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SPATIO-TEMPORAL VARIOGRAMS
AND COVARIANCE MODELS
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Abstract

Variograms and covariance functions are the fundamental tools for modeling dependent
data observed over time, space, or space–time. This paper aims at constructing
nonseparable spatio-temporal variograms and covariance models. Special attention is
paid to an intrinsically stationary spatio-temporal random field whose covariance function
is of Schoenberg–Lévy type. The correlation structure is studied for its increment process
and for its partial derivative with respect to the time lag, as well as for the superposition
over time of a stationary spatio-temporal random field. As another approach, we
investigate the permissibility of the linear combination of certain separable spatio-
temporal covariance functions to be a valid covariance, and obtain a subclass of stationary
spatio-temporal models isotropic in space.
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1. Introduction

The world is dynamic on many scales in space and time. There is now considerable interest
in spatio-temporal data mining (e.g. Ladner et al. (2002)), and spatio-temporal modeling in
the environmental, information, and physical sciences. Whenever possible and available, a
rational approach to modeling spatio-temporal data should start from a theory or mechanism
that explains the underlying physical facts. In reality, however, no obvious mechanism may
exist, and frequently such a theory must be developed from observational or experimental study.
For this purpose, statistical techniques are often very important tools. Static and dynamic models
to describe the spatio-temporal mechanism are prominent among these.

Dynamic or stochastic spatio-temporal models in the literature are often expressed as stoch-
astic difference equations (e.g. Bartlett (1975) and Stoffer (1986)), stochastic partial differential
or integral equations (e.g. Whittle (1954), (1962), Heine (1955), Jones and Zhang (1997),
Brown et al. (2000), Storvik et al. (2002), and Anh et al. (2003)), the Kalman filter (e.g. Huang
and Cressie (1996), Meiring et al. (1998), Wikle and Cressie (1999), and Stroud et al. (2001)),
or wavelets (e.g. Ruiz-Medina andAngulo (2002)). The major uses of stochastic models include
description, interpolation, and prediction.

The spatio-temporal covariance function is one of the prerequisites for optimal prediction
or kriging. It may be calculated from a fitted stochastic model or deduced from an empirical
covariance of the data. In case the closed form of a stochastic model is not available, a common
strategy in practice is to select a covariance function from a parametric or semiparametric
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family whose members are known to be positive-definite functions; see, for example, Christakos
(1984), Weber and Talkner (1993), and Gaspari and Cohn (1999). The selection is theoretically
legitimate in the sense that, according to a celebrated existence theorem of Kolmogorov, a
positive-definite function on a space–time domain can always be thought of as the covariance
function of a zero-mean Gaussian random field.

The variogram and the covariance function are two of the most commonly used measures
of spatio-temporal dependence. Owing to a lack of nonseparable models, separable covariance
models had been used for modeling space–time interaction, with undesirable properties. It
is thus important to have nonseparable models when describing wide-range space–time inter-
action. Cressie and Huang (1999) provided a detailed treatment for deriving nonseparable,
stationary spatio-temporal covariance functions, using Bochner’s theorem and the (inverse)
Fourier transform approach. A closely related approach, the cosine transform, as well as other
simple approaches, were proposed by Ma (2003a), and certain covariance families developed.
For instance, the model (3.3) in Ma (2003a) contains the main model (11) of Gneiting (2002)
as a special case (see Ma (2005b)).

The kernel method has a long pedigree going back to the first half of the twentieth century;
the fundamental results were obtained by Schoenberg (1938a), (1938b). For references, see
Gangolli (1967a), (1967b), Berg et al. (1984), and Ma (2003b). In Section 2, we study kernels
associated with an intrinsically stationary spatio-temporal random field, and, in Section 3, we
explore the correlation structure of its partial derivative with respect to the time lag. The partial
integral of a stationary spatio-temporal random field with respect to the time lag is considered
in Section 4.

A nonnegative linear combination of two covariance functions is also a covariance function;
so is the product of two covariance functions. These basic properties allow us to derive many
nonseparable spatio-temporal covariance functions via mixture methods (e.g. de Iaco et al.
(2002) and Ma (2002), (2003a), (2003c)), where the mixing weights are constrained to be
nonnegative. However, the validity of the mixture could be questionable, were the nonnegativity
constraints to be relaxed. For instance, a linear combination of two covariance functions may not
be a covariance function if one of the mixing weights is negative. In Section 5, the permissible
conditions on mixing weights are studied for certain separable spatio-temporal covariance
functions whose spatial component is isotropic. This results in a subclass of stationary spatio-
temporal covariance models isotropic in space. See Ma (2005a) for other subclasses, as well
as our motivations for looking at the permissibility of the difference or the linear combination
of two covariance functions. Our theorems are proved in Section 6.

2. Kernels related to an intrinsically stationary random field

Suppose that {Z(s; t), (s; t) ∈ S × T } is a real-valued stochastic process or random field
on the space–time domain S × T , where S equals R

d or Z
d and T equals R or Z. When the

second-order moments of the random field exist, its covariance function is defined by

C(s1, s2; t1, t2)

= E[{Z(s1; t1) − E Z(s1; t1)}{Z(s2; t2) − E Z(s2; t2)}], (s1; t1), (s2; t2) ∈ S × T .

Weak (or second-order) stationarity and intrinsic stationarity are two particularly important
assumptions made in spatio-temporal modeling. The random field {Z(s; t), (s; t) ∈ S ×T } is
said to be stationary in space and time if its mean function E Z(s; t) is a constant for all (s; t)

and its covariance function C(s0, s0 +s; t0, t0 +t) depends only on the space lag s and time lag t

for all (s0; t0) ∈ S×T , in which case we simply write C(s; t) instead of C(s0, s0 +s; t0, t0 + t).
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The concept of intrinsic stationarity stems from a traditional approach to achieving stationar-
ity that involves taking the difference of a process. The random field {Z(s; t), (s; t) ∈ S × T }
is said to be intrinsically stationary in space and time (or to have stationary increments in space
and time) if, for every fixed (s0; t0) ∈ S × T , the increment

Z(s + s0; t + t0) − Z(s; t), (s; t) ∈ S × T ,

is a spatio-temporal random field stationary in space and time. For an intrinsically stationary
random field, its covariance is not necessarily well defined, but its variogram is. The latter is
defined as

γ (s; t) = 1
2 var(Z(s0 + s; t0 + t) − Z(s0; t0)), (s; t) ∈ S × T ,

and does not depend on (s0; t0) ∈ S×T . A characteristic property of an intrinsically stationary
variogram γ (s; t) is that it is nonnegative and (conditionally) negative definite with γ (0; 0) = 0.

We are particularly interested in a spatio-temporal random field {Z(s; t), (s; t) ∈ S × T }
with the covariance function

C(s1, s2; t1, t2) = γ (s1; t1) + γ (s2; t2) − γ (s1 − s2; t1 − t2), (sk; tk) ∈ S × T , k = 1, 2.

(1)
Following Gangolli (1967a), (1967b), we call (1) the Schoenberg–Lévy kernel. The random
field possesses an orthogonal decomposition (Ma (2003b))

Z(s; t) = Z+(s; t) + Z−(s; t), (s; t) ∈ S × T ,

Z+(s; t) = 1
2 {Z(s; t) + Z(−s; −t)}, (s; t) ∈ S × T ,

Z−(s; t) = 1
2 {Z(s; t) − Z(−s; −t)}, (s; t) ∈ S × T ,

where the random fields {Z+(s; t), (s; t) ∈ S × T } and {Z−(s; t), (s; t) ∈ S × T } are
uncorrelated, {Z+(s; t), (s; t) ∈ S × T } has nonnegative covariance

γ (s1; t1) + γ (s2; t2) − 1
2γ (s1 + s2; t1 + t2) − 1

2γ (s1 − s2; t1 − t2),

and {Z−(s; t), (s; t) ∈ S × T } has covariance

1
2 {γ (s1 + s2; t1 + t2) − γ (s1 − s2; t1 − t2)}, (si; ti ) ∈ S × T (i = 1, 2).

A necessary and sufficient condition for the Schoenberg–Lévy kernel (1) to be a covariance
function is that γ (s; t) be an intrinsically stationary variogram on S × T . More precisely,
γ (s; t) is the variogram corresponding to the random field {Z(s; t), (s; t) ∈ S × T }, since

1
2 var(Z(s1; t1) − Z(s2; t2))

= 1
2 {var(Z(s1; t1)) + var(Z(s2; t2)) − 2 cov(Z(s1; t1), Z(s2; t2))}

= 1
2 [2γ (s1; t1) + 2γ (s2; t2) − 2{γ (s1; t1) + γ (s2; t2) − γ (s1 − s2; t1 − t2)}]

= γ (s1 − s2; t1 − t2).

In other words, a spatio-temporal random field with covariance function of Schoenberg–Lévy
type is indeed an intrinsically stationary random field. Thus, for every (s0; t0) ∈ S × T , the
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increment process {Z(s + s0; t + t0) − Z(s; t), (s; t) ∈ S × T } is stationary, with covariance

cov(Z(s + s0; t + t0) − Z(s; t), Z(s0; t0) − Z(0; 0))

= cov(Z(s + s0; t + t0), Z(s0; t0)) + cov(Z(s; t), Z(0; 0))

− cov(Z(s + s0; t + t0), Z(0; 0)) − cov(Z(s; t), Z(s0; t0))

= γ (s + s0; t0 + t) + γ (s − s0; t − t0) − 2γ (s; t), (s; t) ∈ S × T .

We summarize this observation in the following lemma, of which a purely mathematical proof
can be found in Berg et al. (1984, p. 103).

Lemma 1. If γ (s; t) is an intrinsically stationary variogram on S×T then, for every (s0; t0) ∈
S × T ,

C(s; t) = γ (s + s0; t0 + t) + γ (s − s0; t − t0) − 2γ (s; t), (s; t) ∈ S × T , (2)

is a stationary covariance function on S × T .

In particular, if C(s; t) is a stationary covariance function, then C(0; 0) − C(s; t) is a
stationary variogram and 2C(s; t) − {C(s + s0; t + t0) + C(s − s0; t − t0)} is a stationary
covariance function on S × T .

A natural question is whether the converse of Lemma 1 holds. Before presenting our finding
and conjecture, let us look at an example in which γ (s; t) is not a spatio-temporal variogram
even if γ (s + s0; t) + γ (s − s0; t) − 2γ (s; t) is a stationary covariance function on S × T for
every s0 ∈ S.

Example 1. Let γS(s) be a purely spatial, intrinsically stationary variogram on S. Consider
the function

f (s; t) = γS(s) + t4, (s; t) ∈ S × T .

This is not a valid spatio-temporal variogram since, otherwise, its temporal margin f (0; t) = t4

would be a variogram on T . However, by Lemma 1,

f (s + s0; t)+f (s − s0; t)−2f (s; t) = γS(s + s0)+γS(s − s0)−2γS(s), (s; t) ∈ S ×T ,

is a spatio-temporal stationary covariance function for every fixed s0 ∈ S.

In view of Example 1, we conjecture that an even function γ (s; t) on S×T , with γ (0; 0) = 0,
is an intrinsically stationary variogram if and only if (2) is a stationary covariance function for
every (s0; t0) in a certain subset of S × T . An interesting special result along this line is as
follows.

Theorem 1. Suppose that γ (s; t) is an even function on S ×T , with γ (0; 0) = 0, and reaches
a limiting value as s and t tend to (positive or negative) infinity simultaneously (componentwise,
in the case of s). If, for a fixed (s0; t0) ∈ S × T with nonzero coordinates, γ (s + s0; t + t0) +
γ (s − s0; t − t0) − 2γ (s; t) is a stationary covariance function, then γ (s; t) is a stationary
variogram on S × T .

Theorem 1 might not hold if one of the coordinates of (s0; t0) is zero, as Example 1 shows.

Corollary 1. For an even function C(s; t) on S × T with a limiting value as s and t tend to
(positive or negative) infinity simultaneously, if 2C(s; t)−C(s+s0; t + t0)−C(s−s0; t − t0) is
a stationary covariance function on S×T for a fixed (s0; t0) ∈ S×T with nonzero coordinates,
then so is C(s; t).
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3. Stationary covariance functions based on partial differentiation

For a spatio-temporal random field {Z(s; t), S × R}, its partial derivative with respect to t

is defined by

∂

∂t
Z(s; t) = lim

h→0

Z(s; t + h) − Z(s; t)

h
, (s; t) ∈ S × R,

where the limit is to be taken in the sense of convergence in the mean square.
Consider an intrinsically stationary spatio-temporal random field {Z(s; t), S × R} with the

variogram γ (s; t). Assume that all its increments have zero mean. If γ (s; t) has a second partial
derivative with respect to t , then the partial derivative (∂/∂t)Z(s; t) exists and its covariance
function is formally derived to be

cov

(
∂

∂u
Z(s0; u)

∣∣∣∣
u=t0

,
∂

∂u
Z(s0 + s; u)

∣∣∣∣
u=t0+t

)

= cov

(
lim
h→0

Z(s0; t0 + h) − Z(s0; t0)

h
,

lim
h′→0

Z(s0 + s; t0 + t + h′) − Z(s0 + s; t0 + t)

h′

)

= lim
h→0, h′→0

(hh′)−1 cov(Z(s0; t0 + h) − Z(s0; t0),

Z(s0 + s; t0 + t + h′) − Z(s0 + s; t0 + t))

= lim
h→0, h′→0

(hh′)−1{γ (s; t − h) + γ (s; t + h′) − γ (s; t + h′ − h) − γ (s; t)}

= ∂2

∂t2 γ (s; t),

where the interchange of the limits and the integration requires further justification. Neverthe-
less, a rigorous proof that (∂2/∂t2)γ (s; t) is a valid covariance function can be easily established
using the kernel (2).

Theorem 2. For an intrinsically stationary variogram γ (s; t) on S × R, if it is twice differen-
tiable with respect to t for every fixed s ∈ S, then (∂2/∂t2)γ (s; t) is a stationary covariance
function on S ×R. If, in addition, γ (s; t) is symmetric with respect to either s or t , in the sense
that γ (±s; t) = γ (s; ±t) for all (s; t) ∈ S × R, then (∂/∂t)γ (s; t) vanishes at t = 0.

A purely temporal version of Theorem 2 can be found in Gneiting et al. (2001, Theorem 7)
and Ma (2004, Lemma 2). Unlike in the purely temporal case, the converse of Theorem 2 is
not necessarily true. To see this, consider the function

f (s; t) = ρS(s)(1 − cos t), (s; t) ∈ S × R,

where ρS(s) is a purely spatial, stationary correlation function on S that is not identically equal
to 1. Clearly f (0; 0) = 0, f (s; t) is even, and (∂2/∂t2)f (s; t) = ρS(s) cos t is a separable
correlation function on S × R. By Lemma 2 of Ma (2003c), however, ρS(s)(1 − cos t) is not a
spatio-temporal variogram.

In Theorem 2, (∂/∂t)γ (s; t) may not vanish at t = 0 without an additional symmetry
assumption. For example,

γ (s; t) = (θ�s + t)2, (s; t) ∈ S × R,
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where θ is a fixed nonzero vector, is an intrinsically stationary variogram, but (∂/∂t)γ (s; t) =
2(θ�s + t) does not vanish at t = 0.

Corollary 2. If a stationary covariance function C(s; t) on S × R is twice differentiable with
respect to t for every s ∈ S, then −(∂2/∂t2)C(s; t) is a stationary covariance function on
S × R. If, in addition, C(s; t) is symmetric with respect to either s or t , in the sense that
C(±s; t) = C(s; ±t) for all (s; t) ∈ S × R, then (∂/∂t)C(s; t) vanishes at t = 0.

A purely temporal version of Corollary 2 is Slutsky’s classical result (see Theorem 1.4 of
Doob (1944)) derived from frequency domain analysis. The conditions in Corollary 2 can be
relaxed. For instance, for a covariance function C(s1, s2; t) on S × R that is stationary in time,
if it is twice differentiable with respect to t for all fixed s1, s2 ∈ S, then −(∂2/∂t2)C(s1, s2; t)

is also a covariance function on S × R that is stationary in time. See Ma (2005b) for some
semiparametric examples.

A nonnegative, continuous function f (x) on [0, ∞) is called a completely monotone function
if it has derivatives of all orders and if

(−1)k
dk

dxk
f (x) ≥ 0 for all x > 0 and k ∈ N,

and is called a Bernstein function (Berg and Forst (1975)), or a completely monotone mapping
(Bochner (1955)), if it has a completely monotone derivative, i.e. if

(−1)k−1 dk

dxk
f (x) ≥ 0 for all x > 0 and k ∈ N.

We refer the reader to Miller and Samko (2001) for a recent expository survey of properties
of completely monotone functions, as well as various examples. In the construction of spatio-
temporal variograms, the importance of the Bernstein function lies in the fact (see Bochner
(1955)) that if γ (s; t) is an intrinsically stationary variogram on S × T , then so is f (γ (s; t)),
provided that f (x) is a Bernstein function on [0, ∞) with f (0) = 0. If �(x) is a completely
monotone function on [0, ∞) and γ (s; t) is an intrinsically stationary variogram on S × T ,
then �(γ (s; t)) is known to be a stationary covariance function on S × T .

Corollary 3. Let �(x) be a completely monotone function on [0, ∞). If an intrinsically
stationary variogram γ (s; t) on S × R is twice differentiable with respect to t , for every
s ∈ S, then

C(s; t) = �(γ (s; t))
∂2

∂t2 γ (s; t) + �′(γ (s; t))
∂

∂t
γ (s; t), (s; t) ∈ S × R, (3)

where a prime denotes differentiation, is a stationary covariance function on S × R.

The function (3) is obtained by taking the second partial derivative of
∫ γ (s;t)

0 �(u) du with
respect to t . This integral is an intrinsically stationary variogram on S × R since

∫ x

0 �(u) du is
a Bernstein function on [0, ∞).

Corollary 4. Let �(x) be a completely monotone function on [0, ∞), and let γS(s) and γT(t)

be intrinsically stationary variograms on S and R, respectively. If γT(t) is twice differentiable
then

C(s; t) = �(γS(s) + γT(t))γ ′′
T (t) + �′(γS(s) + γT(t))γ ′

T(t), (s; t) ∈ S × R,

is a stationary covariance function on S × R.
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Corollary 4 follows as a special case of Corollary 3 with γ (s; t) = γS(s) + γT(t). Sources
of purely spatial variograms γS(s) are Cressie (1993) and Chilès and Delfiner (1999), among
others. There are many twice-differentiable variograms on the real line. For instance, a
nonparametric class (see Ma (2004)) is

γT(t) =
∫ |t |

0
(|t | − u)CT(u) du, t ∈ R,

where CT(t) is an integrable stationary covariance function on the real line.
We now exemplify the use of Theorem 2 in deriving new spatio-temporal covariance func-

tions.

Example 2. Assume that ρS(s) is a stationary correlation function on S, that ρT(t) is a twice-
differentiable stationary correlation function on R, and that α1, α2, and α12 are nonnegative
constants such that 0 < α1 + α2 + α12 < 1. From Example 4 of Ma (2002),

− log(1 − α1ρS(s) − α2ρT(t) − α12ρS(s)ρT(t)), (s; t) ∈ S × R,

is a stationary covariance function on S ×R. It is capable of modeling positive and/or negative
spatio-temporal correlations based on an appropriate choice of ρS(s) and ρT(t) with the same
or different signs. By Corollary 2,

C(s; t) = − (α2 + α12ρS(s))ρ′′
T(t)

1 − α1ρS(s) − α2ρT(t) − α12ρS(s)ρT(t)

− (α2 + α12ρS(s))2{ρ′
T(t)}2

{1 − α1ρS(s) − α2ρT(t) − α12ρS(s)ρT(t)}2

is a stationary covariance function on S × R.
Examples of twice-differentiable correlation functions ρT(t) on the real line are

(i) (1 + |t |) exp(−|t |), t ∈ R;

(ii) (1 − 2αt2) exp(−αt2), t ∈ R, where α is a positive constant;

(iii) (β − α)−1{β exp(−α|t |) − α exp(−β|t |)}, t ∈ R, where α and β are distinct positive
constants;

(iv) exp(−α|t |){cos(βt) + (α/β) sin(βt)}, t ∈ R, where α and β are positive constants;

(v) (1 + αt2)−β , t ∈ R, where α and β are positive constants; and

(vi) (log α − log β)−1{log(α + t2)− log(β + t2)}, t ∈ R, where α and β are distinct positive
constants.

Example 3. For an intrinsically stationary variogram γS(s) on S and a completely monotone
function �(x) on [0, ∞), it was shown by Ma (2003a) that

1

2
{1 + γS(s)}−1/2�

(
t2

1 + γS(s)

)
, (s; t) ∈ S × R,
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is a stationary covariance function on S × R. A direct application of Corollary 2 gives a
spatio-temporal covariance

C(s; t) = − {1 + γS(s)}−3/2�′
(

t2

1 + γS(s)

)

− 2t2{1 + γS(s)}−5/2�′′
(

t2

1 + γS(s)

)
, (s; t) ∈ S × R. (4)

Various choices for �(·) may now be made. For example, taking �(x) = exp(−x), x ≥ 0,
in (4), we obtain

C(s; t) = {1 + γS(s)}−5/2{1 + γS(s) − 2t2} exp

(
− t2

1 + γS(s)

)
, (s; t) ∈ S × R.

Many other nonseparable spatio-temporal stationary covariance models can be obtained from
(4) by the appropriate selection of �(·).

One type of separable spatio-temporal covariance function factorizes as

C(s; t) = CS(s)CT(t), (s; t) ∈ S × T ,

where CS(s) and CT(t) are purely spatial and purely temporal covariances, respectively. This
represents a rather limited description of space–time interaction, as pointed out by Cressie and
Huang (1999), Kyriakidis and Journel (1999), and Stein (2005). It is thus of considerable
interest to derive nonseparable covariance models. Occasionally, however, it transpires that a
seemingly nonseparable candidate is actually just a separable model. An example of this kind
is presented in Example 4.

Example 4. Let γS(s) be an unbounded, intrinsically stationary variogram on S, and let αk and
βk (k = 0, 1, 2) be constants. We are going to show that

C(s; t) = exp(−γS(s)(α0 + α1t + α2t
2) − (β0 + β1t + β2t

2)), (s; t) ∈ S × R, (5)

is a valid covariance on S × R if and only if α0 ≥ 0, β2 ≥ 0, and α1 = α2 = β1 = 0; that is, if
and only if it is a separable model.

In fact, a necessary condition for (5) to be a covariance is C(s; t) ≤ C(0; 0) = exp(−β0),
or

γS(s)(α0 + α1t + α2t
2) + β1t + β2t

2 ≥ 0 for all (s; t) ∈ S × R,

for which we must have

α0 + α1t + α2t
2 ≥ 0 and β1t + β2t

2 ≥ 0 for all t ∈ R.

This implies that α0 ≥ 0, α2 ≥ 0, α2
1 ≤ 4α0α2, and β2 ≥ 0. In addition, (5) is symmetric, in

the sense that C(±s; t) = C(s; ±t), and twice differentiable with respect to t for every s ∈ S.
If (5) is a covariance then, from Corollary 2 and the fact that

0 = ∂

∂t
C(s; t)

∣∣∣∣
t=0

= −{γS(s)α1 + β1}C(s; 0) for all s ∈ S,
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we obtain α1 = β1 = 0. Moreover, by Corollary 2,

− ∂2

∂t2 C(s; t) = {2α2γS(s) + 2β2 − (2α2tγS(s) + 2β2t)
2}C(s; t)

has to be a stationary covariance function on S × R, meaning that, for any s ∈ S,

− ∂2

∂t2 C(s; t)

∣∣∣∣
t=0

≤ − ∂2

∂t2 C(s; t)

∣∣∣∣
s=0, t=0

= 2β2 exp(−β0)

or, equivalently,

{α2γS(s) + β2} exp(−γ (s)α0) ≤ β2.

Thus, for a vector s with γ (s) > 0,

α2 ≤ 1 − exp(−γ (s)α0)

γS(s)
β2.

Letting s approach infinity (componentwise) yields α2 ≤ 0. Consequently, α2 must vanish.
A model closely related to (5) is

C(s; t) = exp(−γS(s)(α0 + α1|t | + α2t
2) − (β0 + β1|t | + β2t

2)), (s; t) ∈ S × R. (6)

A particular case of (6) was proposed for modeling space–time data in the literature. There,
γS(s) is the usual Euclidean norm: ‖s‖ = (

∑d
k=1 s2

k )1/2, s ∈ R
d . Its validity was critically

examined by Gneiting (2002) in a nonseparable case in which either α1 or α2 is nonzero. Simple
necessary conditions for the permissibility of (6) are α0 ≥ 0, α2 ≥ 0, β1 ≥ 0, and β2 ≥ 0. It
would be of interest to derive a necessary and sufficient condition on the parameters αk and βk

(k = 0, 1, 2) such that (6) is a valid spatio-temporal covariance function.

4. Partial integration with respect to time

In this section, we investigate the partial integral of a stationary spatio-temporal random
field with respect to the time lag.

Suppose that {Z0(s; t), (s; t) ∈ S × R} is a stationary zero-mean random field whose
covariance function C0(s; t) is continuous in t . Define its partial integral with respect to t , i.e.

∫ t

0
Z0(s; u) du, (s; t) ∈ S × R, (7)

as the limit (in the mean square) of the corresponding approximating sum with respect to u.
This type of superposition over time is important in the study of space–time rainfall; see, for
example, Rodriguez-Iturbe et al. (1998).

The integral (7) is a spatio-temporal random field intrinsically stationary in space. In fact,
its mean function is

E

(∫ t

0
Z0(s; u) du

)
=

∫ t

0
E Z0(s; u) du = 0, (s; t) ∈ S × R,
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and its variogram,

1

2
var

(∫ t1

0
Z0(s + s′; u) du −

∫ t2

0
Z0(s

′; v) dv

)

= 1

2
E

(∫ t1

0
Z0(s + s′; u) du

)2

+ 1

2
E

(∫ t2

0
Z0(s

′; u) du

)2

− E

(∫ t1

0
Z0(s + s′; u) du

∫ t2

0
Z0(s

′; v) dv

)2

= 1

2

∫ t1

0

∫ t1

0
C0(0; u − v) du dv + 1

2

∫ t2

0

∫ t2

0
C0(0; u − v) du dv

−
∫ t1

0

∫ t2

0
C0(s; u − v) du dv

=
∫ t1

0
(t1 − |u|)C0(0; u) du +

∫ t2

0
(t2 − |u|)C0(0; u) du −

∫ t1

0

∫ t2

0
C0(s; u − v) du dv,

depends on t1, t2, and s only. Thus, the aggregation in time of a stationary spatio-temporal
random field produces a spatio-temporal random field intrinsically stationary in space.

We next show that taking the difference of (7) with respect to time gives rise to a spatio-
temporal random field stationary in both space and time. More specifically, for a fixed τ0 > 0,
consider the increment of (7), i.e.

Z(s; t) =
∫ t+τ0

0
Z0(s; u) du −

∫ t

0
Z0(s; u) du, (s; t) ∈ S × R. (8)

Alternatively, (8) can be written as

Z(s; t) =
∫ t+τ0

t

Z0(s; u) du =
∫ τ0

0
Z0(s; t + u) du, (s; t) ∈ S × R,

which may be regarded as a stochastic convolution of {Z0(s; t), (s; t) ∈ S×R} and the indicator
function of the interval [0, τ0], in the sense of Chilès and Delfiner (1999, Section 2.4.1). This
is a stationary spatio-temporal random field with mean

E Z(s; t) = E

(∫ τ0

0
Z(s; t + u) du

)
=

∫ τ0

0
E Z(s; t + u) du = 0, (s; t) ∈ S × R,

and covariance

C(s; t) = cov

(∫ τ0

0
Z(s + s′; t + t ′ + u) du,

∫ τ0

0
Z(s′; t ′ + v) dv

)

=
∫ τ0

0

∫ τ0

0
cov

(
Z(s + s′; t + t ′ + u), Z(s′; t ′ + v)

)
du dv

=
∫ τ0

0

∫ τ0

0
C0(s; t + u − v) du dv

=
∫ τ0

−τ0

(τ0 − |u|)C0(s; t − u) du, (s; t) ∈ S × R.

The above argument results in the following lemma.
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Lemma 2. If a stationary covariance function C0(s; t) on S × R is continuous with respect
to t for each s ∈ S, then, for a fixed τ0 > 0,

C(s; t) =
∫ τ0

−τ0

(τ0 − |u|)C0(s; t − u) du, (s; t) ∈ S × R, (9)

is a stationary covariance function on S × R.

It can be shown that (9) is equivalent to

C(s; t) =
∫ t+τ0

0

∫ u

0
C0(s; v) dv du +

∫ t−τ0

0

∫ u

0
C0(s; v) dv du

− 2
∫ t

0

∫ u

0
C0(s; v) dv du, (s; t) ∈ S × R.

Its temporal margin, C(0; t), was studied by Barndorff-Nielsen and Shephard (2001) and
Ma (2004). However, unlike in the purely temporal case,

∫ t

0

∫ u

0 C0(s; v) dv du is not necessarily
a variogram even if the covariance function C0(s; t) is continuous with respect to t for each
s ∈ S. For instance, let

C0(s; t) = cos(θ�s)CT(t), (s; t) ∈ R
d × R,

where θ ∈ R
d is a nonzero vector and CT(t) is a nonnegative, continuous, and stationary

covariance function on R. However,∫ t

0

∫ u

0
C0(s; v) dv du = cos(θ�s)

∫ t

0

∫ u

0
CT(v) dv du, (s; t) ∈ S × R,

is not always nonnegative and, thus, not a variogram on S × R.

5. Linear combination of separable spatio-temporal covariance models

A stationary covariance function C(s; t) on R
d × T is said to be isotropic in space if it

depends on the spatial lag s only through the Euclidean norm ‖s‖. We refer the reader to
Ma (2003c) for the characterization of stationary spatio-temporal covariance models isotropic
in space. A subclass of these is constructed in this section, via linear combinations of separable
spatio-temporal covariance models.

Assume that αk and βk (k = 1, 2) are positive constants with α1 ≤ α2 and β1 ≤ β2. Clearly,
for k = 1, 2,

exp(−αk‖s‖ − βk|t |), (s; t) ∈ R
d × R,

is a separable covariance function on R
d ×R. We start by asking a simple question: when does

their linear combination

C(s; t) = a1 exp(−α1‖s‖ − β1|t |) + a2 exp(−α2‖s‖ − β2|t |), (s; t) ∈ R
d × R,

where a1 and a2 are constants subject to the obvious assumption var(Z(s; t)) = a1 + a2 ≥ 0,
define a valid spatio-temporal covariance function? Neglecting the trivial degenerate case in
which a1 + a2 = 0, let a1 + a2 > 0 and consider the function

ρ(s; t) = C(s; t)

C(0; 0)
= a1

a1 + a2
exp(−α1‖s‖ − β1|t |) + a2

a1 + a2
exp(−α2‖s‖ − β2|t |),

(s; t) ∈ R
d × R.
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After the reparameterization θ = a1/(a1 + a2), this becomes

ρ(s; t) = θ exp(−α1‖s‖−β1|t |)+ (1 − θ) exp(−α2‖s‖−β2|t |), (s; t) ∈ R
d ×R. (10)

By inspection, (10) is a spatio-temporal correlation function if 0 ≤ θ ≤ 1, as it is a convex
combination of two separable correlation functions. Otherwise, i.e. for other values of θ , it is
the difference of two separable correlation functions. The full domain of θ over which (10) is
a valid correlation function is described in Corollary 5(i).

A general form, which includes (10) as a special case, is

C(s; t) = θ(α1‖s‖)ν1Kν1(α1‖s‖)(β1|t |)ν2Kν2(β1|t |)
+ (1 − θ)(α2‖s‖)ν1Kν1(α2‖s‖)(β2|t |)ν2Kν2(β2|t |), (s; t) ∈ R

d × R, (11)

where ν1 and ν2 are positive constants and Kν(x) stands for the modified Bessel function of
the second kind of order ν (see Gradshteyn and Ryzhik (2000)).

The spatial covariance model (α‖s‖)νKν(α‖s‖), s ∈ R
d , was proposed by von Kármán

(1948) for ν = 1
3 and s ∈ R

3, and constructed in the plane by Whittle (1954) via the stochastic
partial differential equation. It reduces to

√
π/2 exp(−α‖s‖) and

√
π/2(1+α‖s‖) exp(−α‖s‖),

s ∈ R
d , when ν = 1

2 and ν = 3
2 , respectively. Some properties of the von Kármán–Whittle

model, which is often named the Matérn model in the statistical literature, were demonstrated
in Matérn (1986), Kent (1989), and Stein (1999).

Theorem 3. Let αk , βk , and νk (k = 1, 2) be positive constants with α1 ≤ α2 and β1 ≤ β2.
The function (11) is a stationary covariance function on R

d × R if and only if the constant θ

satisfies (
1 − αd

2 β2

αd
1 β1

)−1

≤ θ ≤
{

1 −
(

α1

α2

)2ν1
(

β1

β2

)2ν2
}−1

. (12)

In the case that α1 = α2 and β1 = β2, (12) is interpreted as for all real numbers θ . If
α1 = α2 or if β1 = β2, (11) reduces to a separable spatio-temporal model.

The upper bound on θ in (12) does not depend on the dimension d. In contrast, however,
the lower bound in (12) decreases as d increases, and tends to 0 as d approaches infinity.

The upper bound on θ in (12) also depends on the parameters ν1 and ν2, while the lower
bound does not. In particular, the two parts of Corollary 5, below, are obtained by taking
(ν1, ν2) = ( 1

2 , 1
2 ) and (ν1, ν2) = (p + 1

2 , 1
2 ), respectively, where p is a nonnegative integer.

Corollary 5. Assume that 0 < α1 ≤ α2 and 0 < β1 ≤ β2.

(i) The function ρ(s; t) in (10) is a stationary correlation function on R
d × R if and only if

the constant θ satisfies (
1 − αd

2 β2

αd
1 β1

)−1

≤ θ ≤
(

1 − α1β1

α2β2

)−1

. (13)

(ii) For a nonnegative integer p,

C(s; t) =
p∑

k=0

2k(2p − k)!
k! (p − k)! {θ(α1‖s‖)k exp(−α1‖s‖ − β1|t |)

+ (1 − θ)(α2‖s‖)k exp(−α2‖s‖ − β2|t |)},
(s; t) ∈ R

d × R,
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is a stationary covariance function on R
d × R if and only if the constant θ satisfies

(
1 − αd

2 β2

αd
1 β1

)−1

≤ θ ≤
(

1 − α
2p+1
1 β1

α
2p+1
2 β2

)−1

.

It follows from Corollary 2 that the partial derivative of (10) with respect to t exists only if
α1 = α2, in which case (10) is a separable model.

An important feature of the bounds in (13), as well as those in (12), is that they depend on
the quotients α1/α2 and β1/β2, instead of the αs and βs individually. This observation leads
us to Corollary 6, which is a special case of Theorem 4 of Ma (2003c) when θ = 0 or θ = 1.

Corollary 6. Assume that 0 < α1 ≤ α2, 0 < β1 ≤ β2, and that θ satisfies (13). If �(u, v)

is the Laplace transform of a nonnegative bivariate random vector (U, V ), i.e. �(u, v) =
E exp(−Uu − V v), then

ρ(s; t) = θ�(α1‖s‖, β1|t |) + (1 − θ)�(α2‖s‖, β2|t |), (s; t) ∈ R
d × R, (14)

is a stationary correlation function on R
d × R.

Suppose that {Z0(s; t), (s; t) ∈ R
d × R} is a stationary zero-mean random field with

correlation function (10), and is independent of the random vector (U, V ), which possesses
joint distribution function F(u, v). One proof of Corollary 6 proceeds by constructing a new
spatio-temporal random field whose correlation function coincides with (14), namely

Z(s; t) = Z0(sU ; tV ), (s; t) ∈ R
d × R.

In fact, under such a construction, we have

cov(Z(s + s0; t + t0), Z(s0; t0))

=
∫ ∞

0

∫ ∞

0
cov(Z0((s + s0)u; (t + t0)v), Z(s0u; t0v)) dF(u, v)

=
∫ ∞

0

∫ ∞

0
{θ exp(−α1‖s‖u − β1|t |v) + (1 − θ) exp(−α2‖s‖v − β2|t |v)} dF(u, v)

= θ�(α1‖s‖, β1|t |) + (1 − θ)�(α2‖s‖, β2|t |),

where (s0; t0) ∈ R
d × R is arbitrary.

Two particular cases of (14) are worth mentioning.

1. If the nonnegative random variables U and V are independent, so that �(u, v) factorizes
as �(u, v) = �1(u)�2(v), u ≥ 0, v ≥ 0, where �1(·) and �2(·) are completely monotone
functions on [0, ∞), then (14) becomes

ρ(s; t) = θ�1(α1‖s‖)�2(β1|t |) + (1 − θ)�1(α2‖s‖)�2(β2|t |), (s; t) ∈ R
d × R.

Its spatial margin is presented in Theorem 2 of Ma (2005a).

2. When (U, V ) has mass confined to the line u = v, �(u, v) reduces to a completely
monotone function �(·) on [0, ∞), and (14) becomes

ρ(s; t) = θ�(α1‖s‖ + β1|t |) + (1 − θ)�(α2‖s‖ + β2|t |), (s; t) ∈ R
d × R.
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Corollary 7 follows from Theorem 3 by letting β1 = β2 and then considering the spatial
margin.

Corollary 7. For ν > 0 and α1 and α2 such that 0 < α1 < α2, the function

C(s) = θ(α1‖s‖)νKν(α1‖s‖) + (1 − θ)(α2‖s‖)νKν(α2‖s‖), s ∈ R
d , (15)

is a stationary covariance function on R
d if and only if the constant θ satisfies(

1 − αd
2

αd
1

)−1

≤ θ ≤
{

1 −
(

α1

α2

)2ν}−1

.

When ν = 1
2 and θ = α2/(α2 − α1), (15) simplifies to

C(s) = α2

α2 − α1
exp(−α1‖s‖) − α1

α2 − α1
exp(−α2‖s‖), s ∈ R

d ,

where we have omitted a positive constant. This is a spatial second-order autoregression
proposed by Shkarofsky (1968) as a three-dimensional turbulence model and by Buell (1972)
for modeling wind and geopotential on isobaric surfaces.

Notice that, for ν > 0, the function xν/2Kν(x
1/2), x ≥ 0, is completely monotone on

[0, ∞). This implies that xνKν(x), x ≥ 0, is decreasing on [0, ∞). As a consequence, (11)
is nonnegative if 0 ≤ θ ≤ {1 − (α1/α2)

2ν1(β1/β2)
2ν2}−1. However, (11) may take negative

values when θ is negative. This observation motivates Theorem 4. Actually, there is a ‘dual’
relationship between (11) and (16), which may simply be interpreted as one of the covariance
functions being a positive multiple of the (inverse) Fourier transform of the other.

Theorem 4. Let αk , βk , and νk (k = 1, 2) be positive constants with α1 ≤ α2 and β1 ≤ β2.

(i) If θ is a nonnegative constant then

C(s; t) = θα
2ν1
1 β

2ν2
1 (‖s‖2 + α2

1)−(ν1+d/2)(t2 + β2
1 )−(ν2+1/2)

+ (1 − θ)α
2ν1
2 β

2ν2
2 (‖s‖2 + α2

2)−(ν1+d/2)(t2 + β2
2 )−(ν2+1/2),

(s; t) ∈ R
d × R, (16)

is a stationary covariance function on R
d × R.

(ii) In the case that α1 �= α2 or β1 �= β2, θ ≥ 0 is also a necessary condition for (16) to be
a covariance function on R

d × R.

In general, there appear to be no simple necessary and sufficient conditions for the validity of a
linear combination of more than two pairs of separable spatio-temporal covariances. A sufficient
condition is given in Theorem 5.

Theorem 5. Assume that CS(s) is an isotropic covariance function on R
d whose spectral

density function fS(ω) is decreasing in ‖ω‖, ω ∈ R
d , and that CT(t) is a purely temporal

covariance function on R whose spectral density function fT(ω0) is decreasing in |ω0|, where
ω0 ∈ R. If αk , βk , and θk (k = 1, . . . , p) are constants such that 0 < α1 ≤ α2 ≤ · · · ≤ αp,
0 < β1 ≤ β2 ≤ · · · ≤ βp, and

∑k
i=1 θi ≥ 0, k = 1, . . . , p, then

C(s; t) =
p∑

k=1

θkα
−d
k β−1

k CS

(
s

αk

)
CT

(
t

βk

)
, (s; t) ∈ R

d × R, (17)

is a stationary covariance function on R
d × R.
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A necessary and sufficient condition to have an isotropic covariance function CS(s) on
R

d whose spectral density function fS(ω) is decreasing in ‖ω‖ is that CS(s) be an isotropic
covariance function on R

d+2; see Zolotarev (1981, p. 288) and Gneiting (1998, p. 145). The
univariate result is due to Khinchin (see Lukacs (1970, p. 92)). In particular, an isotropic
covariance function in arbitrary dimension possesses an integral representation (Schoenberg
(1938b))

CS(s) =
∫ ∞

0
exp(−‖s‖2u) dF(u) = �(‖s‖2), s ∈ R

d , (18)

where F(u) is nondecreasing and bounded for u ≥ 0, and �(x) = ∫ ∞
0 exp(−xu) dF(u), x ≥ 0,

is the Laplace transform of F(u). The spectral density of (18),

fS(ω) =
∫

Rd

CS(s) exp(is�ω) ds = πd/2
∫ ∞

0
u−d/2 exp

(
− 1

4u
‖ω‖2

)
dF(u), ω ∈ R

d ,

is a decreasing function of ‖ω‖, whenever the integral in the right-most expression exists.
As an example, let F(u) in (18) be a gamma distribution function with density

1

�(ν1)
uν1−1 exp(−u), u > 0,

so that
CS(s) = (1 + ‖s‖2)−(ν1+d/2), s ∈ R

d .

Similarly, choose
CT(t) = (1 + t2)−(ν2+1/2), t ∈ R.

Then (17) is a spatio-temporal covariance function with power-law decay:

C(s; t) =
p∑

k=1

θkα
2ν1
k β

2ν2
k (‖s‖2 +α2

k )
−(ν1+d/2)(t2 +β2

k )−(ν2+1/2), (s; t) ∈ R
d ×R. (19)

This reduces to (16) when p = 2. Letting β1 = · · · = βp and ν1 = ν in the spatial margin of
(19), i.e. C(s; 0), yields a power-law decaying covariance function over R

d :

C(s) =
p∑

k=1

θkα
2ν
k (‖s‖2 + α2

k )
−(ν+d/2), s ∈ R

d .

Whittle (1962) derived isotropic covariances in the plane with a power law at large distances in
order to explain the so-called Fairfield Smith law of environmental variation, conjectured on the
basis of agricultural uniformity trials made by Fairfield Smith. As suggested by Ma (2005b),
one can derive long-range-dependent spatio-temporal random fields by randomizing the time
scale of a given spatio-temporal random field.

So far, we have considered stationary spatio-temporal covariance functions isotropic in space.
Simple anisotropic functional forms can be readily introduced by replacing ‖s‖2 with s�As,
where A is a d × d nonnegative-definite matrix. Alternatively, nonstationary models may be
obtained by replacing ‖s1 − s2‖ with ‖g(s1)−g(s2)‖, where g(s) is a nonlinear transformation
from R

d to R
d .
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6. Proofs

6.1. Proof of Theorem 1

For a nonnegative integer k, write

Ck(s; t) = γ (s + 2ks0; t + 2kt0) + γ (s − 2ks0; t − 2kt0) − 2γ (s; t), (s; t) ∈ S × T .

We shall show, by induction, that Ck(s; t) is a stationary covariance function on S × T for
every positive integer k ∈ N.

We begin by proving that C1(s; t) is a stationary covariance function on S × T . By
assumption, C0(s; t) is a stationary covariance function. This implies that

C0(s + s0; t + t0) + C0(s − s0; t − t0) + 2C0(s; t)

= {γ (s + 2s0; t + 2t0) + γ (s; t) − 2γ (s − s0; t − t0)}
+ {γ (s; t) + γ (s − 2s0; t − 2t0) − 2γ (s − s0; t − t0)}
+ 2{γ (s + s0; t + t0) + γ (s − s0; t − t0) − 2γ (s; t)}

= C1(s; t)

is a stationary spatio-temporal covariance function.
Suppose now that Ck(s; t) is a stationary covariance function on S × T . Then, so is

Ck+1(s; t) = Ck(s +2ks0; t +2kt0)+Ck(s −2ks0; t −2kt0)+2Ck(s; t), (s; t) ∈ S ×T .

By induction, Ck(s; t) is a stationary spatio-temporal covariance function for every k ∈ N.
As k tends to infinity, the limit of 1

2Ck(s; t) exists and equals

γ ((∞, ∞, . . . ,∞); ∞) − γ (s; t),

which is also a stationary covariance function and possesses the variogram γ (s; t).

6.2. Proof of Theorem 2

By assumption and Lemma 1, γ (s; t +h)+γ (s; t −h)−2γ (s; t) is a stationary covariance
function on S × R for any fixed h > 0; so also is

1

h2 {γ (s; t + h) + γ (s; t − h) − 2γ (s; t)}, (s; t) ∈ S × R.

Letting h → 0+ reveals that (∂2/∂t2)γ (s; t) is a stationary covariance function on S × R.
When γ (s; t) is symmetric, we have

lim
h→0

γ (s; h) − γ (s; 0)

h
= lim

h→0

γ (s; h) + γ (s; −h) − 2γ (s; 0)

h2 · h

2

= 1

2

∂2

∂t2 γ (s; t)

∣∣∣∣
t=0

· 0

= 0.

Hence, (∂/∂t)γ (s; t) vanishes at t = 0.
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6.3. Proof of Theorem 3

The Fourier transform of the von Kármán–Whittle model (α‖s‖)νKν(α‖s‖), s ∈ R
d , is

∫
Rd

(α‖s‖)νKν(α‖s‖) cos(s�ω) ds = c0α
2ν(‖ω‖2 + α2)−(ν+d/2), ω ∈ R

d ,

where c0 is a positive constant not related to α (see Yaglom (1987, Equation (4.130)) or Stein
(1999, p. 49)). Clearly, (11) is bounded and continuous on R

d × R, with Fourier transform

f (ω; ω0) =
∫

Rd×R

C(s; t) exp{i(s�ω + tω0)} ds dt

= c0{θα
2ν1
1 β

2ν2
1 (‖ω‖2 + α2

1)−(ν1+d/2)(ω2
0 + β2

1 )−(ν2+1/2)

+ (1 − θ)α
2ν1
2 β

2ν2
2 (‖ω‖2 + α2

2)−(ν1+d/2)(ω2
0 + β2

2 )−(ν2+1/2)},
(ω; ω0) ∈ R

d × R,

where, now, c0 is a positive constant not related to αi or βi (i = 1, 2). By Bochner’s theorem
and Fourier inversion, the condition for (11) to be a correlation function is the same as that for
f (ω; ω0) to be nonnegative on R

d × R. Thus, it suffices to show that (12) is a necessary and
sufficient condition to have f (ω; ω0) ≥ 0, (ω; ω0) ∈ R

d × R.
Two simple necessary conditions are

f (0; 0) ≥ 0 and lim‖ω‖→∞, ω0→∞ f (ω; ω0)‖ω‖2ν1+dω
2ν2+1
0 ≥ 0,

which are equivalent to
θα−d

1 β−1
1 + (1 − θ)α−d

2 β−1
2 ≥ 0 (20)

and
θα

2ν1
1 β

2ν2
1 + (1 − θ)α

2ν1
2 β

2ν2
2 ≥ 0. (21)

Solving (20) and (21) simultaneously yields (12)
On the other hand, suppose that (12) holds or, equivalently, that (20) and (21) hold. If

(1 − αd
2 β2/α

d
1 β1)

−1 ≤ θ ≤ 0, then 1 − θ ≥ 0 and

c−1
0 f (ω; ω0) = θα−d

1 β−1
1

(
α2

1

‖ω‖2 + α2
1

)ν1+d/2( β2
1

ω2
0 + β2

1

)ν2+1/2

+ (1 − θ)α−d
2 β−1

2

(
α2

2

‖ω‖2 + α2
2

)ν1+d/2( β2
2

ω2
0 + β2

2

)ν2+1/2

≥ {θα−d
1 β−1

1 + (1 − θ)α−d
2 β−1

2 }
(

α2
1

‖ω‖2 + α2
1

)ν1+d/2( β2
1

ω2
0 + β2

1

)ν2+1/2

≥ 0,

where the last inequality follows from (20) and the first inequality follows from

α2
1

‖ω‖2 + α2
1

≤ α2
2

‖ω‖2 + α2
2

and
β2

1

ω2
0 + β2

1

≤ β2
2

ω2
0 + β2

2

, (ω; ω0) ∈ R
d × R.
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If 0 ≤ θ ≤ {1 − (α1/α2)
2ν1(β1/β2)

2ν2}−1, we obtain f (ω; ω0) ≥ 0, (ω; ω0) ∈ R
d × R,

from

c−1
0 f (ω; ω0)(‖ω‖2 + α2

2)ν1+d/2(ω2
0 + β2

2 )ν2+1/2

= θα
2ν1
1 β

2ν2
1

(‖ω‖2 + α2
2

‖ω‖2 + α2
1

)ν1+d/2(ω2
0 + β2

2

ω2
0 + β2

1

)ν2+1/2

+ (1 − θ)α
2ν1
2 β

2ν2
2

≥ θα
2ν1
1 β

2ν2
1 · 1 + (1 − θ)α

2ν1
2 β

2ν2
2

≥ 0,

where the last inequality follows from (21).

6.4. Proof of Theorem 4

Part (i) is a special case of Theorem 5.
To prove part (ii) notice that, from the proof of Theorem 3, the Fourier transform of (11) is

a positive multiple of (16) with (s; t) replaced by (ω; ω0). Thus, the inverse Fourier transform
of (16), f (ω; ω0), is a positive multiple of (11) with (s; t) replaced by (ω; ω0), i.e.

c1f (ω; ω0) = θ(α1‖ω‖)ν1Kν1(α1‖ω‖)(β1|ω0|)ν2Kν2(β1|ω0|)
+ (1 − θ)(α2‖ω‖)ν1Kν1(α2‖ω‖)(β2|ω0|)ν2Kν2(β2|ω0|),

(ω; ω0) ∈ R
d × R,

where c1 is a positive constant. Suppose that (16) is a covariance. Then f (ω; ω0) is nonnegative
for all (ω; ω0) ∈ R

d × R and, thus,

θ + (1 − θ)
(α2‖ω‖)ν1Kν1(α2‖ω‖)(β2|ω0|)ν2Kν2(β2|ω0|)
(α1‖ω‖)ν1Kν1(α1‖ω‖)(β1|ω0|)ν2Kν2(β1|ω0|) ≥ 0

or, equivalently,

θ + (1 − θ)

(
α2

α1

)ν1 Kν1(α2‖ω‖)
Kν1(α1‖ω‖)

(
β2

β1

)ν2 Kν2(β2|ω0|)
Kν2(β1|ω0|) ≥ 0, (ω; ω0) ∈ R

d × R. (22)

According to Kent (1978) and Ismail and Kelker (1979), the functions(
α2

α1

)ν1 Kν1(α2x
1/2)

Kν1(α1x1/2)
, x ≥ 0, and

(
β2

β1

)ν2 Kν2(β2x
1/2)

Kν2(β1x1/2)
, x ≥ 0,

are the Laplace transforms of infinitely divisible probability distributions, and consequently
tend to 0 as x approaches infinity. Finally, we obtain θ ≥ 0 from (22) by letting ‖ω‖ → ∞
and |ω0| → ∞.

6.5. Proof of Theorem 5

By assumption, we may write fS(‖ω‖) and fT(|ω0|) for the Fourier transforms of CS(s) and
CT(t), respectively, where fS(x) and fT(x) are decreasing on [0, ∞). Then, for k = 1, . . . , p,∫

Rd

CS

(
s

αk

)
exp(is�ω) ds = αd

k fS(αk‖ω‖),
∫

R

CT

(
t

βk

)
exp(itω) dt = βkfT(βk|ω0|).

The Fourier transform of (17) is

f (ω; ω0) =
p∑

k=1

θkfS(αk‖ω‖)fT(βk|ω0|), (ω; ω0) ∈ R
d × R.
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An alternative expression is obtained by applying Abel’s lemma, which gives

f (ω; ω0) = fS(αp‖ω‖)fT(βp|ω0|)
p∑

i=1

θi

+
p−1∑
k=1

( k∑
i=1

θi

)
{fS(αk‖ω‖)fT(βk|ω0|) − fS(αk+1‖ω‖)fT(βk+1|ω0|)}.

This is nonnegative on R
d × R, under the assumptions of Theorem 5.
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