈r(x)r(x′)〉 = e−|x−x′|2/Λ2
(3.4)

(other models have used an exponential correlation function, but show that it produces
only small differences in results). Thus, Λ characterises the horizontal length scale of the
random bed fluctuations.

4. Analysis of the model

In this section, we assume L → ∞ so that the randomness occupies x > 0. The main
assumption that is made is that the amplitude of the randomness is small, i.e. σ � 1. We
assume σ = O(ε) and will expand up to O(σ 2) to be consistent with the O(ε2) expansion
derived in the Appendix. We note that we can write (2.4) with (A39), (A41) and either
(3.1a,b) or (3.2a,b) as

((1 + σC1r(x) − σ 2(C2r2(x) + C3r′2(x)))Ω ′)′ + k2
0Ω = 0, x > 0, (4.1)

where terms up to O(σ 2) have been retained, and

Ω ′′ + k2
0Ω = 0, x < 0, (4.2)

where k0 is defined by (2.7). In (4.1), the coefficients depend on the whether the bed or the
thickness of floating ice is represented by the random function r(x). In the case that the
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bed is varying and the ice is absent, d0 = 0 and

C1 =
1 − 2

3
Kh0

1 − 1
3

Kh0

, C2 =
1
3

Kh0

1 − 1
3

Kh0

, C3 = 1
3

h2
0 (4.3a–c)

and in the case where the ice is varying and the bed is of constant depth, h(x) = h0 and

C1 =
−d0

(
1 + 1

3
K(h0 − 4d0)

)

(h0 − d0)

(
1 − 1

3
K(h0 + 2d0)

) , C2 =
−2

3
Kd2

0

(h0 − d0)

(
1 − 1

3
K(h0 + 2d0)

) ,

C3 = 1
3

d2
0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.4a–c)

The long-wave assumption on which the model is based formally requires Kd0 < Kh0 � 1
and so we do not envisage using the model close to Kh0 = 3 or K(h0 + 2d0) = 3. The
solution to (4.2) is

Ω(x) = eik0x + R∞e−ik0x (4.5)

and since we anticipate decay of waves into x → ∞ we also impose Ω → 0 as x → ∞
and so we must require that |R∞| = 1; all incident wave energy is reflected.

We make the multiple scales assumption of, e.g. Mei & Li (2004) (but also see other
references listed in the introduction) and introduce a slow variable X = σ 2x, writing

Ω(x) = Ω0(x, X) + σΩ1(x, X) + σ 2Ω2(x, X) + · · · . (4.6)

Accordingly (4.1) becomes[(
∂

∂x
+ σ 2 ∂

∂X

)(
1 + σC1r(x) − σ 2(C2r2(x) + C3r′2(x)))

(
∂

∂x
+ σ 2 ∂

∂X

))
+ k2

0

]

× (Ω0 + σΩ1 + σ 2Ω2 + · · · ) = 0, x > 0. (4.7)

The matching conditions at x = 0 consist of

Ω(0−) = 1 + R∞ = (Ω0 + σΩ1 + σ 2Ω2 + · · · )x=X=0 (4.8)

and

Ω ′(0−) = ik0(1 − R∞) =
(

∂

∂x
+ σ 2 ∂

∂X

)
(Ω0 + σΩ1 + σ 2Ω2 + · · · )x=X=0. (4.9)

At leading order, Ω0 satisfies the same wave equation (4.2) as in x < 0 and its general
solution is

Ω0(x, X) = A(X)eik0x + B(X)e−ik0x. (4.10)

This implies that the leading order solution is not explicitly dependent on individual
realisations, r(x); A and B will contain information relating to the statistical properties
of r(x) however. We require that long-scale variations, A(X) and B(X), tend to zero as
X → ∞, whilst A(0) = 1 and B(0) = R∞ are determined from the matching conditions
(4.8) and (4.9) at leading order.
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Since |R∞| = 1 there must be no net time-averaged transport of energy flux in x > 0
and so we expect that

|A(X)| = |B(X)|. (4.11)

At O(σ ) we have

∂2Ω1

∂x2 + k2
0Ω1 = −C1

∂

∂x

(
r(x)

∂Ω0

∂x

)
. (4.12)

Its solution can be determined using the Green’s function for the one-dimensional wave
equation,

g(x, x′) = eik0|x−x′|

2ik0
, (4.13)

satisfying

∂2

∂x2 g + k2
0g = δ(x − x′), (4.14)

and outgoing as |x − x′| → ∞. The right-hand side of (4.12) is composed of two
terms forced by right- and left-propagating waves and the solution Ω1, in x > 0, is a
superposition of solutions derived using g and ḡ (where the overbar denotes complex
conjugate), respectively, in Green’s identity with the two components of Ω1 over x > 0
and results in

Ω1(x, X) = −ik0C1A(X)

∫ ∞

0
g(x, x′)

∂

∂x′ (r(x
′)eik0x′

) dx′

+ ik0C1B(X)

∫ ∞

0
ḡ(x, x′)

∂

∂x′ (r(x
′)e−ik0x′

) dx′, x > 0. (4.15)

The use of ḡ is non-standard and implies that the component of the first-order solution
associated with left-propagating leading-order wave is represented by a distribution of
incoming waves. This is required to satisfy the energy balance equation (4.11). Put another
way, we require the amplitude, B(X), of the left-going wave to grow as it propagates from
right to left, its associated energy being generated from the energy lost to outgoing waves
from the right-propagating wave with amplitude A(X).

Integrating by parts once, using r(0) = 0 (since the random variations in the bed or the
ice continuously joins the constant value set in x < 0) gives

Ω1(x, X) = −ik0C1A(X)

∫ ∞

0

∂

∂x
g(x, x′)r(x′)eik0x′

dx′

+ ik0C1B(X)

∫ ∞

0

∂

∂x
ḡ(x, x′)r(x′)e−ik0x′

dx′. (4.16)

Here ∂xg = −∂x′g has been used and we note that this function is discontinuous at x = x′.
We also remark that Ω1 is a random function with zero mean since 〈Ω1〉 = 0 follows

from ensemble averaging (4.16) and using (3.3a,b).
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At O(σ 2) we have

∂2Ω2

∂x2 + k2
0Ω2 = −C1

∂

∂x

(
r(x)

∂Ω1

∂x

)
− 2

∂2Ω0

∂x∂X
+ ∂

∂x

(
(C2r2(x) + C3r′2(x))

∂Ω0

∂x

)
.

(4.17)

We ensemble average the equation using the results from (3.3a,b) and 〈r′2〉 = 2/Λ2 (this
can be established using the definition of the derivative as a limit) to give

∂2

∂x2 〈Ω2〉 + k2
0〈Ω2〉 = −C1

∂

∂x

〈
r(x)

∂Ω1

∂x

〉
− 2ik0(A′(X)eik0x − B′(X)e−ik0x)

− k2
0(C2 + 2C3/Λ

2)(A(X)eik0x + B(X)e−ik0x). (4.18)

It is instructive to write Ω1 from (4.16) in terms of separate wave-like components as

Ω1(x, X)

= −C1A(X)ik0

2

[
eik0x

∫ x

0
r(x′) dx′ − e−ik0x

∫ ∞

x
r(x′)e2ik0x′

dx′
]

+ C1B(X)ik0

2

[
e−ik0x

∫ x

0
r(x′) dx′ − eik0x

∫ ∞

x
r(x′)e−2ik0x′

dx′
]

. (4.19)

We note that the leading-order right-propagating wave excites both right-propagating
waves which accumulate from interactions with the bed to the left of the observation point,
x, and left-propagating waves which represent the accumulation of upwave reflections from
bed interactions to the right of the observation point. Similar comments apply to terms
proportional to the leading-order left-propagating wave. The ensemble averaging of the
first and third terms of (4.19) in (4.18) lead to a contribution to the attenuation which we
describe as ‘fictitious decay’. That is, it is a feature of wave scattering not experienced by
individual waves, but which instead originates from phase cancellations from first-order
waves when averaged over realisations of r(x). The coefficient multiplying the two e±ik0x

terms under scrutiny is a real integral which depends only on r(x), the geometry and,
hence, randomness does not alter the phase of these contributions. This contrasts with the
second and fourth terms in (4.19) which correspond to the accumulation of waves that
have propagated from the field point x to a point x′ and reflected by the bathymetry/broken
ice r(x′) necessarily encoding randomness into the phase of these contributions. For the
purpose of computing the attenuation experienced by individual waves we remove this
fictitious decay effect, replacing (4.19) by

Ω1(x, X) = C1A(X)ik0

2
e−ik0x

∫ ∞

x
r(x′)e2ik0x′

dx′

− C1B(X)ik0

2
eik0x

∫ ∞

x
r(x′)e−2ik0x′

dx′. (4.20)
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The only term requiring attention now is the first term on the right-hand side of (4.18)
where Ω1 is given by (4.20). It is straightforward to determine from (4.20) that〈

r(x)
∂Ω1

∂x

〉
= − ik0

2
C1A(X)eik0x + k2

0C1A(X)eik0x

×
∫ ∞

0
e−ξ2/Λ2

e2ik0ξ dξ

+ ik0

2
C1B(X)e−ik0x + k2

0C1B(X)e−ik0x

×
∫ ∞

0
e−ξ2/Λ2

e−2ik0ξ dξ (4.21)

after using the definition in (3.4) and making a substitution ξ = x − x′. As demanded by
(4.18), we need to take a further derivative which results in

C1
∂

∂x

〈
r(x)

∂Ω1

∂x

〉
= C2

1k2
0

2
(A(X)Feik0x + B(X)F̄e−ik0x), (4.22)

where

F = 1 + ik0

∫ ∞

0
e−ξ2/Λ2

e2ik0ξ dξ

= 1 +
√

π

2
ik0Λe−k2

0Λ2
(1 + i erfi(k0Λ)), (4.23)

(see, e.g. Mei & Li 2004) and erfi(·) is the imaginary error function.
Armed with (4.22), we return to the governing equation (4.18) for 〈Ω2〉 and note that

the right-hand side contains secular terms; that is, functions proportional to e±ik0x. These
must be removed to avoid unbounded growth in the solution for 〈Ω2〉 as x → ∞. In other
words, we wish to obtain

∂2

∂x2 〈Ω2〉 + k2
0〈Ω2〉 = 0, (4.24)

requiring A(X) and B(X) to satisfy the solvability conditions

2ik0A′(X) = −k2
0A(X)

(
C2

1

(
1
2

+
√

π

4
ik0Λe−k2

0Λ2
(1 + i erfi(k0Λ))

)

+ C2 + 2C3/Λ
2
)

(4.25)

and

−2ik0B′(X) = −k2
0B(X)

(
C2

1

(
1
2

−
√

π

4
ik0Λe−k2

0Λ2
(1 − i erfi(k0Λ))

)

+ C2 + 2C3/Λ
2
)

. (4.26)

Solving for A(X) with A(0) = 1 gives

A(X) = e−QX+iκX, (4.27)
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Attenuation of long waves through irregular floating ice

where

Q =
√

π

8
C2

1k2
0Λe−k2

0Λ2
(4.28)

and

κ = C2
1

(
k0

4
−

√
π

8
k2

0Λe−k2
0Λ2

erfi(k0Λ)

)
+ k0C2/2 + k0C3/Λ

2. (4.29)

Meanwhile, solving (4.26) for B(X) with B(0) = R∞ such that |R∞| = 1 gives

B(X) = R∞e−QX−iκX (4.30)

and, thus, (4.16) is satisfied.
Had the first and third terms in (4.19) not been removed and (4.19) not been replaced by

(4.20) then, amongst other changes, the expression in (4.28) would have been replaced by
Q = (

√
π/8)C2

1k2
0Λ(1 + e−k2

0Λ2
). A similar attenuation factor is determined in the work of

Mei et al. (2005, § 7.4) and Bennetts et al. (2015). The additional factor of +1, associated
with phase cancellation in the ensemble averaging, completely changes the character of
attenuation. Bennetts et al. (2015) highlight the discrepancy between theoretical results and
attenuation measured through discrete numerical simulations, most notably in figures 5
and 6 of their paper. Moreover, the expression for B(X) would also change with the factor
of Q associated with (4.30) replaced by Q = (

√
π/8)C2

1k2
0Λ(−1 + e−k2

0Λ2
) implying

exponential growth towards infinity of the left-propagating wave whilst (4.16) is no longer
satisfied.

Returning to (4.10) gives the leading-order solution in x > 0 as

Ω(x) ≈ Ω0(x, σ 2x) = e−σ 2Qx(ei(k0+σ 2κ)x + R∞e−i(k0+σ 2κ)x). (4.31)

Furthermore, since 〈Ω1〉 = 0, corrections to (4.31) are O(σ 2). From (4.31) the attenuation
rate is defined to be

ki = σ 2Q =
√

π

8
k2

0σ
2ΛC2

1e−k2
0Λ2

(4.32)

with C1 given by (4.3a–c) (or (4.4a–c)), a factor which depends upon k0h0 (and d0/h0). In
the case of a randomly varying bed with no ice cover and assuming C2

1 ≈ 1 since Kh0 � 1,
the maximum value of ki will occur at k0Λ ≈ 1. This value can be interpreted as being
associated with Bragg resonance which occurs close to k0Λ = 1 for periodic beds with
periodicity Λ. Bragg resonance is characterised by coherent multiple reflections. In the
case of varying ice C2

1 ≈ d2
0/(h0 − d0)

2 which alters the magnitude of the attenuation, but
not the condition k0Λ ≈ 1 for the maximum.

For k0Λ � 1, ki ∝ k2
0, and for k0Λ � 1 the attenuation decays exponentially as k0Λ

increases, although we note this limit is outside the long-wavelength assumptions used to
develop this model. The latter result holds in this long-wavelength model and contrasts
with the conclusions drawn by previous researchers (see, e.g. Devillard et al. (1988) and
Mei et al. (2005, § 5)) who associate exponential decay in wave attenuation as a finite
water depth effect.

These conclusions are based on a long-wave model of wave propagation with
randomness described by a continuously varying function. For short wave scattering by
floating broken ice, for example, the physics will be different as scattering by discrete ice
floes will need to be modelled correctly.
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5. Numerical methods and simulations

5.1. Generating a random surface
In order to numerically generate a random function, r(x), with statistical properties (3.1a,b)
and (3.4) characterised by the r.m.s. height 1 and the correlation length Λ we implement
the weighted moving average method described in Sarris et al. (2021) and originally due to
Ogilvy (1988). The function r(x) will be defined at x = xi = ix for i = 0, . . . , V where
x = L/V; either x or V can be used as the numerical parameter defining the resolution
of the random surface.

We generate the Gaussian weights

wj = We−2( jx)2/Λ2
(5.1)

for j = −M, . . . , M, where M = �4Λ/(x
√

2) (denoting integer part) is a truncation
parameter and W is defined to normalise these values so that

M∑
j=−M

wj = 1. (5.2)

Next, we define

σ 2
v = 1/

M∑
j=−M

w2
j , (5.3)

which is used to generate the 2N + 1 uncorrelated random numbers vi, −N ≤ i ≤ N from
a Gaussian distribution with a variance of σv . The height of a random surface at x = xi is
defined by

ri =
M∑

j=−M

wjvj+i+M−N, i = 0, . . . , V, (5.4)

requiring N to be defined by 2N = V + 2M. Our theory requires that r(x) = 0 at x = 0,
x = L and that these values are approached smoothly from within the interval x ∈ (0, L).
We thus introduce a Tukey smoothing window at either end of the interval of length Λ

(assumed to be less than L/2) via

r(xi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ri, VΛ + 1 ≤ i ≤ V − VΛ − 1,

ri

(
1
2

− 1
2

cos
(

iπ
VΛ

))
, i = 0, . . . , VΛ,

ri

(
1
2

− 1
2

cos
(

π
V − i
VΛ

))
, i = V − VΛ, . . . , V,

(5.5)

where VΛ = �Λ/x. Numerically, we ensure VΛ, which represents the number of points
per characteristic length of bed, is sufficiently large.

5.2. Determining decay via a transfer matrix
Simulations of scattering are performed over a region 0 < x < L with L/h0 � 1. Taking L
to be large is done since we wish to compare our results with the theoretical results where
L = ∞. Thus, we aim to ensure that waves pass over enough of the bed for the effect
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of randomness to be felt. Attenuation over longer beds can also help suppress multiple
scattering effects associated with the junctions at x = 0 and x = L between constant
and random surfaces. However, the method described in the following for determining
attenuation is insensitive to multiple scattering effects.

Instead of (2.5), (2.6), let us momentarily express the solution in x < 0, x > L more
generally as

Ω(x) =
{

A−eik0x + B−e−ik0x, x < 0
A+eik0x + B+e−ik0x, x > L

(5.6)

for complex constants A±, B±, representing amplitudes of right- and left-propagating
waves, respectively, whilst k0 satisfies (2.7).

We encode scattering using either a 2 × 2 scattering matrix, S, satisfying(
A+
B−

)
= S

(
A−
B+

)
, (5.7)

which relates outgoing to incoming waves or a 2 × 2 transfer matrix, P, satisfying(
A+
B+

)
= P

(
A−
B−

)
, (5.8)

which relates waves in x > L to waves in x < 0. Energy conservation requires incoming
and outgoing wave energy fluxes balance so that |A−|2 + |B+|2 = |A+|2 + |B−|2 and this
implies S̄TS = I where I is the identity and the overbar denotes conjugation; S is a unitary
matrix. Multiplying (5.8) by (A+, −B+)T results in a similar identity

EP̄TEP = I, E =
(

1 0
0 −1

)
. (5.9)

This is sufficient to show that if λ is an eigenvalue of P, then so is λ̄, as is 1/λ̄. The pair of
eigenvalues λ± of P are therefore either both real, occurring in reciprocal pairs, or complex
conjugates lying on the unit circle.

As shown in, for example, Porter & Porter (2003), the eigenvalues characterise wave
propagation across 0 < x < L: if λ± are complex conjugates, then there is no attenuation as
waves travel from left to right. If, however, λ± are real, then writing λ+ = e−kiL and λ− =
ekiL, say, indicate that right- and left-propagating waves are attenuated with the rate ki.

Since the transfer matrix, P, describes the solution over 0 < x < L without coupling to
the solution in x < 0 and x > L its eigenvalues determine decay (or otherwise) without
interference from multiple scattering effects associated with waves being reflected at the
junctions x = 0 and x = L.

The entries of P and P requires us to solve (2.4). We follow Porter (2019), write x =
ξL, p(ξ) = Ω(x) = (1 + R)p1(ξ) + ik0

ˆ̂d0(1 − R)p2(ξ) and q(ξ) = ˆ̂d(x)Ω ′(x) = (1 +
R)q1(ξ) + ik0

ˆ̂d0(1 − R)q2(ξ), where ˆ̂d0 = ˆ̂d(0), and numerically solve the dimensionless
coupled first-order system

p′
i(ξ) = (L/ ˆ̂d(Lξ))qi(ξ), q′

i(ξ) = −KLpi(ξ), 0 < ξ < 1 (5.10a,b)

for i = 1, 2 with the initial conditions p1(0) = 1, q1(0) = 0 and p2(0) = 0 and q2(0) = 1.
This allows us, after matching to the solution given by (5.6) in x < 0 and x > L and with
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some manipulation of the algebra, to express the solution either using (5.7) with

S =
(

i ˆ̂d0k0p2(1) − p1(1) eik0L

i ˆ̂d0k0q2(1) − q1(1) i ˆ̂d0k0eik0L

)−1

×
(

i ˆ̂d0k0p2(1) + p1(1) e−ik0L

i ˆ̂d0k0q2(1) + q1(1) −i ˆ̂d0k0e−ik0L

)
(5.11)

or using (5.8) with

P =
(

eik0L e−ik0L

i ˆ̂d0k0eik0L −i ˆ̂d0k0e−ik0L

)−1

×
(

i ˆ̂d0k0p2(1) + p1(1) −i ˆ̂d0k0p2(1) + p1(1)

i ˆ̂d0k0q2(1) + q1(1) −i ˆ̂d0k0q2(1) + q1(1)

)
. (5.12)

When we set A− = 1 and B+ = 0, B− = RL and A+ = TL become the reflection and
transmission coefficients to due waves incident from x < 0 which are most easily
determined from (5.7) with (5.11).

Attenuation, on the other hand, simply requires us to evaluate the pair of eigenvalues
of P from (5.12). The corresponding decay rate is then determined from ki = | ln |λ+||/L
which, in the case of complex conjugate eigenvalues is zero.

For the ensemble averaging the results we run N � 1 simulations of different
realisations of the bed or the ice thickness and then compute

〈ki〉 = 1
N

N∑
n=1

ki, 〈|RL|〉 = 1
N

N∑
n=1

|RL|, 〈|TL|〉 = 1
N

N∑
n=1

|TL|, (5.13a–c)

where the terms under the sum represent the output of each random simulation. Depending
on numerical parameters used, computations of the three averages will typically take
between 20 and 200 seconds on a standard desktop PC when N = 500. A standard
Runge–Kutta–Fehlberg method is used to solve (5.10a,b).

6. Results for randomly varying beds without ice cover

Initially, we wish to comment that the following results only account for
multiple-scattering effects present in shallow water and do not account for other
non-negligible sources of attenuation such as bed friction and other sources of physical
dissipation. We start by illustrating the numerical solution from a single realisation of a
random bed. In figure 2 the function h(x)/h0 is plotted about −2 on the vertical scale in
the figure which is used to represent the real and imaginary parts of the pseudo-potential.
In this simulation the bed is defined by h0 = 1, Λ = 2h0, σ 2 = 0.02 and L = 400h0. The
figure illustrates the randomness of the wave response over the bed and partial reflection
and transmission of the incident wave. Note that partial transmission is not necessarily a
result of wave attenuation over the random bed and occurs whenever there are changes in
propagation characteristics. See, for example, the results of Mei & Black (1969) for wave
propagation over a rectangular step.

We should also mention that the function describing the random beds are stored
numerically at discrete points at a sufficiently high resolution that linear interpolation can
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Figure 2. An example of the pseudo-potential (real and imaginary parts of Ω(x)) and an overlay of the
random function representing bathymetry 0 < x < L. Here, σ 2 = 0.02, Λ = 2h0 and L = 400h0.
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Figure 3. Variation of the dimensionless attenuation constant as N, the number of simulations, increases
for random bathymetry with L = 400h0 and σ 2 = 0.02. In (a) k0Λ = 1 is fixed and Λ/h0 is varied; in
(b) Λ/h0 = 4 is fixed and k0Λ is varied.

be used to accurately represent h(x) and h′(x) at any intermediate points needed by the
numerical integration routine.

In figure 3 we present plots illustrating the typical convergence of the dimensionless
attenuation rate, h0〈ki〉, against N, the number of simulations. In both plots, the bed
is of fixed length of L = 400h0 with vertical variations parametrised by σ 2 = 0.02. In
one plot we fix frequency at k0Λ = 1 and vary Λ/h0 = 1, 2, 4, 8. In the second plot we
fix Λ/h0 = 4 and vary k0Λ = 0.5, 1, 2, 4. Similar results are found when σ is varied
with Λ/h0 and k0Λ are held fixed. These and other tests performed suggest N = 500
simulations is sufficiently large to obtain reasonable convergence to the ensemble average
when balanced against computational time. We use N = 500 by default occasionally
increasing N when there is good reason to do so. Generally we find convergence is faster
for larger k0Λ and for larger Λ/h0 and smaller values of σ .

The next issue we address is the effect of bed length on convergence of the attenuation
rate computed from the numerical simulation. In figure 4 we have fixed the bed statistics

996 A43-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.655


L. Dafydd and R. Porter

0 0.5 1.0 1.5

k0Λ

h 0
〈k i

〉

2.0 2.5

Theory
L/h0 = 80

L/h0 = 320

L/h0 = 720

L/h0 = 1280

L/h0 = 2000

0.2

0.4

0.6

0.8

1.0

1.2

1.4
(×10–3)

Figure 4. Non-dimensional ensemble-averaged attenuation coefficient for N = 500 simulations for beds of
increasing length L, compared with theory. Here, σ 2 = 0.02 and Λ = 2h0.

to σ 2 = 0.02, Λ/h0 = 2 and plotted the ensemble average of dimensionless attenuation
coefficient against k0Λ for bed lengths increasing from L = 80h0 to 2000h0. Overlaid is
the theoretical prediction for a semi-infinite bed given by (4.32). Thus, in figure 4, the
numerical simulations appear to be converging to the theory as L → ∞.

Figure 4 indicates that the section of variable bed needs to be sufficiently long for
multiple wave scattering interactions over the variable bed to accurately capture decay due
to randomness. Since this is determined by calculating λ± = e∓kiL for each realisation,
it is expected that L will be defined by kiL = C for a constant C sufficiently large that
variations due to randomness in eigenvalues λ± of the transfer matrix P remain on the real
line. Extensive numerical experimentation has indicated that the rule kiL = 1, ki being the
theoretically derived attenuation rate, seem to produce ensemble averages which converge
across all frequencies although a small proportion of realisations still return eigenvalues
from the transfer matrix indicating no attenuation. However, setting L according to the
rule kiL = 1 implies increasingly long beds in both the low- and high-frequency limits.
Numerical simulations become both computationally expensive and prone to rounding
errors. Instead we have produced results with L = 10Λ/σ 2 which has the benefit of
being independent of frequency so that the same bed realisations can be used across all
frequencies. In doing so we are not able guarantee convergence of numerical results for
k0Λ such that k0Λe−k2

0Λ2/2 � 0.05
√

Λ/σ 2h0. For example, with σ 2 = 0.01 and Λ/h0 = 2
this translates to k0Λ � 0.7. Discrepancies between the numerical simulations and theory
are noticeable at low frequencies especially for σ 2 = 0.01 in the plots in figure 5. The issue
of L not being sufficiently large for high frequencies does not appear to affect the results
so much. Similar general comments apply later to figure 10, although we do note the lack
of convergence at high frequencies in the case where L takes its lowest value.

In figure 5 we collapse simulated data for different values of σ 2 = 0.01, 0.02, 0.04
onto the theoretical predictions for the scaled attenuation Λ〈ki〉/σ 2 for two values of
Λ/h0 = 2, 4. The only differences in the two theoretical predictions are due to the scaling
C2

1 which depends on both k0Λ and Λ/h0. Although there is noise in the data, we have
confirmed through extensive runs of the model that the fit between the data and the theory
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Figure 5. Scaled ensemble-averaged attenuation coefficients for N = 500 simulations for beds of length
L = 10Λ/σ 2, compared with theory: (a) Λ/h0 = 2; (b) Λ/h0 = 4.

improves as σ 2 tends to zero. This is expected since the theoretical attenuation is a leading
order result from an asymptotic expansion in σ 2. The numerical results in figure 5 appear
similar in character to results produced by Bennetts et al. (2015) in their figure 5 where
they highlighted the discrepancy between decay experienced by individual realisations
and the decay predicted by their theory. These authors correctly surmise: ‘We deduce that
the dominant source of attenuation of the effective wave elevation is wave cancellation
(decoherence)’. In our analysis, we identified and removed the terms which give rise to
this ‘fictitious decay’.

In figure 6 we show ensemble average of the modulus of the transmission coefficient
against frequency for beds with statistics σ 2 = 0.02, Λ/h0 = 2 in one plot and Λ/h0 = 4
in the second, for different lengths L/h0 = 100, 200 and 400. The limit L → ∞ results
in T∞ = 0, so the convergence to this limit with increasing L is slow and the variations
with L are significant. Results have been produced by averaging over 20 000 simulations to
produce much more accurate averages than in previous results. This is done to give a clear
indication of the fit between the numerical results for 〈|TL|〉 for beds of finite length L and
an approximate fit given by the curve 〈|TL|〉 = e−kiL where ki is the attenuation rate defined
by (4.32) for a semi-infinite bed. We offer no formal theoretical basis for this ‘model’ fit,
but note it agree with exact results in both limits L → 0 and L → ∞. Heuristically, this fit
might be explained by the reflection at the junctions at x = 0 and x = L between varying
and constant depths being weak in comparison to the accumulated attenuation via multiple
scattering over the length of random bed.

Another model fit has been found for the ensemble average of the reflection coefficient
for scattering over random beds of finite extent. These results are shown in figure 7 for
beds of different lengths with N = 20 000 simulations used for averaging. The model
fit 〈|RL|〉 =

√
1 − e−√

2kiL to these results has no theoretical basis but appears to be
remarkably accurate. We felt it useful to present this result in the event that it might have
practical use or help develop new theoretical results for scattering over random beds of
finite extent.

7. Results for randomly varying ice thickness in water of constant depth

Having presented theory and simulations in the case of variable bathymetry with no ice
cover, we now consider a similar analysis of results for a fluid of constant depth h0 covered
with floating broken ice submerged to a variable depth d(x), 0 < x < L, varying randomly
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Figure 6. Variation with frequency of the ensemble average of the modulus of the transmission coefficient for
N = 20 000 random bed simulations with statistical properties: (a) σ 2 = 0.02, Λ = 2h0; (b) σ 2 = 0.02, Λ =
4h0. Model refers to the curve fit 〈|TL|〉 = e−kiL.

about d0, with constant submergence found in x < 0 and x > L. The only changes from
the previous results come from different definitions for C1 and k0. Figure 8 shows the
real and imaginary parts of the pseudo-potential for a single random simulation of the ice
submergence d(x)/d0 illustrated in the same plot for which d0 = 1 and h0 = 2d0 (the
vertical range (−3, −1) is used to represent (−h0, 0)). Again, we observe the signature of
partial transmission and reflection in the elevation and note the random response of the
pseudo-potential through the variable broken ice cover.

Figure 9 illustrates how the ensemble average of the attenuation coefficient converges
with N, the number of numerical simulations. Each curve is computed from a single set of
realisations for particular parameters, but is typical of results across a range of parameters
and convergence is identical in character to results for random bathymetry. The depth of the
water in these and later results, chosen as h0 = 2d0 may seem small for a physical setting.
The primary role of the depth is in setting the wavenumber k0 in terms of the frequency,
K. The choice h0 = 2d0 allows us to extend the range of values of K over which the results
can be presented without violating the assumptions of shallowness.

Figure 10 shows results which are analogous to those obtained in figure 5, comparing the
attenuation coefficient calculated by ensemble-averaging numerically determined decay
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Figure 7. Ensemble average of the reflection coefficient for N = 20 000 simulations of random beds of varying
length with statistics: (a) σ 2 = 0.02, Λ = 2h0; (b) σ 2 = 0.02, Λ = 4h0. The model fits are curves given by
〈|RL|〉 =

√
1 − e−√

2kiL.
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Figure 8. An example of the pseudo-potential (real and imaginary parts of Ω(x)) and an overlay of the random
function representing ice submergence across 0 < x < L. Here, σ 2 = 0.02, Λ = 2d0 and L = 400d0 and the
fluid depth is h0 = 2d0.
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Figure 9. Variation of the non-dimensional attenuation coefficient with increasing N, the number of
simulations in the case of randomly varying ice thickness with σ 2 = 0.02, L = 400d0 and h0 = 2d0. In
(a) k0Λ = 1 is fixed and Λ/h0 is varied; in (b) Λ/h0 = 4 is fixed and k0Λ is varied.
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Figure 10. Scaled attenuation coefficient averaged over N = 500 simulations of random ice over distance
defined by L = 10Λ/σ 2 compared with theoretical predictions. Here, h0 = 2d0, σ is varied (see legend) and
(a) Λ = 2d0 and (b) Λ = 4d0.

over 500 realisations of a long finite variable ice cover against theoretical results. The
vertical axis is scaled so that results for different values of σ can be collapsed onto a
single theoretical curve. The results for random ice cover differ from those for random
bathymetry only in the definition of k0 and C1 for ice.

7.1. Relationship with other models and field data
The shallow-water setting and the low-frequency homogenisation used to replace floes
of small finite width by a continuum implies that it is inappropriate to make direct
comparisons with field data and existing theoretical models especially at very low or high
frequencies. However, it is useful to comment on the general features exhibited by our
model of wave propagation through broken ice.

The average attenuation coefficient (4.32) scales like k2
0 for k0Λ � 1 (i.e. at low

frequencies) and since k0 ∝ ω from (2.2) in the shallow-water setting, the attenuation
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scales like ω2 at low frequencies. The attenuation coefficient peaks at k0Λ ≈ 1 and then
decays exponentially for k0Λ > 1. One of the requirements of homogenisation is that d(x)
varies sufficiently slowly and not significantly faster than the wavelength. This translates
into the condition k0Λ �� 1 and so the peak in the attenuation is consistent with the
assumptions of the model.

Ongoing work which extends the shallow-water theory presented here to deep water
(but retaining a homogenisation of the ice floe cover) results in attenuation which is
proportional to ω8 at low frequencies, whilst a peak and a high-frequency exponential
tail remains.

There has been longstanding interest (see, for example, Squire et al. 1995) in developing
a plausible model which captures the relationship between wave frequency and attenuation
observed in field measurements. Analysis of historical data by Meylan et al. (2018)
suggest attenuation scales like ωn for n between 2 and 4 with variations away from
this at high and low frequencies. A simple power-law relationship across all frequencies
and all ice conditions may therefore not be appropriate. Attenuation of wave energy
as it propagates over shallow water or through broken ice is contributed to by both
multiple-scattering-induced localisation and natural physical dissipation. The primary
driver of attenuation in broken ice is unclear (see, e.g. Bennetts & Squire 2012; Meylan
et al. 2021) and this paper has only attempted to evaluate multiple-scattering effects.
Previous attempts at modelling of attenuation based on multiple scattering through
variations in ice thickness (see, e.g. figure 4 of Squire et al. 2009; Meylan et al. 2021)
suggest that, at very low frequencies, the attenuation may scale like ωn where n is between
8 and 10. However, neither these studies nor other multiple-scattering models (see the
discussion in the introduction) have captured a peak and ‘rollover effect’ in the attenuation
at higher frequencies as we have done in our theory. This may be because the onset of
rollover occurs at frequencies beyond the limitations of our theory. It may also be due to
differences in how the multiple-scattering calculations are made in this work compared
with others. Beyond the assumptions of homogenisation we make no other approximation
to the scattering process within the ice. In the work of Squire et al. (2009), for example,
it is typical that the ice is modelled as a thin elastic plate with no draft and that scattering
is calculated using a serial approximation (see Williams 2006) which effectively neglects
reflections at ice floe interfaces and is based on wide-spacing approximations. In particular,
this latter assumption formally requires breaks in the ice to be large compared with the
wavelength and is complementary to our assumption.

The rollover effect that appears in our theory of random multiple scattering has been
a feature of many sets of field measurements taken in the marginal ice zones. See, for
example, Squire et al. (1995), who include field measurements of Wadhams et al. (1988)
and Liu et al. (1992) in which attenuation is observed to peak and start to drop as the
frequency increases beyond a critical value. High-frequency rollover effects have since
been disputed, most notably in Rogers et al. (2016) and Thomson et al. (2021) who
attributes rollover to a statistical effect in data analysis. Thus, Thomson et al. (2021)
consider a synthetic (not floating ice) problem in which the attenuation is known and show
that measurements fail to replicate the expected high-frequency behaviour and, instead,
exhibit a rollover effect.

8. Conclusions

The paper has considered a basic model for the propagation of long waves through
water of variable shallow depth with a surface covered by fragmented broken ice.
Simple expressions have been derived for the attenuation of waves over randomly varying
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bathymetry and through ice of randomly varying thickness. In the analytic derivation of
the expression for attenuation based on randomness occupying a semi-infinite domain,
we have identified and removed terms responsible for incoherent phase cancellations in
the ensemble-averaging process which contribute to fictitious decay not experienced by
individual realisations of wave propagation through randomness. The theory has been
shown to agree with numerical simulations in which averaging was performed over
individual wave realisations across randomness of finite extent. In the simulations, for
which our shallow-water models require numerical solutions to simple two-dimensional
ODEs, attenuation was measured accurately by computing eigenvalues of the resulting
transfer matrix. These encode propagation but exclude multiple scattering effects relating
to transitions at the ends of the scattering region from variable to constant parameter
values.

In addition to resolving the discrepancy between theory and numerical simulations for
random bathymetry highlighted by Bennetts et al. (2015), we have also shown that there
is a peak in attenuation which relates closely to a Bragg resonant effect, the significant
length scale of the bed being its statistical correlation length. Beyond this peak, attenuation
decreases exponentially as a function of the square of the wavenumber. This decay,
predicted by the shallow-water model, therefore appears not to be a finite-depth effect
as proposed in some previous studies (e.g. Devillard et al. (1988) and Mei et al. (2005,
§ 5)).

The shallow-water formulation has been extended to include the effect of broken
ice using the method of Porter (2019). This second-order extension of the classical
shallow-water model includes vertical acceleration which is needed for the ice thickness
to enter the dynamics. Agreement has been confirmed between theory and numerical
simulations.

Whilst our model may not be applicable to field data due to it being highly simplified, it
does provide evidence for a key, albeit disputed, feature of the data sets in that of a ‘rollover
effect’. This gives us reason to believe that random variations in ice thickness could be a
plausible mechanism for the attenuation of waves through broken sea ice; however, as the
sea ice is multi-phase and non-continuous and our model is limited to a shallow-water
model in a continuum ice cover limit, further work is needed to establish greater certainty.
We plan a range of extensions to the current work to include more complex effects which
include: (i) finite water depth; (ii) variable ice cover concentration; (iii) discrete ice floe
models; (iv) weak nonlinearity; and (v) three-dimensional scattering.
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Appendix. Derivation of the long-wave model

The model will be developed in a two-dimensional Cartesian framework (x, z) with z
directed vertically upwards. Fluid of density ρ is bounded below by a rigid bed located
at z = −h(x) and above by freely-floating fragmented ice of thickness d(x)ρ/ρi where ρi
is the density of ice. The moving fluid/ice interface is described by z = −d(x) + ζ(x, t)
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where ζ(x, t) represent the wave elevation and t is time. Thus, the rest position of an
unloaded fluid surface would be z = 0.

We assume that the depth is small compared with the wavelength and that gradients of
h(x) and d(x) are equally small. The ice is assumed broken into individual floes whose
horizontal extent is small compared with the wavelength. The floes are constrained to
move vertically. The length of individual floes does not enter our model since we assume a
continuum model from the outset (the description of the ice submergence as d(x) already
indicates this) which avoids engaging in a formal derivation based on multiple horizontal
scales.

The fluid is assumed to be both inviscid and incompressible and its motion is represented
by the velocity field (u(x, z, t), w(x, z, t)), u and w being the horizontal and vertical
components of the flow, respectively.

Within the fluid, conservation of mass requires

ux + wz = 0 (A1)

is satisfied. Conservation of momentum gives

ρut + ρ(uux + wuz) = −px, and ρwt + ρ(uwx + wwz) = −pz, (A2a,b)

where p(x, z, t) is the dynamic pressure in the fluid in excess of background hydrostatic
pressure −ρgz, where g is acceleration due to gravity and the background atmospheric
pressure above the ice is assumed without loss of generality to be zero. On the rigid bed,
the no-flow condition is represented by

w + h′(x)u = 0, on z = −h(x), (A3)

and on the moving fluid/ice interface we have the kinematic and dynamic conditions

ζt = w + (d′(x) − ζx(x, t))u, on z = −d(x) + ζ(x, t), (A4)

and

ρd(x)ζtt = p(x, −d(x) + ζ(x, t), t) − ρgζ(x, t). (A5)

We rescale physical variables using

x = Lx∗, z = Hz∗, h = Hh∗, d = Hd∗ and ζ = Aζ ∗, (A6a–e)

where L represents a characteristic horizontal length scale (a different definition from that
used in the main text for the length of the bed) associated with the wavelength and/or
the variable bed/ice cover, H is a characteristic fluid depth and A a characteristic wave
elevation. We also define

ε = H
L

, δ = A
H

, (A7a,b)

which represents shallowness and linearisation parameters, respectively. We suppose that
both ε and δ are small and assume that δ = o(ε2) to ensure we operate within a linearised
setting.
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Based on the shallow-water dispersion relation, we select a time scale T = L/
√

gH so
that t = Lt∗/

√
gH and set

u = A
H

√
gHu∗ and w = A

L

√
gHw∗ (A8a,b)

whilst p = ρgAp∗. Under this change of variables the governing equations become (after
dropping asterisks)

ux + wz = 0 (A9)

with
ut + δ(uux + wuz) = −px (A10)

and
ε2wt + δε2(uwx + wwz) = −pz. (A11)

Our boundary condition at the fluid bed reads

w + h′(x)u = 0 on z = −h(x), (A12)

with our boundary conditions on the ice becoming

ζt = w + (d′(x) − δζx(x, t))u, on z = −d(x) + δζ(x, t) (A13)

and
ε2d(x)ζtt = p(x, −d(x) + δζ(x, t), t) − ζ. (A14)

Noting that δ = o(ε2) has been assumed we expand variables up to O(ε2), so that

ζ(x, t) = ζ (0)(x, t) + ε2ζ (1)(x, t) + · · · (A15)

and

{ p, u, w}(x, z, t) = { p(0), u(0), w(0)}(x, z, t) + ε2{ p(1), u(1), w(1)}(x, z, t) + · · · . (A16)

Only in the case that h(x) and/or d(x) contain discontinuities would we need to include
terms of O(ε) (see Mei et al. (2005, § 5)) since these would arise from an asymptotic
matching process across the discontinuity. It is consistent with this expansion that we
neglect contributions from terms multiplying δ in (A9)–(A14). We continue by solving
for the leading-order variables. From (A11), p(0)

z = 0 and from (A14), p(0)(x, −d(x), t) =
ζ (0)(x, t) implies

p(0)(x, z, t) = ζ (0)(x, t) (A17)

and then from (A10) we have

u(0)
t (x, z, t) = −ζ (0)

x (x, t) (A18)

and so u(0) is a function of x and t only. Integrating (A9) at leading order from z = −h(x)
to z = −d(x) and using (A12) and (A13) gives

q(0)
x (x, t) = ((h(x) − d(x))u(0)(x, t))x = −ζ

(0)
t (x, t), (A19)

where we have defined the depth-integrated horizontal fluid flux q(x, t) = q(0)(x, t) +
ε2q(1)(x, t) + · · · with

q(0,1)(x, t) =
∫ −d(x)

−h(x)
u(0,1)(x, z, t) dz. (A20)
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Eliminating between (A18) and (A19) gives either

ζ
(0)
tt = ((h(x) − d(x))ζ (0)

x )x, or q(0)
tt = (h(x) − d(x))q(0)

xx (A21)

as the leading-order governing equation, expressed in dimensionless variables. That is, the
effect of fragmented ice cover at leading order is equivalent to an uncovered fluid having
a reduced depth, h(x) − d(x).

Now we work at the next order, O(ε2). Integrating (A9) at order O(ε2) from z = −h(x)
to z = −d(x) and using (A12) and (A13) at O(ε2) gives

q(1)
x (x, t) = ∂

∂x

∫ −d(x)

−h(x)
u(1)(x, z, t) dx = −ζ

(1)
t (x, t). (A22)

The next step is to determine the leading-order vertical velocity integrating (A9) again, but
now from z to −d(x), to give

w(0)(x, z, t) = ζ
(0)
t (x, t) − ((z + d(x))u(0)(x, t))x, (A23)

which is linear in z. From (A11) at O(ε2) we infer that

p(1)
z (x, z, t) = −ζ

(0)
tt + ((z + d(x))u(0)

t )x, (A24)

which can be integrated using the condition (A14) at O(ε2) to give

p(1)(x, z, t) = ζ (1) − zζ (0)
tt + 1

2 ((z + d(x))2u(0)
t )x. (A25)

Using this in (A10) at O(ε2) gives

u(1)
t (x, z, t) = −p(1)

x = zζ (0)
ttx − ζ (1)

x − 1
2((z + d(x))2u(0)

t )xx. (A26)

We find, after extensive algebra, which makes repeated use of the relation q(0)
t = (h −

d)u(0)
t , that

q(1)
t (x, t) =

∫ −d(x)

−h(x)
u(1)

t dz = 1
2
(d2 − h2)ζ

(0)
ttx − (h − d)ζ (1)

x + 1
2
(h − d)d′′q(0)

t

− 1
6
{(h − d)′q(0)

xxt − 2(h − d)(h′ − d′)q(0)
xt

− (h′′ − d′′)(h − d)q(0)
t + 2(h′ − d′)2q(0)

t }
− d′2q(0)

t + d′{(h − d)q(0)
xt − (h′ − d′)q(0)

t }. (A27)

Further simplification and use of the relation q(0)
x = −ζ

(0)
t results in

q(1)
t = −(h − d)

(
ζ (1)

x + 1
3

(
(h + 2d)ζ

(0)
tt

)
x

)
+ q(0)

t

(
1
6 (h − d)(h + 2d)′′ − 1

3 (h − d)′(h + 2d)′ − d′2
)

. (A28)

We can now recombine leading order and O(ε2) terms as we redimensionalise variables,
a process which leads to the coupled equations

ζt = −qx (A29)
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and (
1 + d′2 + 1

3
(h − d)′(h + 2d)′ − 1

6
(h − d)(h + 2d)′′

)
qt

= −(h − d)

(
gζ + (h + 2d)

3
ζtt

)
x

(A30)

expressed in terms of the original physical variables q and ζ and which are accurate to
O(ε2). Eliminating q in favour of ζ gives us the governing equation

ζtt = ∂

∂x

(
d̂(x)

∂

∂x

(
gζ + (h + 2d)

3
ζtt

))
, (A31)

where

d̂(x) = (h − d)

1 + d′2 − 1
6
(h − d)(h + 2d)′′ + 1

3
(h − d)′(h + 2d)′

. (A32)

Note that when d(x) ≡ 0 we recover (2.13) from Porter (2019). We see that the expansion
to O(ε2) in the small parameter ε = H/L has captured the contribution from the inertia of
the ice in (A31) whilst there are non-trivial modifications to the wave speed through the
geometrical factors associated with varying d(x) and h(x) in (A32). Specifically, it is worth
noting that (h + 2d)/3 = (h − d)/3 + d and h − d is the vertical extent of the fluid. Thus,
the isolated contribution dζtt is associated with ice inertia and the remaining 1

3 (h − d)ζtt is
a contribution from vertical acceleration of the fluid through depth-averaging, in common
with Porter (2019).

Eliminating ζ in favour of q between (A29) and (A30) gives

qtt = d̂(x)
(

gqx + (h + 2d)

3
qttx

)
x

(A33)

and this provides the starting point for a series of transformations of the dependent variable
which follow Porter (2019). We factorise a time-harmonic variation with

q(x, t) = Re

⎧⎪⎪⎨
⎪⎪⎩

ϕ(x)√
1 − 1

3
K(h + 2d)

e−iωt

⎫⎪⎪⎬
⎪⎪⎭ (A34)

and the square-root factor in the denominator simultaneously transforms the resulting ODE
into canonical form. Thus, after some algebra we find

ϕ′′(x) +
(

K̂
h − d

(
1 + 1

3
v1(h, d)h′(x)2 + 1

3
v2(h, d)(d′(x)2 + h′(x)d′(x))

))
ϕ(x) = 0,

(A35)
where

K̂ = K

1 − 1
3

K(h + 2d)

, (A36)

v1(h, d) = 1 + 1
12

K̂(h(x) − d(x)) and v2(h, d) = 1 + 1
3

K̂(h(x) − d(x)). (A37a,b)
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A final change of variables is made, by letting Ω(x) = ϕ′(x) and it follows that (A35) is
transformed into

( ˆ̂d(x)Ω ′)′ + KΩ = 0, (A38)

where

ˆ̂d(x) =
(h − d)

(
1 − 1

3
K(h + 2d)

)

1 + 1
3
v1(h, d)h′(x)2 + 1

3
v2(h, d)(d′(x)2 + h′(x)d′(x))

. (A39)

This final series of transformations have brought about two useful features. The first is that
(A38) is expressed in a form aligned with the familiar linearised first-order shallow-water
equation. The second is that the function Ω(x) and its derivative Ω ′(x) are continuous
even if h′(x) and/or d′(x) are discontinuous. The loaded surface can be reconstructed from
Ω(x) by following the effect of each transformation and turns out to be represented by

η = (−i/ω)√
1 − 1

3
K(h + 2d)

×

⎛
⎜⎝Ω(x) −

1
6
(h − d)(h + 2d)′

1 + 1
3
v1(h, d)h′(x)2 + 1

3
v2(h, d)(d′(x)2 + h′(x)d′(x))

Ω ′(x)

⎞
⎟⎠ , (A40)

where ζ(x, t) = Re{η(x)e−iωt}.
Since we anticipate Kh � 1, we can make approximations v1(h, d) ≈ 1 and v2(h, d) ≈

1, noting 0 < h − d ≤ h and so

1
3v1(h, d)h′(x)2 + 1

3v2(h, d)(d′(x)2 + h′(x)d′(x)) ≈ 1
3(h′(x)2 + h′(x)d′(x) + d′(x)2).

(A41)

We note that if we let d(x) = 0 in (A39), (A40) and (A41), we recover expressions derived
in Porter (2019).
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