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In the classical treatment the screening phenomenon of electric fields in a plasma is solely
caused by charged particles, i.e. electrons and ions. In contrast, the present consideration
focuses on the role of neutrals in a situation when the correlations between the charged
and neutral components of the plasma medium turn rather significant. The consideration is
entirely based on the renormalization procedure for interparticle interactions, which takes
into account collective events in the generalized Poisson–Boltzmann equation relating the
true microscopic potentials with their effective macroscopic counterparts. A meaningful
approach is proposed to analytically derive the screening length from an appropriate
assumption on the asymptotic behaviour of the macroscopic potential at large interparticle
separations. It is clearly demonstrated that the neutral component really affects the
screening length when the plasma reaches states corresponding to warm dense matter
conditions. It is also shown that, at certain critical values of the plasma parameters, the
character of the screening changes from exponential to oscillatory decay.
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1. Introduction

In the spotlight of the following is a comprehensive examination of the screening
process, occurring when an external test charge is embedded into a plasma medium.
Because of the electrostatic forces, electrons and ions become rearranged in a way to
weaken the external field of the electric charge, which eventually leads to a phenomenon
called screening. Usually, the screening is studied by introducing the collective potential,
which only takes into account the redistribution of charged plasma particles according
to the Boltzmann law (Murillo 2004). Subsequent linearization of the thus obtained
Poisson–Boltzmann equation allows one to rigorously derive the characteristic screening
length known as the Debye screening radius. Further analysis of the solution proves that
the expansion in the collective potential is valid at rather large distances from the electric
field source, as compared with the Debye screening length (Li & Zhang 2003).
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Meanwhile, in various situations of general physical interest, there is an urgent need for
careful handling of the emerging nonlinearities, which are known to manifest themselves
in the capture of charged particles of the medium by the electric field of the test charge.
In this case, an accurate analysis is typically implemented within the set of the Poisson
and Vlasov equations (Krasovsky 2017), assuming that the screening is only due to those
plasma particles which are capable of attaining the surface of the test charge (Tsytovich &
Gusein-zade 2014). It is highly expected that such a nonlinear screening has a significant
impact on the formation of ordered structures (Tsytovich & Gusein-zade 2013) and the
physical characteristics of such strongly coupled systems as dusty plasmas (Semenov,
Khrapak & Thomas 2015; Pandey & Vladimirov 2016; Martynova, Iosilevskiy & Shagayda
2018).

At present, the screening phenomenon is of extreme importance for explaining various
situations that arise during the experimental production of warm dense matter (WDM),
when specifically designed targets are irradiated with powerful laser and heavy ion beams
(Falk et al. 2014; Zastrau et al. 2014), as is the case, for instance, in inertial confinement
fusion research (Nora et al. 2015; Betti & Hurricane 2016). At such compressed plasma
states, both quantum and correlation effects play an important role (Moldabekov et al.
2015), so that the description of interionic interactions is conventionally carried out within
the framework of the density-response theory with an appropriately defined dielectric
function, in which the screening is exclusively due to surrounding electrons. Nevertheless,
for the time being, the density functional theory (Stanton & Murillo 2015) seems to be
more instructive for it provides a more universal description of the field screening process
and enables detection of inconsistencies in such methods as quantum hydrodynamics
(Vladimirov 2011). On the other hand, WDM is usually found in a state of partial
ionization when neutrals, viz. atoms and molecules, must be somehow incorporated into
the scrutiny. This is especially true for astrophysical applications such as the interiors
of giant planets, white and brown dwarfs (Chabrier et al. 2000; Knudson et al. 2012;
Soubiran et al. 2017) as well as for shock-compression experiments (Hamel et al. 2012;
Guarguaglini et al. 2021). Despite recent progress in experimentation and computer
simulation, WDM still poses significant problems from the viewpoint of theoretical
understanding since it is a rather ambitious goal to simultaneously cope with a whole range
of phenomena as dissimilar as quantum effects, well pronounced interparticle correlations,
partial ionization, electron degeneracy, etc.

It should be clearly stressed that in the majority of current investigations dealing with
the screening phenomena, the presence of the neutral plasma component is completely
neglected, whereby treating it as a kind of inert uniform background. The present
consideration is in a position to give an answer to the question of how and under what
circumstances neutrals do really participate in the screening. Indeed, it is intuitively
perceived that, if the charged and neutral components of the plasma are sufficiently
correlated, mutual separation of electrons and ions in an external electric field inflicts
collateral regrouping of neutrals, which then return their effect on the distribution of
the charged component itself. In other words, charged and neutral plasma particles can
no longer be separately treated and, as a result, the screening length should eventually
become a more complicated function of the plasma parameters to embrace the physical
characteristics of the neutral component.

It is also worthwhile mentioning that only a thermal plasma is systematically considered
below, which can therefore be described in terms of the local thermodynamic equilibrium,
so that the temperatures of the medium components, i.e. electrons, ions and neutrals,
are assumed to all be equal. Typically, thermal plasmas are generated at a rather high
temperature, that being the main source of ionization, which is typical for such physical
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objects as astrophysical and thermonuclear plasmas, plasmas in ion thrusters and WDM
experiments as well as working bodies in combustion and induction chambers. On
the contrary, in various types of gas discharges, an external electromagnetic field is
conventionally applied to ionize the medium, thereby causing the electron temperature to
significantly exceed the temperature of heavier plasma components, and it then becomes
obvious that, in this case, the proposed approach will require further development.

The sketch of this paper is concisely outlined as follows. Section 2 takes care of the
general formalism for evaluating the screening length, which essentially stems from the
previously developed generalized Poisson–Boltzmann equation (Arkhipov et al. 1999;
Arkhipov, Baimbetov & Davletov 2003). Section 3 is devoted to the determination of the
screening lengths in various types of plasmas to lucidly reveal the influence of quantum
effects and partial ionization. Main conclusions are briefly compiled in § 4.

2. General formalism

In order to analytically approach the screening phenomena in various kinds of plasmas,
the generalized Poisson–Boltzmann equation is exploited, which couples together the true
microscopic interaction potential ϕab(ra

i , rb
j ) and its macroscopic analogue Φab(ra

i , rb
j ),

accounting for the collective events in the medium, as follows (Arkhipov et al. 1999, 2003):

ΔiΦab(ra
i , rb

j ) = Δiϕab(ra
i , rb

j ) − β
∑

c

nc

∫
Δiϕac(ra

i , rc
k)Φcb(rb

j , rc
k) drc

k. (2.1)

Within this context the radius vector of the ith particle of species a is denoted as ra
i with

Δi being the corresponding Laplace operator, nc stands for the number density of particle
sort c and β = (kBT)−1 designates the inverse temperature in energy units, with kB being
the Boltzmann constant.

The generalized Poisson–Boltzmann equation in the form of (2.1) is obtained on the
basis of the renormalization procedure for the interaction of two selected plasma particles
in the presence of a third one (Arkhpov, Baimbetov & Davletov 2011). In particular,
the total macroscopic interaction force between the two particles is represented as a
sum of their direct microscopic interaction and the positionally averaged interaction with
the third particle, whose spatial distribution of the probability density is given by the
Boltzmann law. It should be noted that the central equation (2.1) can still be rigorously
derived from the Bogolyubov chain of equations for equilibrium distribution functions
in the pair correlation approximation (Arkhpov et al. 2011) and turns into the ordinary
Poisson–Boltzmann differential equation for the purely Coulomb interaction potential
between plasma particles (Ecker 1972).

It is appropriate at this juncture to make a few remarks concerning the range of validity
of the generalized Poisson–Boltzmann equation (2.1) and its subsequent solution. First of
all, the linearization in exp(−Φab(ra

i , rb
j )/kBT) was actually used at the derivation, which

formally restricts the present model to |Φab(ra
i , rb

j )/kBT| � 1, i.e. to rather large distances
between particles when Φab(ra

i , rb
j ) → 0. In reality, the solution of the generalized

Poisson–Boltzmann equation retains its robustness in a much broader range of interparticle
distances beyond the smallness of |Φab(ra

i , rb
j )/kBT|, which is physically reasoned as

follows. The first term on the right-hand side of (2.1) ensures that at rather short distances
the macroscopic potential Φab(ra

i , rb
j ) virtually coincides with the microscopic potential

ϕab(ra
i , rb

j ), whereas the second term firmly guarantees the screening at long interparticle
separations |ra

i − rb
j | → ∞. Therefore, the exact solution of (2.1) is practically the

interpolation between the two correct asymptotic behaviours of the macroscopic potential
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Φab(ra
i , rb

j ), which effectively extends its range of validity far beyond satisfaction of the
inequality |Φab(ra

i , rb
j )/kBT| � 1 and across the coupling regimes. The situation here

can be forthright linked to the Yukawa (Debye–Hückel) potential, which also invokes
the linearization procedure and whose viability was definitely demonstrated to span over
the entire distance range and system coupling (Murillo 2004), thereby fully justifying the
tremendous success of the Yukawa potential in describing various properties of strongly
coupled dusty plasmas. Note, however, that the screening phenomena are only targeted in
the subsequent consideration when the macroscopic potential vanishes exponentially with
distance, thereby strictly obeying |Φab(ra

i , rb
j )/kBT| � 1.

It is straightforward to prove that in the Fourier space the set of governing equations (2.1)
is conveniently rewritten in a linear algebraic form, such that the corresponding solution
for the Fourier transform of the macroscopic potential Φ̃ab(k) is explicitly expressed via
the Fourier transform of the microscopic potential ϕ̃ab(k) in the following tensor form:

Φ̃ab(k) =
∑

c

ϕ̃ac(k)ε−1
cb (k), (2.2)

where
εab(k) = δab + βnaϕ̃ab(k), (2.3)

with δab signifying the Kronecker delta.
Note that the screening tensor εab(k) is strictly specified in the space of particle species

and can be cast in the matrix form as

εab(k) =

⎛
⎜⎜⎝

1 + βnaϕ̃aa(k) βnaϕ̃ab(k) . . . βnaϕ̃ac(k)
βnbϕ̃ba(k) 1 + βnbϕ̃bb(k) . . . βnbϕ̃bc(k)

...
...

. . .
...

βncϕ̃ca(k) βncϕ̃cb(k) . . . 1 + βncϕ̃cc(k)

⎞
⎟⎟⎠ . (2.4)

Without any further loss of generality, we consider a partially ionized plasma consisting
of electrons, singly charged ions and neutrals, denoted in what follows by the subscripts
e, i and n, respectively. In addition, to study the screening phenomenon in its pure
form, a widely accepted setting is applied when two external point-like charges z1e
and z2e are placed into the plasma medium with e being the elementary charge and
zi, i = 1, 2 standing for their charge numbers. Therefore, the main purpose is to figure
out the influence of the plasma environment on the interaction between these external
charges, whose microscopic potentials obey the Coulomb law to have the following Fourier
transforms:

ϕ̃zizj(k) = zizjϕ̃(k) = zizj
4πe2

k2
, i, j = 1, 2. (2.5)

To avoid unnecessary complications the same regulation is imposed on the interaction
of the external charges with electrons and ions of the plasma medium such that the
corresponding Fourier transforms of the microscopic potentials read as

ϕ̃izi(k) = −ϕ̃ezi(k) = ziϕ̃(k), i = 1, 2. (2.6)

As for neutrals in the system, their interaction with the external test charges is
completely omitted for the sake of simplicity, while the interaction of neutral plasma
particles with electrons and ions is extremely essential for the whole consideration and its
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effect on the screened interaction of the external charges is one of the key issues addressed
hereinafter.

Although the external charges are indeed solitary, they are nevertheless dealt with as
individual medium constituents with the number densities being equal to zero, such that
the solution (2.2) and (2.3) for the Fourier transform of the interaction potentials of the
external particles is ultimately represented as

Φ̃zizj(k) = zizjΦ̃(k), (2.7)

with

Φ̃(k) = ϕ̃(k) − βϕ̃2(k)
�(k)

∑
a

na(1 − δan)

(
1 − β

∑
b,b�=a

nb[ϕ̃bb(k) + ϕ̃ab(k)(1 − δbn)]

− β2
∑
c,c �=b

nbnc(1 − δab)(1 − δac)(1 − δbn)δcn

× [ϕ̃ac(k)ϕ̃bc(k) + ϕ̃ab(k)ϕ̃cc(k)]

)
, (2.8)

and

�(k) = 1 + β

1!

∑
a

naϕ̃aa(k) + β2

2!

∑
a,b

nanb[ϕ̃aa(k)ϕ̃bb(k) − ϕ̃ab(k)2]

+ β3

3!

∑
a,b,c

nanbnc[2ϕ̃ab(k)ϕ̃bc(k)ϕ̃ac(k) + ϕ̃aa(k)ϕ̃bb(k)ϕ̃cc(k)

− 3ϕ̃aa(k)ϕ̃bc(k)2]. (2.9)

Note that the summations in the above formulas are implied over electrons, ions and neutral
particles of the plasma medium. Hence, it is readily concluded that the interaction between
the external charges is, to some extent, influenced by the neutral plasma component,
since expressions (2.7)–(2.9) explicitly contain the number density of neutrals together
with the corresponding microscopic interaction potentials. Moreover, it is the present
investigation that is utterly aimed at elucidating the physical conditions under which the
neutral component of the plasma medium exerts a noticeable effect on the interaction
between the two external charges.

In particular, a close attention is paid to how the screening length rD is modified both
qualitatively and quantitatively due to the presence of neutrals, which has been hitherto
abandoned in the plasma theory. Thus, it is natural to assume that, in the ordinary
configuration space, the interaction potential Φ(r) between the external charges obeys
the following asymptotic behaviour at large distances:

Φ(r) ∝ 1
r

exp
(

− r
rD

)
, r → ∞, (2.10)

which, in turn, requires that its Fourier transform Φ̃(k) in (2.8) complies with the
corresponding asymptotics at small wavenumbers

Φ̃(k) ∝ 4π

k2 + r−2
D

, k → 0. (2.11)
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Consequently, the primary idea behind the whole proposed technique is to analyse the
asymptotics in formula (2.8), which, in principle, should ultimately yield the screening
length as a function of all plasma parameters. However, as is to be demonstrated below, for
a certain domain of plasma parameters the squared screening length can acquire negative
values and, formally rewriting equation (2.11) as Φ̃(k) ∝ 4π/(k2 − r−2

D ) at k → 0, we
unambiguously conclude that at large interparticle distances the following asymptotics
holds:

Φ(r) ∝ 1
r

cos
(

r
rD

)
, r → ∞, (2.12)

i.e. the oscillatory decay of the interaction potential should be observed. Note that a
non-monotonic behaviour of the interaction potential was heretofore reported in the
literature for quantum plasmas (Shukla & Eliasson 2012), which is to be coped with
in § 3.2. Strictly speaking, oscillatory screening behaviour (2.12) is also known for
gravitational plasmas (stars interacting collectively in a galaxy), where the screening
radius goes under the name of the Jeans length (Bertin 1999; Griv, Gedalin & Yuan
2006). This analogy can be extended even further because, in order to physically justify
the non-monotonic behaviour of the interaction potential, additional phenomena must be
incorporated into the analysis that compete the screened electrostatic forces.

3. Characteristic screening lengths

This section is purely designed for studying the screening phenomena in the interaction
between the external charges immersed in various types of plasmas by taking the
limit limk→0 Φ̃(k), which, as is convincingly seen from asymptotics (2.11), provides an
extraordinary opportunity to instantly obtain an analytical expression for the characteristic
screening length. In so doing, the first and foremost proposition is literally adopted that
the interaction between the external charges is well described by the universal Fourier
transform in expressions (2.7)–(2.9), whereas all possible physical effects that may play
a role for a given specific medium are thoroughly mimicked by the corresponding
microscopic interaction potentials of plasma particles. Specifically, an interest of the
following lays in unveiling the impact the neutral particles have on the screening
phenomena in general and the screening length in particular.

3.1. Fully ionized classical plasmas
First of all, we consider as a test case an obvious example of a classical fully ionized
plasma, in which the microscopic interactions between electrons and ions are delineated
by the Coulomb law, so that the corresponding Fourier transforms are found as

ϕ̃ee(k) = −ϕ̃ei(k) = −ϕ̃ii(k) = 4πe2

k2
. (3.1)

Taking the above mentioned limit in (2.7)–(2.9), the classical expression for the squared
Debye radius is ultimately recovered, which is totally determined by the electrons and ions
of the plasma medium as

r2
D0 = kBT

4π(ne + ni)e2
. (3.2)

Note that, in this special case only, the well-known Debye–Hückel potential is exactly
retrieved for the interaction between the external charges after taking the proper backward
Fourier transform.
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It is learnt from formula (3.2) that the square of the screening radius in a purely Coulomb
plasma is always positive and due to the clouds of positively charged ions and negatively
charged electrons formed as a response to the potential of an external charge. Indeed, if
a positive external charge is embedded into a plasma, it starts to repel ions, forming a
depleted ion cloud and, at the same time, to attract electrons forming a thickened electron
cloud in the surrounding plasma environment. For the following, it is very important
to figure out how various phenomena affect those screening clouds, that is why all the
screening lengths rD are expressed below in terms of the classical Debye radius rD0 in
(3.2). The primary logic to be used in the following is that the sharper the separation
of these ion and electron clouds, the smaller the screening length since, for example, if
the plasma charge separation is completely absent, there is no screening at all with the
screening length being equal to infinity.

3.2. Semiclassical plasmas
The second meaningful example, important from the theoretical point of view, corresponds
to the so-called semiclassical plasma of electrons and ions, in which quantum effects are
classically treated. It is rather typical that the microscopic interaction potentials, involving
both the electrons and ions, remain finite at the origin and their Fourier transforms are
merely derived as (Arkhipov et al. 1999; Minoo, Gombert & Deutsch 1981)

ϕ̃ee(k) = 4πe2

k2(1 + k2λ2
ee)

, ϕ̃ei(k) = − 4πe2

k2(1 + k2λ2
ei)

, ϕ̃ii(k) = 4πe2

k2(1 + k2λ2
ii)

, (3.3a–c)

where λab = �/(2πμabkBT)1/2 denotes the thermal de Broglie wavelength, � symbolizes
the Planck constant and μab = mamb/(ma + mb) stands for the reduced mass of interacting
particles with masses ma and mb, respectively.

Using the above described procedure, the screening length sought is finally deduced in
the following form:

r2
D

r2
D0

= 1 − 4πe2

kBT
(neλ

2
ee + niλ

2
ii) − 16π2e4neni

k2
BT2

(λ4
ei − λ2

eeλ
2
ii). (3.4)

To strictly prove the validity of the asymptotic behaviour (2.10) figure 1 is deliberately
drawn to show the linearized part ln(RΦ(R)/Γ kBT) of the interaction potential between
the external charges in a plasma as a function of the dimensionless distance R = r/a with
the following notation being used: the number densities of electrons and ions ne = ni = n;
the Wigner–Seitz radius a = (4πn/3)−1/3; the coupling parameter Γ = e2/akBT; the
density parameter rs = a/aB, with aB = �

2/mee2 being the first Bohr radius. Straight lines
are evidently observed to confirm the exponential screening of the interaction potential
at large interparticle separations and, by finding the relevant slopes, formula (3.4) has
been numerically checked to quite accurately describe the screening length, which is
evidently seen to fall off with an increase in the coupling parameter. Moreover, as the
plasma density rises, the screening length steadily diminishes such that it can even turn
negative for a certain range of plasma parameters. According to (3.4) such a situation turns
possible when the electron–electron thermal de Broglie wavelength becomes of the order
of the classical Debye radius. In virtue of (2.12) this eventually results in a non-monotonic
character of the potential dependence against distance, which is clearly depicted in figure 2
for the hydrogen plasma. Note that, in contrast to Arkhipov et al. (1999), the interaction
potential Φ(r) preserves its Coulomb-like nature at short distances and, at the same time,
remains screened at rather large interparticle separations.
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FIGURE 1. The asymptotic behaviour of the linearized part ln(RΦ(R)/Γ kBT) of the
macroscopic potential of external charges as a function of the dimensionless distance R = r/a in
a semiclassical hydrogen plasma at rs = 10. Green line: Γ = 0.1; blue line: Γ = 0.5; red line:
Γ = 1.0.

FIGURE 2. The macroscopic potential Φ(R)/kBT of external charges as a function of the
dimensionless distance R = r/a in a semiclassical hydrogen plasma at Γ = 1.0. Green line:
rs = 10; blue line: rs = 5; red line: rs = 1.

The screening length (3.4) in a semiclassical plasma, denoted as rD, is always less in
magnitude than the classical Debye radius rD0 in (3.2) and a quick glance at its structure
unambiguously reveals that the difference from the classical plasma in the second term is
separately caused by changes in the states of electron and ion screening clouds, while the
third term appears due to the interaction of these clouds with each other. Indeed, in order
to produce a clear-cut physical reason behind the decrease in the screening radius, let us
imagine a positive external charge being placed into the plasma medium, which results in
the formation of electron and ion screening clouds. As in the case of classical plasmas, the
cloud electrons, being attracted by the external positive charge, are mutually repelled, but
the quantum effects in their interaction are responsible for an effective attraction, which
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leads to the thickening of the electron screening cloud. The opposite undoubtedly happens
to the ion screening cloud, which is further depleted in the vicinity of the external charge
because the quantum effects in the interionic forces are also reciprocally attractive and,
therefore, the cloud ions are much more easily pushed away from the positive external
charge. Thus, a sharper plasma charge separation develops in a semiclassical plasma,
which is finally disclosed by the second term in formula (3.4) as a decrease in the
screening length, additively proportional to the number densities of electrons and ions.
In contrast, the last correction in formula (3.4) is proportional to the product of the
number densities of electrons and ions and is, therefore, due to the joint attraction of
the screening clouds, which is also weakened by the quantum effects, thereby reinforcing
cloud separation and producing a negative contribution to the screening length. Note that
the whole situation changes dramatically when the scales of the screening phenomena and
of the quantum effects become comparable such that the effective quantum interactions
can virtually overcome the screened electrostatic forces at certain interparticle distances,
which ultimately manifests itself in the oscillatory behaviour of the collective interaction
potential, already demonstrated above in figure 2.

It has to be admitted that, when it comes to the WDM, the semiclassical approach, based
on the interaction potentials (3.3a–c) only, is subject to known physical limitations, which
are due to many-body effects in the Slater sum (Jones & Murillo 2007). Note that, herein,
we only study the linear screening process in the pairwise macroscopic potential at large
interparticle distances, at which such density effects simply disappear.

3.3. Partially ionized plasmas
It is now rather timely to proceed with one of the main topics of the present
consideration, which is to establish a possible influence of the neutral component on the
screening phenomena in partially ionized plasmas. For definiteness, a hydrogen plasma is
systematically examined below, which consists of free electrons and protons together with
an admixture of hydrogen atoms.

To begin with, we assume that electrons and protons are both classical and the Fourier
transforms of their microscopic potentials are again written as represented by expression
(3.1). The microscopic potentials, involving neutral hydrogen atoms, are chosen in the
plain form of Mott & Massey (1987) that embodies short-range (hard-core) interaction to
admit the following Fourier transforms:

ϕ̃in(k) = −ϕ̃en(k) = 4πe2(k2 + 8/a2
B)

(k2 + 4/a2
B)

2
, ϕ̃nn(k) = 4πe2

(k2 + 2/a2
B)

, (3.5a,b)

such that the screening length is legitimately extracted, according to the developed general
formalism, as

r2
D

r2
D0

= 1 − 4π2nn(ne + ni)e4a4
B

kBT(kBT + 2πnne2a2
B)

. (3.6)

Let us closely analyse formula (3.6), which constitutes a cornerstone result of the current
investigation. First of all, if the number density of neutrals nn goes to zero, the screening
length regains its classical value (3.2), as should be the case. In order to simplify the
further examination, two dimensionless parameters xp = a2

B/2r2
D0 and xn = a2

B/2r2
Dn are

introduced with r2
Dn = kBT/4πnne2, which allow one to rewrite equation (3.6) as follows:

r2
D

r2
D0

= 1 − xn

1 + xn
xp. (3.7)
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Thus, if xp � 1, then rD ≈ rD0 since xn/(1 + xn) < 1 for any arbitrary magnitude of xn.
It is indispensable to acknowledge from the numerical point of view that the inequality
xp � 1 is literally fulfilled for a very wide range of plasma parameters. For instance,
it certainly holds for all known dusty plasma research, thereby corroborating a rather
intuitive assumption that, for an ordinary dusty plasma, the presence of neutrals can
be absolutely ignored as far as the electrostatic interactions between dust particles are
concerned. However, quite an opposite inference can be made for WDM conditions
when the plasma density turns so high that the parameter xp can become comparable to
unity. Moreover, for neutrals to take an active part in the screening phenomena it is also
obligatory, according to formula (3.7), that xn ∼ 1, which is automatically guaranteed for
a WDM plasma with substantially moderate but not full ionization.

To demonstrate the significance of neutrals, we pick out a numerical example for warm
dense hydrogen with the coupling and density parameters Γ = 1 and rs = 0.55, which
are both evaluated for the total number density of protons n = ni + nn = 9.68 · 1024 cm−3

and the temperature T = 5.74 · 105 K. In this particular situation, the ionization degree
is provided in Davletov, Kurbanov & Mukhametkarimov (2020) as α = ni/n ≈ 0.96 and
formula (3.6) finally gives rise to rD ≈ 0.81rD0, i.e. the screening length is decreased by
approximately 19 %, which can have a drastic impact on theoretical predictions of various
plasma properties.

To verify the asymptotic behaviour (2.11), the linearized part ln(RΦ(R)/Γ kBT) of the
interaction potential is displayed in figure 3 for a partially ionized hydrogen as a function of
the dimensionless distance R = r/a at the fixed value of the density parameter rs = 10 and
different values of the coupling parameter Γ . Note that the ionization degree α has been
evaluated as in Kumar et al. (2021) to guarantee that the formation of hydrogen molecules
is effective prevented. An important observation is that when the number density of the
neutral component reaches significant values, the screening length can again turn negative
as evidenced by formula (3.6), which virtually enacts the non-monotonic character of the
potential dependence as a function of distance, in complete accord with asymptotics (2.12).
The last statement is showcased in figure 4 for partially ionized hydrogen plasma at the
fixed value of the coupling parameter Γ = 1 and different values of the density parameter
rs with the ionization degree calculated as in Kumar et al. (2021).

All in all, it follows from (3.6) that the presence of neutrals is responsible for a
decrease of the screening length in comparison with the classical result (3.2), which
can be perceived as above by immersing an imaginary external positive charge into the
plasma medium. Once again, the electron and ion screening clouds occur that are somehow
affected by neutrals whose interaction with oppositely charged plasma particles is of
opposite character in the sense of repulsion and attraction as exemplified by the Fourier
transforms (3.5a,b). In particular, neutrals are attracted by electrons, thereby concentrating
near the electron screening cloud, and, at the same time, neutrals repel ions of the ion
screening cloud. As a consequence, neutrals create their own neutral cloud in the vicinity
of the external charge that, in turn, attracts the electron screening cloud and repels the ion
screening cloud, which results in a much stronger plasma charge separation and, therefore,
in a decrease of the screening length. Thus, the physical explanation behind the effect of
neutrals on the screening length is that, because of the rearrangement of electrons and ions
in the external electric field, the distribution of neutrals also turns non-uniform, which
then returns its effect on the electron and ion screening clouds. A very clear sign that
such an interpretation is truly valid is that the correction to the screening length (3.6)
is proportional to the product of the number densities of neutrals and charged plasma
particles. Again, non-monotonic behaviour of the potential only becomes possible when
the scale of the charge–neutral interaction, which can be roughly approximated as the size
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FIGURE 3. The asymptotic behaviour of the linearized part ln(RΦ(R)/Γ kBT) of the
macroscopic potential of external charges as a function of the dimensionless distance R = r/a
in a partially ionized hydrogen plasma at rs = 10. Green line: Γ = 0.1 with α = 0.9939; blue
line: Γ = 0.5 with α = 0.7279; red line: Γ = 1.0 with α = 0.2106. The ionization degree α is
evaluated as in Kumar et al. (2021) to ensure the absence of hydrogen molecules.

FIGURE 4. The macroscopic potential Φ(R)/kBT of external charges as a function of the
dimensionless distance R = r/a in a partially ionized hydrogen plasma at Γ = 1.0. Green line:
rs = 10 with α = 0.2106; blue line: rs = 5 with α = 0.3824; red line: rs = 0.5 with α = 0.2087.
The ionization degree α is evaluated as in Kumar et al. (2021) to ensure the absence of hydrogen
molecules.

of the neutrals, becomes comparable to the classical screening radius under the additional
requirement of a rather moderate ionization degree.

3.4. Semiclassical partially ionized plasmas
It has been demonstrated in the previous § 3.3 that the neutral component can considerably
affect the screening phenomena when the plasma somehow reaches the WDM states.
Under such extreme conditions the electron thermal de Broglie wavelength turns out
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FIGURE 5. The asymptotic behaviour of the linearized part ln(RΦ(R)/Γ kBT) of the
macroscopic potential of external charges as a function of the dimensionless distance R = r/a
in a semiclassical partially ionized hydrogen plasma at rs = 10. Green line: Γ = 0.1 with
α = 0.9939; blue line: Γ = 0.5 with α = 0.7279; red line: Γ = 1.0 with α = 0.2106. The
ionization degree α is evaluated as in Kumar et al. (2021) to ensure the absence of hydrogen
molecules.

to be of the order of the mean interparticle spacing, which necessitates simultaneous
accounting for the presence of neutrals and quantum effects. This can be naturally realized
in the framework of the present approach by jointly applying the microscopic interaction
potentials (3.3a–c) and (3.5a,b), which finally yields the following analytical expression
for the screening length in a semiclassical partially ionized plasma:

r2
D

r2
D0

= 1 − 4π2nn(ne + ni)e4a4
B

kBT(kBT + 2πnne2a2
B)

− 4πe2

kBT
(neλ

2
ee + niλ

2
ii)

− 16π2e4neni

k2
BT2

(λ4
ei − λ2

eeλ
2
ii). (3.8)

It is rather curious to discover that, as evidenced by comparing formula (3.8) with
expressions (3.4) and (3.6), neutrals and quantum effects contribute independently to the
modification of the squared screening length, which seems to be a consequence of the
linearity of the governing generalized Poisson–Boltzmann equation (2.1).

To properly confirm the robustness of relation (3.8), figure 5 is plotted to estimate the
slopes in the curve of the linearized part ln(RΦ(R)/Γ kBT) of the interaction potential of
the external charges versus the dimensionless interparticle separation R = r/a at various
sets of plasma parameters. At the same time, it is anticipated from formula (3.8) that the
squared screening length can turn negative at some values of the plasma parameters, whose
straightforward consequence is a non-monotonic behaviour of the interaction potential as
a function of distance, as duly revealed by figure 6.

4. Conclusion

A comprehensive approach has been systematically developed to numerically estimate
the influence of the neutral component on the screening length in a partially ionized
plasma. To be exact, two external charges, immersed in a partially ionized plasma,
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FIGURE 6. The macroscopic potential Φ(R)/kBT of external charges as a function of the
dimensionless distance R = r/a in a semiclassical partially ionized hydrogen plasma at Γ = 1.0.
Green line: rs = 10 with α = 0.2106; blue line: rs = 5 with α = 0.3824; red line: rs = 0.5 with
α = 0.2087. The ionization degree α is evaluated as in Kumar et al. (2021) to ensure the absence
of hydrogen molecules.

have been considered, and then, the renormalization procedure has been thoroughly
adopted to take into account the plasma medium within the framework of the generalized
Poisson–Boltzmann equation. Thus, the Fourier transform of the interaction potential of
the external charges has been obtained, which explicitly depends on the characteristics of
the neutral component, such as its interaction potentials and number density. Subsequent
physically reasonable assumption on the asymptotic behaviour of the potential has
made it possible to analytically derive the screening length for various types of
plasmas.

In particular, in a classical fully ionized plasma, as expected, the screening length
has been shown to strictly coincide with the well-known Debye radius, whereas the
interaction potential between the external charges has been remarked to reproduce the
notorious Debye–Hückel potential. It is well established within the classical picture that
the screening occurs due to the formation of oppositely charged electron and ion plasma
clouds developing in external electric fields. On the other hand, as the present study shows,
the state of plasma polarization clouds of electrons and ions can be determined not only
by mutual electrostatic interactions in the system, but also by other physical phenomena
that may seriously affect the screening length. In particular, that is why all screening
lengths for different types of plasmas have been expressed above in terms of the classical
Debye radius to clearly identify changes in the structure of electron and ion screening
clouds.

For a so-called semiclassical plasma, in which quantum effects are effectively embraced
with appropriate microscopic interaction potentials, the screening length has been
demonstrated to significantly depend on the squared ratio of the thermal de Broglie
wavelength to the classical Debye radius. At the same time, the general analysis has
undoubtedly confirmed that at a certain critical value of the plasma number density, the
character of the interaction potential vanishing changes from monotonic to oscillatory
decay at long interparticle distances. It has to mentioned that such a remarkable behaviour
is actually a result of the competition between the quantum effects and screening
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phenomenon when the scales of their actions become comparable. Note that the decrease
in the screening length is ultimately ascribed to quantum softening of mutual electrostatic
interactions of plasma particles, which only reinforces electron and ion cloud detachment
as compared with the classical plasma case. In particular, it has been stated that
corrections to the classical Debye radius, proportional to the number densities of charged
particles, appear due to a change in the state of the screening clouds themselves, whereas
modifications, proportional to the product of number densities, are a consequence of a
change in the state of interaction of the corresponding clouds with each other.

As for a partially ionized plasma, the effect of the neutral component on the real
screening length has been shown to be essential under WDM conditions, when the
hard-core size of neutrals becomes comparable to the classical Debye radius. Moreover, at
very high densities of the plasma medium, the appearance of local maxima and minima in
the curve of the interaction potential has been detected as a function of distance. In order
to reach a reasonable explanation as to why neutral particles may have some effect on the
screening length, consider the following. It is well understood that when an external test
charge is placed into a plasma, a separation of negatively and positively charged particles
arises, i.e. clouds of electrons and ions are formed and these are responsible for the
appearance of the screening phenomena. The electric field of the test charge has no direct
influence on the neutrals, which nevertheless may strongly interact with the electrons
and ions of the polarization clouds, thereby straightforwardly causing a non-uniform
distribution of neutrals, i.e. a cloud of neutrals develops as well. It is then this cloud of
neutrals that turns back its impact on the electron and ion screening clouds to manifest
itself in the screening length decrease, which means that the true explanation is attributed
to fairly strong correlations between the charged and neutral plasma components. Note
that such an interpretation is in full agreement with the above described picture of how
various effects exert influence on the screening length, since the contribution of neutrals is
proportional to the product of their number density and the total concentration of charged
plasma particles.

For a range of WDM conditions simultaneous handling of the quantum effects and the
presence of the neutral component has been proved to be a key issue, and it has been clearly
justified that they contribute independently to the correction of the classical expression for
the squared screening length. Moreover, the modification of the screening length due to
neutrals has been numerically revealed to be as noticeable as that due to quantum effects
at rather high plasma densities.

It should be especially emphasized that such a plasma parameter as the screening length
is vastly important for the theoretical description of interionic interaction in a WDM state
(Vorberger & Gericke 2013; Lv et al. 2021), since it directly determines the static structure
factor measured experimentally by the amplitude of elastic scattering and absorption of
X-ray radiation in the near-surface plasma layers. The static structure factor, in turn, can
seriously alter such characteristics as the electrical conductivity (Arkhipov et al. 2002),
and can even be used to restore its dynamic counterpart by the method of moments
(Arkhipov et al. 2007).

It must also be borne in mind that while treating the neutral component we have
completely omitted the individual polarization of neutral particles in external electric
fields, only hard-core effects have been neatly treated for appropriate plasma particle
interactions. Nevertheless, it is important from a practical point of view to study how and
at what distances the screening of the external electric field by charged plasma particles is
actually replaced by the neutral component response governed by a dielectric constant as
in standard dielectric media, which is a provision for future improvements to the present
research.
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