
JFP 33, e2, 40 pages, 2023. c© The Author(s), 2023. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796822000156

F U N C T I O N A L P E A R L

Folding left and right matters:
Direct style, accumulators, and continuations

O L I V I E R D A N V Y
Yale-NUS College & School of Computing, National University of Singapore

(e-mail: danvy@acm.org)

Abstract

The equivalence of folding left and right over Peano numbers and lists makes it possible to
minimalistically inter-derive (1) structurally recursive functions in direct style, (2) structurally tail-
recursive functions that use an accumulator, and (3) structurally tail-recursive functions in delimited
continuation-passing style, using Ohori and Sasano’s lightweight fusion by fixed-point promotion.
When the fold-left and the fold-right functions account for primitive iteration for Peano numbers,
this equivalence is unconditional. When they account for primitive recursion for Peano numbers,
this equivalence is modulo left permutativity of their induction-step parameter – a property which is
more general than associativity and commutativity. And when they account for primitive iteration
or for primitive recursion over lists, this equivalence is modulo left permutativity of their induction-
step parameter if these two fold functions have the same type. Since the 1980s, however, the two fold
functions for lists do not have the same type: the arguments for their induction-step parameter are
swapped, a re-ordering that complicated Bird and Wadler’s duality theorems and whose history is
reviewed in an appendix. Without this re-ordering, Bird and Wadler’s second duality theorem more
visibly accounts for “re-bracketing,” which is a key step to make recursive programs tail recursive
in the general area of program development, from Cooper in the 1960s and onwards.

1 Introduction

Designing a function that uses an accumulator always requires some thought, witness the
explanations we need to conjure up to explain to our students what accumulators are, what
they are good for, how to use them, and in which circumstances to use them. Too hasty an
explanation leads to the proverbial dangerous thing: for example, no, using an accumulator
is not solely for writing tail-recursive programs, since flattening a tree without using list
concatenation is carried out with an accumulator and the resulting flattening function is not
tail recursive. And likewise, one needs to become aware of the reverse order induced by
accumulation in tail-recursive programs.

Against this backdrop, fold functions are an unexpectedly sustainable resource for teach-
ing how to program recursive functions reliably. If a recursive function can be expressed
using a fold function and if inlining the call to this fold function and simplifying yields
this recursive function back, then this function was expressed in a structurally recursive

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796822000156
https://orcid.org/0000-0002-3890-3630
mailto:danvy@acm.org
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796822000156&domain=pdf
https://doi.org/10.1017/S0956796822000156


2 O. Danvy

manner: it can be reasoned about using structural induction (Burstall, 1969). This litmus
test is a time saver for all parties that builds on the idea that our programs are not mere
write-once, forget-forever artifacts: they are objects in our computational discourse we
reason about.

Flat data structures such as Peano numbers and lists invite a processing that is iterative.
This iterative processing is carried out by tail-recursive functions that use an accumu-
lator. There too, fold functions are a sustainable resource for teaching how to program
tail-recursive functions that use an accumulator: if a tail-recursive function with an accu-
mulator can be expressed using a fold function and if inlining the call to this fold function
and simplifying yields this tail-recursive function back, then this function was expressed
in a structurally recursive manner: it can also be reasoned about using structural induction.

Historically (see App. 1), fold functions that abstract the ordinary pattern of recursion
for lists are named “fold right” (or “reduce”) and fold functions that abstract the pattern of
accumulator-based tail recursion for lists are named “fold left” (or “accumulate”).

The goal of this article is to describe the calculational diagram depicted in Fig. 1, where
structurally recursive functions are abstracted into instances of fold functions (“fold intro-
duction”) and instances of fold functions are concretized into recursive functions (“fold
elimination”). This diagram hinges on the facts that for flat data structures, structurally
recursive functions in “direct style” (Stoy, 1977) can be expressed as an instance of a
fold-right function and that structurally tail-recursive functions with an accumulator can
be expressed not only as an instance of a fold-left function but also as an instance of a
fold-right function (see Sec. 1.7.1).

Fig. 1. Folding left and right matters, diagrammatically

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 3

The starting point, at the top of the diagram, is the definition of a structurally recursive
function in direct style over Peano numbers or over lists – let us refer to this definition
as a “d-definition.” This function can be expressed as an instance of a fold-right function,
giving rise to a “d-right definition.” When this fold-right function and the corresponding
fold-left function are equivalent, one can be replaced by the other in this d-right definition,
giving rise to a “a-left definition.” Inlining the call to fold-left in this a-left definition and
simplifying then yields the “a-definition” of a first-order tail-recursive function that uses an
accumulator and is equivalent to the original function. This accumulator-based function is
still structurally recursive, and therefore it can be expressed as an instance of the fold-right
function, giving rise to an “a-right definition.” Under the same assumption that this fold-
right function and the corresponding fold-left function are equivalent, one can be replaced
by the other in this a-right definition, giving rise to an “h-left definition.” Inlining the
call to fold-left in this h-left definition and simplifying then yields the “h-definition” of a
second-order tail-recursive function that uses an first-order accumulator (i.e., a function)
and is equivalent to the original function. Applying Ohori and Sasano’s lightweight fusion
by fixed-point promotion (see Sec. 1.7.5) to this h-definition yields the “c-definition” of a
function which is in delimited continuation-passing style and is equivalent to the original
function. Each step is reversible.

For Peano numbers, the fold-left function and the fold-right function are unconditionally
equivalent. For lists, the fold-left function and the fold-right function are conditionally
equivalent, and this condition is stated in Bird and Wadler’s second duality theorem (1988).

The entirety of this work is formalized in the Coq Proof Assistant (Bertot and Castéran,
2004), including the second duality theorem (see App. 2.2). In the two accompanying .v
files, the names in d-definitions are suffixed with _d, the names in d-right definitions are
suffixed with _d_right, the names in a-left definitions are suffixed with _a_left, etc.

The significance of this work is both qualitative and quantitative. Qualitative: each of
the inter-derived programming artifacts – recursive definitions in direct style, tail-recursive
definitions using an accumulator, and tail-recursive definitions in delimited continuation-
passing style – are definitions we would be happy to see our students write by hand. And
quantitative: any two of these definitions can be calculated from the third. As such, they
need not be invented: they can be systematically discovered.

The rest of this introduction is structured as follows. We first present the domain of dis-
course (primitive iteration and primitive recursion over Peano numbers and lists, Sec. 1.1).
We then describe the elements of discourse on the right (fold-right functions, Sec. 1.2) and
on the left (fold-left functions, Sec. 1.3). We then review the properties of the discourse
(i.e., under which conditions are each pair of fold-left and fold-right functions equivalent
Sec. 1.4) and their converse (Sec. 1.5). We then explain why there are two accompanying
.v files instead of one (one uses an axiom for extensionality (the equality of functions) and
Coq’s implicit axiomatization of Leibniz equality and the other uses an explicit axiom-
atization for type-indexed equality, Sec. 1.6). We then survey the tools of the discourse
(abstracting a recursive function definition into an instance of a fold function and con-
cretizing an instance of a fold function into a recursive function definition, and Ohori and
Sasano’s lightweight fusion by fixed-point promotion (2007), Sec. 1.7). We then depict the
discourse into a refined version of Fig. 1 (Sec. 1.8 and Fig. 2) before outlining the structure
of the said discourse (Sec. 1.9).

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


4 O. Danvy

1.1 The domain of discourse

We consider Peano numbers and lists (since Peano numbers are isomorphic to lists of
unit values, the results about Peano numbers are corollaries of the corresponding results
about lists of unit values). Gallina, the resident pure and total functional programming
language in the Coq Proof Assistant, provides built-in implementations for these two data
types: one is named Nat.nat (or nat for short) and its two constructors are O : nat and
S : nat -> nat; and the other is polymorphic and named List.list (or list for short)
and its two polymorphic constructors are nil and cons (noted with the infix notation ::).

1.1.1 Primitive iteration over Peano numbers

The concept of primitive iteration originates in recursion theory, as reviewed in Sec. 7. It is
akin to Church encoding of Peano numbers (1941), with zero as λz.λs.z and the successor
function as λn.λz.λs.s (n z s), and is defined as follows:

Fixpoint primitive_iteration_over_nats (n : nat)
(W : Type) (z : W) (s : W -> W) : W :=

match n with O => z
| S n’ => s (primitive_iteration_over_nats n’ W z s)

end.

Definition list_of_units_from_nat (n : nat) : list unit :=
primitive_iteration_over_nats n (list unit) nil (fun us => tt :: us).

1.1.2 Primitive recursion over Peano numbers

The concept of primitive recursion dates back to Dedekind and Skolem (Hermes, 1965;
Kleene, 1952; Odifreddi, 1989), as reviewed in Sec. 7. In contrast to primitive iteration,
the induction-step parameter is also applied to each successive predecessor of the given
Peano number:

Fixpoint primitive_recursion_over_nats (n : nat)
(W : Type) (z : W) (s : nat -> W -> W) : W :=

match n with O => z
| S n’ => s n’ (primitive_recursion_over_nats n’ W z s)

end.

1.1.3 Primitive iteration over lists

Primitive iteration over lists is an analogue of primitive iteration over Peano numbers
where the induction-step parameter is applied to each successive element in the given list:

Fixpoint primitive_iteration_over_lists (V : Type) (vs : list V)
(W : Type) (n : W) (c : V -> W -> W) : W :=

match vs with nil => n
| v :: vs’ => c v (primitive_iteration_over_lists V vs’ W n c)

end.

Definition nat_from_list_of_units (us : list unit) : nat :=
primitive_iteration_over_lists unit us nat 0 (fun _ i => S i).

That list_of_units_from_nat (defined in Sec. 1.1.1) and nat_from_list_of_units are
inverses of each other is proved by induction, which establishes the isomorphism between
nat and list unit mentioned in the opening sentence of Sec. 1.1.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 5

1.1.4 Primitive recursion over lists

Primitive recursion over lists is an analogue of primitive recursion over Peano numbers
where the induction-step parameter is applied to each successive element in the given list
as well as to the following suffix:

Fixpoint primitive_recursion_over_lists (V : Type) (vs : list V)
(W : Type) (n : W) (c : V -> list V -> W -> W) : W :=

match vs with nil => n
| v :: vs’ => c v vs’ (primitive_recursion_over_lists V vs’ W n c)

end.

1.1.5 Summary and synthesis

Overall, primitive iteration does not give access to the value to which the induction hypoth-
esis applies, and primitive recursion does. So concretely, primitive iteration over Peano
numbers formalizes a for-loop where the index is not used and primitive recursion over
Peano numbers formalizes a for-loop where the index is used.

Primitive recursion over Peano numbers makes it immediate to program a predecessor
function for positive numbers that works in constant time using call by name:

Definition nat_pred_pr (n : nat) : nat :=
primitive_recursion_over_nats n nat 0 (fun i’ ih => i’).

Primitive iteration over Peano numbers requires Kleene’s insight while at the dentist in
1932 (Kleene, 1981) or a higher-order version of it and yields a predecessor function for
positive numbers that works in linear time:

Definition nat_pred_pi (n : nat) : nat :=
let (n’, _) := primitive_iteration_over_nats n

(nat * nat)
(0, 0)
(fun p => let (_, i) := p

in (i, S i))
in n’.

Definition nat_pred_pi’ (n : nat) : nat :=
primitive_iteration_over_nats n

(nat -> nat -> nat)
(fun n’ _ => n’)
(fun ih _ i => ih i (S i))
0
0.

And likewise for computing the tail of a nonempty list.

1.2 The elements of discourse, on the right

Fold-right functions are the computational counterpart of primitive iteration and primi-
tive recursion. Let us proceed in the same order as in Sec. 1.1: fold functions for Peano
numbers, “parafold” functions for Peano numbers (discovered by Cooper), fold func-
tions for lists (discovered by Strachey and named by Turner, see App. 1), and parafold
functions for lists (also discovered by Cooper). (Using the prefix “para” for primitive
recursion was suggested by a reviewer (Danvy, 2019) in reference to Meertens’s work
on paramorphisms (1992).)

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


6 O. Danvy

1.2.1 Primitive iteration over Peano numbers

The function nat_fold_right is an implementation of primitive iteration over Peano
numbers that abstracts structurally recursive functions in direct style:

Definition nat_fold_right (W : Type) (z : W) (s : W -> W) (n : nat) : W :=
let fix visit i :=
match i with O => z

| S i’ => s (visit i’)
end

in visit n.

Definition primitive_iteration_over_nats_right (n : nat)
(W : Type) (z : W) (s : W -> W) : W :=

nat_fold_right W z s n.

Applying nat_fold_right to z (the base-case parameter), s (the induction-step param-
eter), and, e.g., 3 gives rise to s (s (s z)), where s is applied 3 times, as per the last
argument of the fold function, i.e., 3.

So for example, the addition function can be abstracted into an instance of
nat_fold_right and this instance of nat_fold_right can be concretized into this defi-
nition of the addition function:

Definition nat_add (n m : nat) : nat :=
let fix visit i :=
match i with O => m

| S i’ => S (visit i’)
end

in visit n.

Definition nat_add_right (n m : nat) : nat :=
nat_fold_right nat m S n.

Likewise (see Sec. 1.1.5), we can compute the predecessor of a positive Peano number
recursively with nat_fold_right, using Kleene’s insight.

1.2.2 Primitive recursion over Peano numbers

The function nat_parafold_right is an implementation of primitive recursion over Peano
numbers that abstracts structurally recursive functions in direct style:

Definition nat_parafold_right (V : Type) (z : V) (s : nat -> V -> V) (n : nat) : V :=
let fix visit i :=
match i with O => z

| S i’ => s i’ (visit i’)
end

in visit n.

Definition primitive_recursion_over_nats_right (n : nat)
(W : Type) (z : W) (s : nat -> W -> W) : W :=

nat_parafold_right W z s n.

Applying nat_parafold_right to z (the base-case parameter), s (the induction-step
parameter), and 3 gives rise to s 2 (s 1 (s 0 z)), where s is applied 3 times, as per
the last argument of the parafold function, i.e., 3.

So for example, the factorial function can be abstracted into an instance of
nat_parafold_ right and this instance of nat_parafold_right can be concretized into
this definition of the factorial function:

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 7

Definition nat_fac (n : nat) : nat :=
let fix visit i :=

match i with O => 1
| S i’ => S i’ * visit i’

end
in visit n.

Definition nat_fac_right (n : nat) : nat :=
nat_parafold_right nat 1 (fun i’ a => S i’ * a) n.

Likewise (see Sec. 1.1.5), we can compute the predecessor of a positive Peano number
recursively with nat_parafold_right.

In the Coq Proof Assistant, nat_parafold_right is essentially nat_rect (see the
accompanying .v files).

In Cooper’s work on the equivalence of computations (1966), nat_parafold_right is
Fr (Eqn. (1), p. 46).

1.2.3 Primitive iteration over lists

The function list_fold_right is an implementation of primitive iteration over lists that
abstracts structurally recursive functions that are in direct style:

Definition list_fold_right (V W : Type) (n : W) (c : V -> W -> W) (vs : list V) : W :=
let fix visit vs :=

match vs with nil => n
| v :: vs’ => c v (visit vs’)

end
in visit vs.

Definition primitive_iteration_over_lists_right (V : Type) (vs : list V)
(W : Type) (n : W) (c : V -> W -> W) : W :=

list_fold_right V W n c vs.

Applying list_fold_right to n (the base-case parameter), c (the induction-step parame-
ter), and v1 :: v2 :: nil gives rise to c v1 (c v2 n), where c is applied twice, as per
the length of the given list.

So for example, the list-copy function can be abstracted into an instance of list_fold_
right and this instance of list_fold_right can be concretized into this definition of the
list-copy function by inlining the definition of list_fold_right and simplifying:

Definition list_copy (V : Type) (vs : list V) : list V :=
let fix visit vs :=

match vs with nil => nil
| v :: vs’ => v :: visit vs’

end
in visit vs.

Definition list_copy_right (V : Type) (vs : list V) : list V :=
list_fold_right V (list V) nil (fun v vs’ => v :: vs’) vs.

The definition of list_copy_right is originally due to Strachey (1961).

1.2.4 Primitive recursion over lists

The function list_parafold_right is an implementation of primitive recursion over lists
that abstracts structurally recursive functions in direct style:

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


8 O. Danvy

Definition list_parafold_right (V W : Type) (n : W) (c : V -> list V -> W -> W)
(vs : list V) : W :=

let fix visit vs :=
match vs with nil => n

| v :: vs’ => c v vs’ (visit vs’)
end

in visit vs.

In the Coq Proof Assistant, list_parafold_right is essentially list_rect (see the
accompanying .v files).

In Cooper’s work on the equivalence of computations (1966), list_parafold_right
is sketched on p. 47. Cooper also points out that list_parafold_right can be used to
reverse a list, which might be the first occurrence of what is now classically referred to as
a quadratic-time “naive reverse function” (Hughes, 1986):

Definition list_reverse_pararight (V : Type) (vs : list V) : list V :=
list_parafold_right V (list V) nil (fun v _ vs’ => vs’ ++ v :: nil) vs.

1.3 The elements of discourse, on the left

Many recursive functions can be expressed tail recursively with an accumulator, and on
the ground that these tail-recursive versions can be implemented more efficiently, a lot
of attention has been given to them, starting with lists. Let us proceed in the same order
as in Sec. 1.2: fold functions for Peano numbers, parafold functions for Peano numbers
(discovered by Cooper), fold functions for lists (discovered by Strachey and named by
Turner, see App. 1), and parafold functions for lists (also discovered by Cooper).

1.3.1 Primitive iteration over Peano numbers, tail recursively

The function nat_fold_left is an implementation of primitive iteration over Peano
numbers that abstracts structurally tail-recursive functions that use an accumulator:

Definition nat_fold_left (W : Type) (z : W) (s : W -> W) (n : nat) : W :=
let fix visit i a :=
match i with O => a

| S i’ => visit i’ (s a)
end

in visit n z.

This implementation is akin to Church encoding of Peano numbers Church (1941) where
the successor function is λn.λz.λs.n (s z) s.

Applying nat_fold_left to z, s, and, e.g., 3 gives rise to s (s (s z)), where s is
applied 3 times, as per the last argument of the fold function, i.e., 3.

So for example, a tail-recursive version of the addition function can be abstracted into
an instance of nat_fold_left and this instance of nat_fold_left can be concretized into
this tail-recursive version of the addition function:

Definition nat_add_acc (n m : nat) : nat :=
let fix visit i a :=
match i with O => a

| S i’ => visit i’ (S a)
end

in visit n m.

Definition nat_add_acc_left (n m : nat) : nat :=
nat_fold_left nat m S n.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 9

Likewise (see Sec. 1.1.5), we can compute the predecessor of a positive Peano number
tail recursively with nat_fold_left, using Kleene’s insight.

This fold-left function reconciles theory (classically, “primitive iteration” characterizes
a class of computations) and practice (nowadays, “iteration” characterizes the execution of
a for-loop and is achieved by applying a tail-recursive function).

1.3.2 Primitive recursion over Peano numbers, tail recursively

The function nat_parafold_left is an implementation of primitive recursion over Peano
numbers that abstracts structurally tail-recursive functions that use an accumulator:

Definition nat_parafold_left (V : Type) (z : V) (s : nat -> V -> V) (n : nat) : V :=
let fix visit i a :=

match i with O => a
| S i’ => visit i’ (s i’ a)

end
in visit n z.

Applying nat_parafold_left to z, s, and 3 gives rise to s 0 (s 1 (s 2 z)), where the
induction-step parameter, s, is applied 3 times, as per the last argument of the parafold
function, i.e., 3.

So for example, a tail-recursive version of the factorial function can be abstracted
into an instance of nat_parafold_left and this instance of nat_parafold_left can be
concretized into this tail-recursive version of the factorial function:

Definition nat_fac_acc (n : nat) : nat :=
let fix visit i a :=

match i with O => a
| S i’ => visit i’ (S i’ * a)

end
in visit n 1.

Definition nat_fac_acc_left (n : nat) : nat :=
nat_parafold_left nat 1 (fun i’ a => S i’ * a) n.

And so we are now in position to theorize about primitive tail recursion.
In Cooper’s work on the equivalence of computations (1966), nat_parafold_left is

Fu (Eqn. (2), p. 46). To quote: “Notice that equations (2) are essentially the scheme for
definition by primitive recursion.”

1.3.3 Primitive iteration over lists, tail recursively

The function list_fold_left is an implementation of primitive iteration over lists that
abstracts structurally tail-recursive functions that use an accumulator:

Definition list_fold_left (V W : Type) (n : W) (c : V -> W -> W) (vs : list V) : W :=
let fix visit vs a :=

match vs with nil => a
| v :: vs’ => visit vs’ (c v a)

end
in visit vs n.

Applying list_fold_left to n, c, and v1 :: v2 :: nil gives rise to c v2 (c v1 n),
where the induction-step parameter, c, is applied twice, as per the length of the given
list.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


10 O. Danvy

So for example, the list-reverse function can be abstracted into an instance of
list_fold_left and this instance of list_fold_left can be concretized into this defi-
nition of the list-reverse function:

Definition list_reverse (V : Type) (vs : list V) : list V :=
let fix visit vs a :=
match vs with nil => a

| v :: vs’ => visit vs’ (v :: a)
end

in visit vs nil.

Definition list_reverse_left (V : Type) (vs : list V) : list V :=
list_fold_left V (list V) nil (fun v vs’ => v :: vs’) vs.

The definition of list_reverse_left is originally due to Strachey (1961) and the
definition list_reverse is now classically referred to as a linear-time “fast reverse
function” (Hughes, 1986). In his design, list_fold_left had the same type as
list_fold_right. Since the mid-1980s, however, functional programmers favor a version
of list_fold_left where the arguments of the induction-step parameter are swapped, as
reviewed in App. 1:

Definition list_fold_left_swapped (V W : Type) (n : W) (c : W -> V -> W)
(vs : list V) : W :=

let fix loop vs a :=
match vs with nil => a

| v :: vs’ => loop vs’ (c a v)
end

in loop vs n.

Definition list_reverse_left_swapped (V : Type) (vs : list V) : list V :=
list_fold_left_swapped V (list V) nil (fun vs’ v => v :: vs’) vs.

1.3.4 Primitive recursion over lists, tail recursively

The function list_parafold_left is an implementation of primitive recursion over lists
that abstracts structurally tail-recursive functions that use an accumulator:

Definition list_parafold_left (V W : Type) (n : W) (c : V -> list V -> W -> W)
(vs : list V) : W :=

let fix visit vs a :=
match vs with nil => a

| v :: vs’ => visit vs’ (c v vs’ a)
end

in visit vs n.

Consistently with Strachey’s design, list_parafold_left and list_parafold_right
have the same type.

In Cooper’s work on the equivalence of computations (1966), list_parafold_left is
sketched on p. 47, and used to implement an iterative function for reversing a list.

1.4 The properties in the discourse

Under which conditions are each left and right fold and parafold functions equivalent?

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 11

1.4.1 Primitive iteration over Peano numbers (nat-fold-left & nat-fold-right)

As it happens, the two fold functions are unconditionally equivalent (Danvy, 2019):

Proposition folding_left_and_right_over_Peano_numbers :
forall (W : Type) (z : W) (s : W -> W) (n : nat),

nat_fold_left W z s n = nat_fold_right W z s n.

And indeed (see Sec. 2) constructing

s (s (... (s (
︸ ︷︷ ︸

n

z))...))

recursively or tail recursively by accumulating s over z n times gives the same result. So
the two successor functions for Church numerals – λn.λz.λs.s (n z s) and λn.λz.λs.n (s z) s
– are indeed equivalent, which suggests that in Coq Proof Assistant, Nat.iter should not
be implemented with nat_rect, i.e., nat_parafold_right, but with nat_fold_left, for
efficiency.

1.4.2 Primitive recursion over Peano numbers (nat-parafold-left & nat-parafold-right)

As it happens, the two parafold functions are only equivalent when their induction-step
parameter is left-permutative:

Definition is_left_permutative (V W : Type) (s : V -> W -> W) :=
forall (v1 v2 : V) (w : W),

s v1 (s v2 w) = s v2 (s v1 w).

(If an induction-step parameter is associative and commutative, it is also left-permutative,
but the converse does not hold, e.g., for typing reasons.)

Proposition parafolding_left_and_right_over_Peano_numbers :
forall (W : Type) (z : W) (s : nat -> W -> W),

is_left_permutative nat W s ->
forall n : nat,
nat_parafold_left W z s n = nat_parafold_right W z s n.

And indeed (see Sec. 3), one can equivalently compute a factorial number recursively
(by successively computing the preceding factorial numbers, starting from 1) and tail
recursively (by successively performing the converse multiplications, i.e., for a given n
and for its successive predecessors i, by successively computing the preceding falling
factorial numbers n!/i!). That said, iota and atoi are not equivalent since cons is not
left-permutative:

Definition iota (n : nat) : list nat :=
nat_parafold_left (list nat) nil (fun i’ ih => i’ :: ih) n.

Definition atoi (n : nat) : list nat :=
nat_parafold_right (list nat) nil (fun i’ ih => i’ :: ih) n.

(The names “iota” and “atoi” (which is “iota” spelled backward) come from APL (Iverson,
1962), and “ih” stands for “induction hypothesis,” a handy acronym since in a structurally
recursive function, a recursive call implements the induction hypothesis.)

In Cooper’s work on the equivalence of computations (1966), Eqn. (4), p 46, both prefig-
ure left-permutativity and anticipate the two premises in Bird and Wadler’s second duality
theorem (see App. 2.2).

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


12 O. Danvy

1.4.3 Primitive iteration over lists (list-fold-left & list-fold-right)

As it happens, these two fold functions are only equivalent when their induction-step
parameter is left-permutative:
Proposition folding_left_and_right_over_lists :

forall (V W : Type) (c : V -> W -> W),
is_left_permutative V W c ->
forall (n : W) (vs : list V),

list_fold_left V W n c vs = list_fold_right V W n c vs.

And indeed (see Sec. 4), one can equivalently compute the length of a list recursively (by
successively computing the lengths of all the suffixes of the given list, starting from the
shortest one) and tail recursively (by successively computing the lengths of all its prefixes,
starting from the shortest one). That said, list_copy and list_reverse are not equiva-
lent since cons is not left-permutative, witness Strachey’s two definitions in Sec. 1.2.3
and 1.3.3.

Modulo the order of arguments in the induction-step parameter for list_fold_left (see
App. 1), the proposition above is Bird and Wadler’s second duality theorem (1988), which
is revisited in App. 2.2.

As foreshadowed in the opening sentence of Sec. 1.1, the accompanying .v files
prove folding_left_and_right_over_Peano_numbers (Sec. 1.4.1) as a corollary of the
proposition above using the isomorphism between Peano numbers and lists of unit values.

1.4.4 Primitive recursion over lists (list-parafold-left & list-parafold-right)

As it happens, these two parafold functions are only equivalent when their induction-step
parameter is left-permutative. The following proposition generalizes Bird and Wadler’s
second duality theorem in the expected way:
Definition is_left_permutative2 (V W : Type) (c : V -> list V -> W -> W) :=

forall (v1 v2 : V) (v1s v2s : list V) (w : W),
c v1 v1s (c v2 v2s w) = c v2 v2s (c v1 v1s w).

Proposition parafolding_left_and_right_over_lists :
forall (V W : Type) (c : V -> list V -> W -> W),
is_left_permutative2 V W c ->
forall (n : W) (vs : list V),

list_parafold_left V W n c vs = list_parafold_right V W n c vs.

Cooper (1966) also mentions this conditional equivalence.

1.5 The converse properties in the discourse

These sufficient conditions for folds and parafolds to be equivalent, are they necessary too?

1.5.1 Primitive iteration over lists (list-fold-left & list-fold-right)

Left-permutativity is not only sufficient for equivalently folding left and right over lists, it
is also necessary if the equivalence holds for any given base-case parameter:
Proposition folding_left_and_right_over_lists_converse :

forall (V W : Type) (c : V -> W -> W),
(forall (w : W) (vs : list V),

list_fold_left V W w c vs = list_fold_right V W w c vs) ->
is_left_permutative V W c.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 13

1.5.2 Primitive recursion over Peano numbers (nat-parafold-left & nat-parafold-right)

Left-permutativity is not necessary for equivalently parafolding left and right over Peano
numbers. For example, the following function is not left-permutative but parafolding left
and right with it yields the same result:

Definition baz (x : nat) (ys : list nat) : list nat :=
match x with O => nil

| S _ => match ys with nil => nil
| _ :: _ => x :: ys

end
end.

Lemma nat_parafolding_left_and_right_with_baz :
forall (n : nat) (z : list nat),

nat_parafold_left (list nat) z baz n =
nat_parafold_right (list nat) z baz n.

For example, parafolding left and right with any given z, baz, and 3 gives rise to

baz 2 (baz 1 (baz 0 z)) = baz 0 (baz 1 (baz 2 z)).

The right-hand side simplifies to nil in one step. In the left-hand side, the inner
call to baz simplifies to nil, and then, the two other calls also simplify to nil.
But baz is not left-permutative: for example, evaluating baz 1 (baz 2 (3 :: nil))
yields 1 :: 2 :: 3 :: nil but evaluating baz 2 (baz 1 (3 :: nil)) yields
2 :: 1 :: 3 :: nil.

1.5.3 Primitive recursion over lists (list-parafold-left & list-parafold-right)

Left-permutativity is not necessary either for equivalently parafolding left and right over
lists. For example, the following function is not left-permutative but parafolding left and
right with it yields the same result:

Definition parabaz (x : nat) (ys zs : list nat) : list nat :=
match ys with nil => nil

| _ :: _ => match zs with nil => nil
| _ :: _ => x :: zs

end
end.

Lemma list_parafolding_left_and_right_with_parabaz :
forall n is : list nat,

list_parafold_left nat (list nat) n parabaz is =
list_parafold_right nat (list nat) n parabaz is.

1.6 On the power and limitation of Leibniz equality in the Coq Proof Assistant

So far, all the propositions about folding left and right have been stated using the resident
equality in the Coq Proof Assistant, i.e., Leibniz equality. But this equality does not cater
to functions. Consider two expressions where x may occur free and that are Leibniz equal:

forall x, e1 = e2

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


14 O. Danvy

It does not seem unreasonable to wish for fun x => e1 and fun x => e2 to be Leibniz
equal, which justifies adding the following axiom:

Axiom extensionality :
forall (V W : Type) (f g : V -> W),
(forall v : V, f v = g v) -> f = g.

The present article and one of the two accompanying .v files assume this axiom, and so
all equalities are Leibniz equalities here.

Instead of using an extensionality axiom for functional equality, the other .v file con-
tains an axiomatization of equality as an inductive family of type-indexed functions. So
building on Coq’s resident equality at type unit, bool, and nat, type-indexed polymorphic
equality functions are defined for the option type, for pairs, for triples, and for functions.
For example, equality for pairs and equality for functions are defined as follows:

Definition eq_pair (V : Type) (eq_V : V -> V -> Prop)
(W : Type) (eq_W : W -> W -> Prop)
(p1 p2 : V * W) : Prop :=

let (v1, w1) := p1
in let (v2, w2) := p2

in eq_V v1 v2 /\ eq_W w1 w2.

Definition eq_fun (V : Type) (eq_V : V -> V -> Prop)
(W : Type) (eq_W : W -> W -> Prop)
(f1 f2 : V -> W) : Prop :=

forall v1 v2 : V,
eq_V v1 v2 -> eq_W (f1 v1) (f2 v2).

Each definition comes together with a proof that this equality is an equivalence relation
(reflexive, symmetric, and transitive) whenever its component equalities are equivalence
relations too. For example, the equality for pairs is an equivalence relation whenever the
equality for their two components is an equivalence relation too:

Lemma eq_pair_is_an_equivalence_relation :
forall (V : Type) (eq_V : V -> V -> Prop),
is_an_equivalence_relation V eq_V ->
forall (W : Type) (eq_W : W -> W -> Prop),

is_an_equivalence_relation W eq_W ->
is_an_equivalence_relation (V * W) (eq_pair V eq_V W eq_W).

For functions, we also require the equality for their domain to be sound:

Lemma eq_fun_is_an_equivalence_relation :
forall (V : Type) (eq_V : V -> V -> Prop),
is_an_equivalence_relation V eq_V ->
(forall v1 v2 : V, eq_V v1 v2 -> v1 = v2) ->
forall (W : Type) (eq_W : W -> W -> Prop),

is_an_equivalence_relation W eq_W ->
is_an_equivalence_relation (V -> W) (eq_fun V eq_V W eq_W).

We are then in position to define our own equalities. For example:

Definition nat2nat : Type := nat -> nat.

Definition eq_nat2nat (h1 h2 : nat2nat) : Prop :=
eq_fun nat eq_nat nat eq_nat h1 h2.

Lemma eq_nat2nat_is_an_equivalence_relation :
is_an_equivalence_relation nat2nat eq_nat2nat.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 15

So left-permutativity is quantified both with a type and with an equality at that type:

Definition is_left_permutative (V W : Type) (eq_W : W -> W -> Prop)
(s : V -> W -> W) :=

forall (v1 v2 : V) (w1 w2 : W),
eq_W w1 w2 -> eq_W (s v1 (s v2 w1)) (s v2 (s v1 w2)).

For example, here are two typical statements of left-permutativity – here for the factorial
function (see Sec. 3):

Lemma succ_fac_d_right_is_left_permutative :
is_left_permutative nat nat eq_nat (fun i’ a : nat => S i’ * a).

Lemma succ_fac_a_right_is_left_permutative :
is_left_permutative nat nat2nat eq_nat2nat (fun i’ k a => k (S i’ * a)).

The theorems about folding left and right also require the induction-step parameter to
be compatible with the given equalities:

Definition is_compatible2 (A : Type) (r_A : A -> A -> Prop)
(B : Type) (r_B : B -> B -> Prop)
(C : Type) (r_C : C -> C -> Prop)
(f : A -> B -> C) :=

forall (a1 a2 : A) (b1 b2 : B),
r_A a1 a2 -> r_B b1 b2 -> r_C (f a1 b1) (f a2 b2).

Proposition parafolding_left_and_right_over_Peano_numbers :
forall (W : Type) (eq_W : W -> W -> Prop),

is_an_equivalence_relation W eq_W ->
forall (z : W) (s : nat -> W -> W),
is_compatible2 nat eq_nat W eq_W W eq_W s ->
is_left_permutative nat W eq_W s ->
forall n : nat,

eq_W (nat_parafold_left W z s n) (nat_parafold_right W z s n).

So all in all, this second .v file uses an explicit axiomatization for type-indexed equality
and the first .v file uses an extensionality axiom for functional equality and Coq’s implicit
axiomatization of Leibniz equality. For presentational simplicity, the present article uses
the code from the first .v file:

Proposition parafolding_left_and_right_over_Peano_numbers :
forall (W : Type) (z : W) (s : nat -> W -> W),

is_left_permutative nat W s ->
forall n : nat,
nat_parafold_left W z s n = nat_parafold_right W z s n.

But this simplicity is not mindless, witness the second .v file.

1.7 The tools for the discourse

Our primary tool here is calculational, starting with abstracting a recursive (resp. tail-
recursive) function into an instance of a fold-right (resp. fold-left) function and concretiz-
ing an instance of a fold-right (resp. fold-left) function into a recursive (resp. tail-recursive)
function. But then one can also abstract a tail-recursive function into an instance of a fold-
right function (Sec. 1.7.1), which suggests that a fold-left function can also be expressed as
an instance of the corresponding fold-right function (Sec. 1.7.2). Symmetrically, one can
abstract a recursive function into an instance of a fold-left function, (Sec. 1.7.3), which sug-
gests that a fold-right function can also be expressed as an instance of the corresponding

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


16 O. Danvy

fold-left function (Sec. 1.7.4). We also present lightweight fusion by fixed-point promotion
(Sec. 1.7.5).

What I cannot create, I do not understand.
– Richard Feynman

1.7.1 Abstracting a tail-recursive function into an instance of a fold-right function

Let us revisit nat_fac_acc from Sec. 1.3.2:

Definition nat_fac_acc (n : nat) : nat :=
let fix visit i a :=
match i with O => a

| S i’ => visit i’ (S i’ * a)
end

in visit n 1.

With a pinch less syntactic sugar, we can make it more apparent that visit takes one
argument (and returns a function):

Definition nat_fac_acc’ (n : nat) : nat :=
let fix visit i := fun a =>
match i with O => a

| S i’ => visit i’ (S i’ * a)
end

in visit n 1.

Since a and i do not depend on each other, we can commute the function abstraction and
the conditional expression:

Definition nat_fac_acc’’ (n : nat) : nat :=
let fix visit i :=
match i with O => fun a => a

| S i’ => fun a => visit i’ (S i’ * a)
end

in visit n 1.

We can also use lightweight fission by fixed-point demotion to make it more apparent that
applying visit to n yields a function that is applied to 1:

Definition nat_fac_acc’’’ (n : nat) : nat :=
(let fix visit i :=

match i with O => fun a => a
| S i’ => fun a => visit i’ (S i’ * a)

end
in visit n) 1.

This massaged definition is a fit for nat_parafold_right (applications associate to the
left):

Definition nat_fac_acc_right (n : nat) : nat :=
nat_parafold_right (nat -> nat) (fun a => a) (fun i’ ih a => ih (S i’ * a)) n 1.

So a tail-recursive function that uses an accumulator can be expressed as an instance of a
fold-right function.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 17

1.7.2 Corollary: expressing each fold-left function as an instance of the corresponding
fold-right function

Since nat_parafold_left and list_fold_left also involve tail-recursive functions
that use an accumulator, they can be massaged mutatis mutandis to become a fit for
nat_parafold_right and list_fold_right:
Definition nat_parafold_left_right (W : Type) (z : W) (s : nat -> W -> W)

(n : nat) : W :=
nat_parafold_right (W -> W) (fun a => a) (fun i’ ih a => ih (s i’ a)) n z.

Definition list_fold_left_right (V W : Type) (n : W) (c : V -> W -> W)
(vs : list V) : W :=

list_fold_right V (W -> W) (fun w => w) (fun v ih w => ih (c v w)) vs n.

1.7.3 Abstracting a recursive function into an instance of a fold-left function

To express a recursive function into an instance of a fold-left function, we need something
more radical than the syntactic massaging ministered in Sec. 1.7.1. Socrates to the rescue:

Question: What is accumulated, e.g., in the recursive definition of the factorial
function in direct style?
Definition nat_fac (n : nat) : nat :=

let fix visit i :=
match i with O => 1

| S i’ => S i’ * visit i’
end

in visit n.

Answer: The context of the recursive calls to visit, but this context is implicit due
to the very nature of direct style.
Question: If we were to make this context explicit, what would be a suitable
representation for it?
Answer: As a function of course. This function would be the identity function for
the initial call, and then it would grow by being composed with fun a => S i’ * a
on the right, exactly like a delimited continuation (Danvy and Filinski, 1990):
Definition compose {A B C : Type} (f : B -> C) (g : A -> B) (x : A) : C :=

f (g x).

Definition nat_fac_abs (n : nat) : nat :=
let fix visit k i :=
match i with O => k 1

| S i’ => visit (compose k (fun a => S i’ * a)) i’
end

in visit (fun a => a) n.

Inlining the call to compose, simplifying, swapping the argument of visit, and using
lightweight fission yields a definition that is fit for nat_parafold_left:
Definition nat_fac_abs_massaged (n : nat) : nat :=

let fix visit i k :=
match i with O => k

| S i’ => visit i’ (fun a => k (S i’ * a))
end

in visit n (fun a => a) 1.

Definition nat_fac_left (n : nat) : nat :=
nat_parafold_left (nat -> nat) (fun a => a) (fun i’ k a => k (S i’ * a)) n 1.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


18 O. Danvy

1.7.4 Corollary: expressing each fold-right function as an instance of the corresponding
fold-left function

Generalizing, since nat_parafold_right and list_fold_right can also be expressed
using a delimited continuation, they can also be expressed as instances of
nat_parafold_left and list_fold_left:

Definition nat_parafold_right_left (V : Type) (z : V) (s : nat -> V -> V)
(n : nat) : V :=

nat_parafold_left (V -> V) (fun a => a) (fun i’ k a => k (s i’ a)) n z.

Definition list_fold_right_left (V W : Type) (n : W) (c : V -> W -> W)
(vs : list V) : W :=

list_fold_left V (W -> W) (fun w => w) (fun v ih w => ih (c v w)) vs n.

Fascinatingly, in the mutual simulations of nat_parafold_left and nat_parafold_right
and of list_fold_left and list_fold_right, the arguments of the fold functions are
the same. However, as proved in the accompanying .v files, fun v k w => k (c v w) is
left-permutative if and only if c is itself left-permutative:

Lemma preservation_of_left_permutativity :
forall (V W : Type) (c : V -> W -> W),
is_left_permutative V W c ->
is_left_permutative V (W -> W) (fun v ih w => ih (c v w)).

Lemma preservation_of_left_permutativity_converse :
forall (V W : Type) (c : V -> W -> W),
is_left_permutative V (W -> W) (fun v ih w => ih (c v w)) ->
is_left_permutative V W c.

So there is no dragon here.

1.7.5 Lightweight fusion by fixed-point promotion

We make use of Ohori and Sasano’s lightweight fusion by fixed-point promotion (2007)
and of its left inverse (logically named “lightweight fission by fixed-point demotion”)
where the context of the initial call to a tail-recursive function is relocated to the return
point(s) in the body of this function. Here is a simple example:

Definition candidate_for_lightweight_fusion (f g : nat -> nat) (n : nat) : nat :=
f (let fix visit i a :=

match i with O => a
| S i’ => visit i’ (S a)

end
in g (visit n 0)).

Definition candidate_for_lightweight_fission (f g : nat -> nat) (n : nat) : nat :=
let fix visit i a :=
match i with O => f (g a)

| S i’ => visit i’ (S a)
end

in visit n 0.

In both definitions, the recursive call to visit is a tail call. In the candidate for lightweight
fusion, visit eventually returns its accumulator, which is then passed to g, the result of
which is then passed to f. The same happens in the candidate for lightweight fission, except

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 19

that the initial call to visit is a tail call. The equivalence of these two functions is proved
in the accompanying .v files.

To program is to understand.
– Kristen Nygaard

To prove our programs is to understand our understanding.
– Tyrion Lannister

To program our proofs is to understand them.
– Kristen Nygaard (persisting)

Er... OK.
– Tyrion Lannister

1.8 The discourse

The discourse is depicted in Fig. 2. Structurally recursive functions in direct style
(“d-definitions”) can be abstracted as instances of a fold-right function (“d-right defini-
tions”). When this fold-right function is equivalent to the corresponding fold-left function,
these instances of a fold-right function are also instances of this corresponding fold-left
function (“a-left definitions”). These instances can be concretized as structurally tail-
recursive functions that use an accumulator (“a-definitions”). Structurally tail-recursive
functions that use an accumulator can be abstracted as instances of a fold-right function
(“a-right definitions”). When this fold-right function is equivalent to the corresponding

Fig. 2. Materialization of Fig. 1

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


20 O. Danvy

fold-left function, these instances of a fold-right function are also instances of this cor-
responding fold-left function (“h-left definitions”). These instances can be concretized
as structurally tail-recursive functions with a higher-order accumulator (“h-definitions”).
Lightweight fusing these structurally tail-recursive functions with a higher-order accu-
mulator yields structurally tail-recursive functions in delimited continuation-passing style
(“c-definitions”).

Each of these steps is reversible. Lightweight fissioning a c-definition yields an
h-definition. An h-definition can be abstracted as an instance of a fold-left function,
yielding a h-left definition. When this fold-left function is equivalent to the correspond-
ing fold-right function, this instance of a fold-left function is also an instance of the
corresponding fold-right function, yielding an a-right definition. This instance can be con-
cretized as an a-definition. An a-definition can be abstracted as an instance of a fold-left
function, yielding an a-left definition. When this fold-left function is equivalent to the cor-
responding fold-right function, this instance of a fold-left function is also an instance of
the corresponding fold-right function, yielding a d-right definition. This instance can be
concretized as a d-definition.

1.9 Structure of the discourse

Sec. 2 illustrates the inter-derivation for primitive iteration over Peano numbers, using
the power function as a running example and starting from its definition in direct style.
Sec. 3 illustrates the inter-derivation for primitive recursion over Peano numbers, using
the factorial function as a running example and starting with its definition in delimited
continuation-passing style. Sec. 4 illustrates the inter-derivation for primitive iteration over
lists, using the length function as a running example and starting with its tail-recursive def-
inition that uses an accumulator. Sec. 5 outlines the inter-derivation for primitive recursion
over lists. Sec. 6 describes applications as well as a generalization of Fig. 2. Sec. 7 reviews
related work. Sec. 8 concludes. App. 1 provides a brief history of folding left and right over
lists, from their origin (Strachey) to how they got their name (Turner) and how the order
of arguments for the induction-step parameter of list_fold_left was swapped (Bird).
App. 2 revisits Bird and Wadler’s duality theorems.

2 Folding left and right over Peano numbers

The goal of this section is to illustrate the inter-derivation depicted in Fig. 1 and 2 with
primitive iteration over natural numbers, either recursively (nat_fold_right) or tail-recur-
sively with an accumulator (nat_fold_left).

To illustrate the inter-derivation, let us start with the traditional definition of the linear
power function in direct style:

Definition power_d (x n : nat) : nat :=
let fix visit i :=
match i with O => 1

| S i’ => x * visit i’
end

in visit n.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 21

Since this definition is structurally recursive on the exponent, it can be expressed with
nat_fold_right:

Definition power_d_right (x n : nat) : nat :=
nat_fold_right nat 1 (fun ih => x * ih) n.

The induction-step parameter is fun ih => x * ih. Since nat_fold_right and nat_
fold_left are equivalent, we can replace the call to one by a call to the other in the
definition of power_d_right:

Definition power_a_left (x n : nat) : nat :=
nat_fold_left nat 1 (fun ih => x * ih) n.

The equivalence of power_d_right and of power_a_left is a corollary of folding left
and right over Peano numbers. Inlining the call to nat_fold_left in the definition of
power_a_left, renaming ih to a, and simplifying then yields the traditional tail-recursive
definition of the power function that uses an accumulator:

Definition power_a (x n : nat) : nat :=
let fix visit i a :=

match i with O => a
| S i’ => visit i’ (x * a)

end
in visit n 1.

Since this definition is structurally recursive on the exponent, it can be expressed with
nat_fold_right:

Definition power_a_right (x n : nat) : nat :=
nat_fold_right (nat -> nat)

(fun a => a)
(fun ih a => ih (x * a))
n
1.

The induction-step parameter is fun ih a => ih (x * a). Again, we can replace nat_
fold_right by nat_fold_left in the definition of power_a_right:

Definition power_h_left (x n : nat) : nat :=
nat_fold_left (nat -> nat)

(fun a => a)
(fun ih a => ih (x * a))
n
1.

The equivalence of power_a_right and of power_h_left is a corollary of folding left
and right over Peano numbers. Inlining the call to nat_fold_left in the definition of
power_h_left, renaming ih to k, and simplifying then yields a tail-recursive definition
with a higher-order accumulator:

Definition power_h (x n : nat) : nat :=
let fix visit i k :=

match i with O => k
| S i’ => visit i’ (fun a => k (x * a))

end
in visit n (fun a => a) 1.

Performing lightweight fusion yields the traditional definition of the power function in
delimited continuation-passing style (delimited because the continuation is initialized and
so its co-domain is not a polymorphic domain of answers):

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


22 O. Danvy

Definition power_c (x n : nat) : nat :=
let fix visit i k :=
match i with O => k 1

| S i’ => visit i’ (fun a => k (x * a))
end

in visit n (fun a => a).

The inter-derivation from direct style to accumulator-passing style and then to delimited
continuation-passing style is illustrated further in the accompanying .v files with a parity
predicate and with the linear Fibonacci function that, given a natural number, returns a pair
of consecutive Fibonacci numbers (Burstall and Darlington, 1977; Danvy, 2019).

3 Parafolding left and right over Peano numbers

The goal of this section is to illustrate the inter-derivation depicted in Fig. 1 and 2 with
primitive recursion over natural numbers, either recursively (nat_parafold_right) or tail
recursively with an accumulator (nat_parafold_left).

To illustrate the inter-derivation, let us start with the traditional definition of the factorial
function in delimited continuation-passing style:

Definition fac_c (n : nat) : nat :=
let fix visit i k :=
match i with O => k 1

| S i’ => visit i’ (fun a => k (S i’ * a))
end

in visit n (fun a => a).

This definition is a candidate for lightweight fission by fixed-point demotion, the left
inverse of lightweight fusion by fixed-point promotion:

Definition fac_h (n : nat) : nat :=
let fix visit i k :=
match i with O => k

| S i’ => visit i’ (fun a => k (S i’ * a))
end

in visit n (fun a => a) 1.

After lightweight fission, this definition fits the pattern of nat_parafold_left:

Definition fac_h_left (n : nat) : nat :=
nat_parafold_left (nat -> nat)

(fun a => a)
(fun i’ k a => k (S i’ * a))
n
1.

The induction-step parameter is fun n’ k a => k (S n’ * a). It is left-permutative:

Lemma succ_fac_a_right_is_left_permutative :
is_left_permutative nat (nat -> nat) (fun i’ k a => k (S i’ * a)).

Therefore we can replace nat_parafold_left by nat_parafold_right in the definition of
fac_h_left:

Definition fac_a_right (n : nat) : nat :=
nat_parafold_right (nat -> nat)

(fun a => a)
(fun i’ k a => k (S i’ * a))
n
1.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 23

The equivalence of fac_h_left and of fac_c_right is a corollary of parafolding left and
right over Peano numbers. Inlining the call to nat_parafold_right in the definition of
fac_a_right and simplifying then yields the traditional tail-recursive definition of the
factorial function that uses an accumulator:

Definition fac_a (n : nat) : nat :=
let fix visit i a :=

match i with O => a
| S i’ => visit i’ (S i’ * a)

end
in visit n 1.

This definition fits the pattern of nat_parafold_left:

Definition fac_a_left (n : nat) : nat :=
nat_parafold_left nat

1
(fun i’ a => S i’ * a)
n.

The induction-step parameter is fun n’ a => S n’ * a. It is left-permutative:

Lemma succ_fac_d_right_is_left_permutative :
is_left_permutative nat nat (fun i’ a => S i’ * a).

Therefore, we can replace nat_parafold_left by nat_parafold_right in the definition
of fac_h_left:

Definition fac_d_right (n : nat) : nat :=
nat_parafold_right nat

1
(fun i’ a => S i’ * a)
n.

The equivalence of fac_a_left and fac_d_right is a corollary of parafolding left and
right over Peano numbers. Inlining the call to nat_parafold_right in the definition of
fac_d_right and simplifying then yields the traditional recursive definition of the factorial
function in direct style:

Definition fac_d (n : nat) : nat :=
let fix visit i :=

match i with O => 1
| S i’ => S i’ * visit i’

end
in visit n.

The inter-derivation from delimited continuation-passing style to accumulator-passing
style and then to direct style is illustrated further in the accompanying .v files with a sum
function that, given a function f and a natural number n, adds up the results of applying f
to the first n natural numbers, i.e., computes �n−1

i=0 f (i).

4 Folding left and right over lists

The goal of this section is to illustrate the inter-derivation depicted in Fig. 1 and 2 with
primitive iteration over lists, either recursively (list_fold_right) or tail recursively with
an accumulator (list_fold_left).

To illustrate the inter-derivation, let us start with the traditional tail-recursive definition
of the length function that uses an accumulator:

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


24 O. Danvy

Definition length_a (V : Type) (vs : list V) : nat :=
let fix visit vs a :=
match vs with nil => a

| v :: vs’ => visit vs’ (S a)
end

in visit vs 0.

This definition fits the pattern of list_fold_left:

Definition length_a_left (V : Type) (vs : list V) : nat :=
list_fold_left V nat 0 (fun v a => S a) vs.

The induction-step parameter is fun v a => S a. It is left-permutative:

Lemma cons_length_d_right_is_left_permutative :
forall V : Type,
is_left_permutative V nat (fun v a => S a).

Therefore, we can replace list_fold_left by list_fold_right in the definition of
length_d_ left:

Definition length_d_right (V : Type) (vs : list V) : nat :=
list_fold_right V nat 0 (fun v a => S a) vs.

The equivalence of length_a_left and of length_d_right is a corollary of folding left and
right over lists. Inlining the call to list_fold_right in the definition of length_d_right
and simplifying then yields the traditional recursive definition of the length function in
direct style:

Definition length_d (V : Type) (vs : list V) : nat :=
let fix visit vs :=
match vs with nil => 0

| v :: vs’ => S (visit vs’)
end

in visit vs.

Conversely, since the definition of length_a is structurally recursive on the given list, it
can be expressed with list_fold_right:

Definition length_a_right (V : Type) (vs : list V) : nat :=
list_fold_right V (nat -> nat) (fun a => a) (fun v ih a => ih (S a)) vs 0.

The induction-step parameter is fun v ih a => ih (S a). It is left-permutative:

Lemma cons_length_a_right_is_left_permutative :
forall V : Type,
is_left_permutative V (nat -> nat) (fun v ih a => ih (S a)).

Therefore, we can replace list_fold_right by list_fold_left in the definition of
length_h_right:

Definition length_h_left (V : Type) (vs : list V) : nat :=
list_fold_left V (nat -> nat) (fun a => a) (fun v ih a => ih (S a)) vs 0.

The equivalence of length_a_right and of length_h_left is a corollary of folding left
and right over lists. Inlining the call to list_fold_left in the definition of length_h_left,
renaming ih to k, and simplifying then yields the following definition:

Definition length_h (V : Type) (vs : list V) : nat :=
let fix visit vs k :=
match vs with nil => k

| v :: vs’ => visit vs’ (fun a => k (S a))
end

in visit vs (fun a => a) 0.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 25

This definition is a candidate for lightweight fusion by fixed-point promotion. The result
is the traditional definition of the length function in delimited continuation-passing style:
Definition length_c (V : Type) (vs : list V) : nat :=

let fix visit vs k :=
match vs with nil => k 0

| v :: vs’ => visit vs’ (fun a => k (S a))
end

in visit vs (fun a => a).

The accompanying .v files also feature a function that, given a list of natural numbers,
returns an optional pair containing the smallest and the largest numbers in the given list.
This function is defined by induction on the tail of the given list if this list is not empty.

5 Parafolding left and right over lists

The inter-derivation depicted in Fig. 1 and 2 also works for primitive recursion over
lists, either recursively (list_parafold_right) or tail recursively with an accumulator
(list_parafold_left).

6 Applications and generalization

6.1 A tail-recursive version of du Feu’s powerset function

The author’s first stab at folding left and right (2019) started with a listless powerset func-
tion that maps the representation of a set as the list of its elements (in any order and without
repetition) to the representation of its powerset, i.e., the list of all of its subsets. This power-
set function is listless (Wadler, 1984) in that all the lists it constructs are part of the result. It
is also structurally recursive and so it can be expressed using list_fold_right, yielding a
definition with two nested occurrences of list_fold_right that Michael Gordon attributes
to Dave du Feu (1979). Assuming that the order of elements in the resulting subsets and the
order of these subsets do not matter, the two induction-step parameters in du Feu’s defini-
tion are as good as left-permutative, and the two nested occurrences of list_fold_right
can be safely replaced by two nested occurrences of list_fold_left. Inlining these two
calls to list_fold_left, simplifying, and performing lightweight fusion by fixed-point
promotion yields a tail-recursive version of the powerset function that one might be hard
pressed to write by hand in the first place, especially because like du Feu’s definition, it is
still listless.

6.2 A tail-recursive version of Barron and Strachey’s Cartesian-product function

A similar story can be told about Barron and Strachey’s definition of the Cartesian prod-
uct of sets represented as lists of their elements without repetition (1966). Barron and
Strachey’s definition is famously written with nested occurrences of list_fold_right.
Assuming that the order of elements in the resulting sublists and the order of these sub-
lists do not matter, the induction-step parameters in Barron and Strachey’s definition
are as good as left-permutative, and the nested occurrences of list_fold_right can be
safely replaced by nested occurrences of list_fold_left. Again, inlining these calls to
list_fold_left, simplifying, and performing lightweight fusion by fixed-point promotion

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


26 O. Danvy

yields a listless tail-recursive version of the Cartesian-product function that one might be
hard pressed to write by hand in the first place:
Definition cartesian_product_r (n1s_ n2s_ : list nat) : list (nat * nat) :=

let fix visit1 n1s :=
match n1s with

nil => nil
| n1 :: n1s’ => let ih1 := visit1 n1s’

in let fix visit2 n2s :=
match n2s with
nil => ih1

| n2 :: n2s’ => let ih2 := visit2 n2s’
in (n1, n2) :: ih2

end
in visit2 n2s_

end
in visit1 n1s_.

Definition cartesian_product_tr (n1s_ n2s_ : list nat) : list (nat * nat) :=
let fix visit1 n1s a1 :=
match n1s with

nil => a1
| n1 :: n1s’ => let fix visit2 n2s a2 :=

match n2s with
nil => visit1 n1s’ a2

| n2 :: n2s’ => visit2 n2s’ ((n1, n2) :: a2)
end

in visit2 n2s_ a1
end

in visit1 n1s_ nil.

In both cases, if the length of the first list is i1 and if the length of the second list is i2,
visit1 is called i1 + 1 times and visit2 is called i2 + 1 times, once for the empty list and
once for each of their elements, yielding a list of length i1 × i2 in (i1 + 1) × (i2 + 1) calls
to the visit functions. In the latter case, all calls are tail calls and the Cartesian product is
accumulated at tail-call time. In the former case, if the result of the recursive call to visit1
is not named, all calls occur in the same order as in the latter case, and the Cartesian product
is constructed at return time. (Naming the result of the recursive call to visit1 with a strict
let expression mitigates the number of nested recursive calls to be (i1 + 1) + (i2 + 1) at the
most and yields the same result.)

Bird and Wadler’s third duality theorem (see App. 2.1) says that folding a list one way
yields the same result as folding the reverse of this list the other way. The following
proposition is a corollary of this theorem:
Proposition about_the_two_cartesian_product_functions :

forall n1s n2s : list nat,
cartesian_product_tr n1s n2s = cartesian_product_r (rev n1s) (rev n2s).

Applying these functions to any two lists yields lists that are reverses of each other:
Property about_the_two_cartesian_products :

forall n1s n2s : list nat,
cartesian_product_tr n1s n2s = rev (cartesian_product_r n1s n2s).

6.3 Abstracting a recursive function into an instance of a fold-left function, revisited

Based on Fig. 2, we can take the long road on the right of the diagram and start with the
continuation-passing counterpart of the direct-style definition at hand. Going up two steps
in the diagram gives us a version of the function that used a fold-left function, as we did in
Sec. 1.7.3 and at the beginning of Sec. 3. And there we are.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 27

6.4 Primitive iteration and recursion over Peano numbers, revisited

Since nat_fold_left and nat_fold_right are equivalent, they trivially simulate each
other. Since applying them to z, s, and, e.g., 4 gives rise to s (s (s (s z))) whereas
applying nat_parafold_right to z, s, and 4 gives rise to s 3 (s 2 (s 1 (s 0 z))),
one can uncurry s, which gives s (3, s (2, s (1, s (0, z)))), which suggests how
to simulate nat_parafold_ right using either nat_fold function:

Definition nat_parafold_right_using_nat_fold (V : Type) (z : V) (s : nat -> V -> V)
(n : nat) : V :=

snd (nat_fold_left (nat * V)
(0, z)
(fun ih => let (i, a) := ih in (S i, s i a))
n).

(As reviewed in Sec. 1.1.5, using a pair is known since 1932 (Kleene, 1981) to imple-
ment the predecessor function using nat_fold_right. Justifying this pair as an instance of
uncurrying might be new.)

In contrast, applying nat_parafold_left to z, s, and 4 gives rise to
s 0 (s 1 (s 2 (s 3 z))), which suggests accumulating a counter instead:

Definition nat_parafold_left_using_nat_fold (V : Type) (z : V) (s : nat -> V -> V)
(n : nat) : V :=

nat_fold_left (nat -> V)
(fun j => z)
(fun ih j => s j (ih (S j)))
n
0.

Finally, one can get the best of both, i.e., s 3 0 (s 2 1 (s 1 2 (s 0 3 z))) by using
both a pair and an accumulator:

Definition nat_parafold_convolve (V : Type) (z : V) (s : nat -> nat -> V -> V)
(n : nat) : V :=

snd (nat_fold_left (nat -> nat * V)
(fun j => (0, z))
(fun ih => fun j => let (i, a) := ih (S j) in (S i, s i j a))
n
0).

6.5 Fig. 2, revisited and generalized

By now two questions should be burning bright in the mind of the reader:

• Are there “d-left definitions”?
The answer is no. The only way to introduce fold-left in a d-definition is to use
the version of fold-left that uses fold-right. But as it happens, the result is the
corresponding h-definition. And so the diagram in Fig. 2 does not expand at the
top.

• Are there “h-right definitions”?
Yes, very much. And so the diagram expands at the bottom because of the lemma
that says that fun v k w => k (c v w) is left-permutative whenever c is itself left-
permutative (see Sec. 1.7.4).

This expansion is depicted in Fig. 3, with a change of notation: “d” is now “h0” to signify
that the function has no accumulator, “a” is now “h1” to signify that the function is first
order (it is passed a zeroth-order accumulator), “h” is now “h2” to signify that the function

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


28 O. Danvy

Fig. 3. Fig. 2, revisited and expanded

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 29

is second order (it is passed a first-order accumulator). The next function is named “h3” to
signify that it is third order (it is passed a second-order accumulator), and so on.

• We can introduce fold-left in any hi-definition using the version of fold-right that
uses fold-left. As it happens,

– if i is 0, the result is a h2-definition, confirming that the diagram cannot be
expanded at the top, and

– if i is positive, the result is a hi+1-definition. In general, if i is positive, introducing
fold-left in any hi-definition using the version of fold-right that uses fold-left has
the same effect as (1) introducing fold-right, (2) replacing fold-left by fold-right,
and (3) eliminating fold-left.

• We can introduce fold-right in any hi-definition using the version of fold-left that
uses fold-right if i is positive. As it happens, the result is the same hi-definition.

• We can introduce fold-right in a h2-definition – the second-order definition of a
structurally tail-recursive function with a first-order accumulator. The result is a h2-
right definition. The new induction-step parameter is left-permutative if the previous
induction-step parameter was also left-permutative. Replacing fold-right by fold-left
in the h2-right definition yields a h3-left definition. Eliminating fold-left in the h3-
left definition yields a h3-definition that iterates not just on W as in h1-definitions and
not just on W -> W as in h2-definitions, but on (W -> W) -> W -> W.

• We can introduce fold-right in a h3-definition – the third-order definition of a
structurally tail-recursive function with a second-order accumulator. The result is
a h3-right definition. The new induction-step parameter is left-permutative if the
previous induction-step parameter was also left-permutative. Replacing fold-right
by fold-left in the h3-right definition yields a h4-left definition. Eliminating fold-left
in the h4-left definition yields a h4-definition that iterates not just on W as in h1-
definitions, not just on W -> W as in h2-definitions, not just on (W -> W) -> W -> W
as in h3-definitions, but on ((W -> W) -> W -> W) -> (W -> W) -> W -> W.

• And so on.

Let us illustrate this nesting of endofunctions with the factorial function. Fig. 4 displays
the first members of the family of successive factorial functions. In these successive defi-
nitions, nat_parafold_left and nat_parafold_right can be equivalently used, thanks to
the left-permutativity of the successive induction-step parameters (see Fig. 5).

Lest the reader is curious, here are the three next h-definitions of the factorial function:

Definition fac_h2 (n : nat) : nat :=
let fix visit i k2 :=

match i with
O => k2 (fun k0 => k0) 1

| S i’ => visit i’ (fun k1 => k2 (fun k0 => k1 (S i’ * k0)))
end

in visit n (fun k1 => k1).

Definition fac_h3 (n : nat) : nat :=
let fix visit i k3 :=

match i with
O => k3 (fun k1 => k1) (fun k0 => k0) 1

| S i’ =>
visit i’ (fun k2 => k3 (fun k1 => k2 (fun k0 => k1 (S i’ * k0))))

end
in visit n (fun k2 => k2).

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


30 O. Danvy

Fig. 4. Successive factorial functions

Definition fac_h4 (n : nat) : nat :=
let fix visit i k4 :=
match i with

O => k4 (fun k2 => k2) (fun k1 => k1) (fun k0 => k0) 1
| S i’ =>

visit i’ (fun k3 => k4 (fun k2 => k3 (fun k1 => k2 (fun k0 => k1 (S i’ * k0)))))
end

in visit n (fun k3 => k3).

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 31

Fig. 5. Left-permutativity of the successive induction-step parameters in Fig. 4

7 Related work

The present article intersects with many research avenues.
Primitive recursion and primitive iteration originate in recursion theory, from Dedekind,

Skolem, Gödel, Hilbert and Bernays, Péter, and Tait and onwards (Dowek, 2006;

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


32 O. Danvy

Hermes, 1965; Kleene, 1952; Odifreddi, 1989; Thompson, 1991), at a time when
“recursive” meant “computable” whereas nowadays “recursive” means “self-referential,”
“structurally recursive” means “compositional,” “iterative” means “repeated,” and “tail
recursive” means “iterative using a particular pattern of recursion.” Fold-right functions
are an abstraction of primitive recursive functions for flat structures such as Peano numbers
and lists. The relevance here is that fold-left functions do not seem to appear in recursion
theory. They do, however, very much appear in tail-recursion practice. (The last two sen-
tences play on the classical meaning of “recursion” and on the modern meaning of “tail
recursion.”) And intuitively, it makes more sense for primitive iteration over Peano num-
bers (in the classical sense of “iteration”) to be carried out iteratively (in the modern sense
of “iteration”).

Fold functions have a rich history in functional programming (Hutton, 1999) and their
connection with universal algebras and categorical constructs has been pointed out (Meijer
et al., 1991), a topic of continued study ever since (Hutton et al., 2010). The relevance
here is that folding left and right over Peano numbers has already been put in this
picture (Oliveira, 2020).

As elucidated in App. 1, the original order of arguments in the induction-step parameter
for list_fold_left was swapped to accommodate Bird’s theory of lists. Swapping it back
reveals a unity for primitive recursion over Peano numbers and for primitive iteration and
primitive recursion over lists in that folding left and folding right are equivalent when their
induction-step parameter is left-permutative.

As it happens, left-permutativity is a sufficient condition for “inverting the order of
evaluation” from Cooper (1966) and onwards (Bauer and Wössner, 1982; Boiten, 1992).
The relevance here is that for flat structures such as Peano numbers and lists, replacing
the fold-right function by the corresponding fold-left function – and this should not come
as a surprise in the light of Cooper’s seminal paper (1966) – achieves this “re-bracketing”
generically, as per the upper half of Fig. 1.

The motivation for inverting the order of evaluation was to obtain tail-recursive pro-
grams, for efficiency. However, and Giesl took this point to heart (1999), tail-recursive
programs are more complicated to reason about than their recursive counterpart, due to
their accumulators. He set out to map accumulator-passing programs back to direct style
so that they can be reasoned about by structural induction, which is simpler. The rele-
vance here is that for flat structures such as Peano numbers and lists, replacing the fold-left
function by the corresponding fold-right function achieves this de-inversion generically.

Also, Giesl’s work aims for the converse of Ohori and Sasano’s lightweight fusion by
fixed-point promotion (2007) by relocating the context of the final version of the accu-
mulator around the initial call to the corresponding tail-recursive function. Giesl’s work
is non-trivial because inlining the call to a fold-left function often yields a tail-recursive
program that one might be hard pressed to write by hand in the first place, witness, e.g.,
the powerset function in Sec. 6.1 and the Cartesian-product function in Sec. 6.2.

8 Conclusion and perspectives

For flat structures such as Peano numbers and lists, this article shows how to inter-
derive recursive functions in direct style (d-definitions), tail-recursive functions with an

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 33

accumulator (a-definitions), and tail-recursive functions with a higher-order accumula-
tor (h-definitions) in a minimalistic way by expressing either of these functions as an
instance of a fold function and then proceed as in Fig. 1. Inter-deriving a d-definition and
an a-definition is done by twisting the way data are constructed, and inter-deriving an a-
definition and a h-definition is done by twisting the way control is constructed. Lightweight
fusing a h-definition gives a definition in delimited continuation-passing style. Pursuing the
inter-derivation on a h-definition gives rise to a nesting of endofunctions that does not cor-
respond to the CPS hierarchy as arises from iterating the CPS transformation (Danvy and
Filinski, 1990), so there is not that.

Besides its Platonistic take (in Computer Science, do we invent or do we discover?), this
inter-derivation also made it possible to illustrate the usefulness of lightweight fusion by
fixed-point promotion (Ohori and Sasano) and of its converse (Giesl), to shed light on the
swapped version of list_fold_left that is favored by functional programmers since the
mid-1980’s, and to point out the relevance of Bird and Wadler’s second duality theorem
in the general area of program development (Cooper).

Je ne sais pas le reste.
– Évariste Galois

Acknowledgements

The author is grateful to the anonymous reviewers and to Julia Lawall for insightful com-
ments, to Kira Kutscher for a last-minute round of proofreading, to Chantal Keller for a
key point of vocabulary, and to Philip Wadler for instantly making a pertinent point when
sent a preprint of this article. Thanks are also due to Richard Bird and to David Turner for
their historical input and to Ralf Hinze for his editorship.

Conflicts of interest

None.

Supplementary material

For supplementary material for this article, please visit https://doi.org/10.1017/
S0956796822000156.

References

Bailey, R. (1990) Functional Programming with Hope. Ellis Horwood Books in Computing Science.
Barron, D. W. & Strachey, C. (1966) Programming. In Advances in Programming and Non-

Numerical Computation, Fox, L. (eds). Pergammon Press. pp. 49–82.
Bauer, F. L. & Wössner, H. (1982) Algorithmic Language and Program Development. Texts and

Monographs in Computer Science. Springer-Verlag. In collaboration with Helmuth Partsch and
Peter Pepper.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156
https://doi.org/10.1017/S0956796822000156
https://doi.org/10.1017/S0956796822000156


34 O. Danvy

Bertot, Y. & Castéran, P. (2004) Interactive Theorem Proving and Program Development. Springer.
Bird, R. (2010) Pearls of Functional Algorithm Design. Cambridge University Press.
Bird, R. & Wadler, P. (1988) Introduction to Functional Programming. Prentice-Hall International.
Bird, R. S. (1986) An introduction to the theory of lists. Technical Monograph PRG-56. Oxford

University, Computing Laboratory. Oxford, England.
Boiten, E. A. (1992) Views of Formal Program Development. Ph.D. thesis. Faculty of Mathematics

and Informatics, University of Nijmegen. Nijmegen, The Netherlands.
Burge, W. H. (1975) Recursive Programming Techniques. Addison-Wesley.
Burstall, R. M. (1969) Proving properties of programs by structural induction. The Computer

Journal. 12(1), 41–48.
Burstall, R. M. & Darlington, J. (1977) A transformational system for developing recursive

programs. Journal of the ACM. 24(1), 44–67.
Burstall, R. M., MacQueen, D. B. & Sannella, D. T. (1980) Hope: an experimental applicative

language. Conference Record of the 1980 LISP Conference. Stanford, California. pp. 136–143.
Church, A. (1941) The Calculi of Lambda-Conversion. Princeton University Press.
Clack, C., Myers, C. & Poon, E. (1995) Programming with Miranda. Prentice Hall.
Cooper, D. C. (1966) The equivalence of certain computations. The Computer Journal. 9(4), 45–52.
Danvy, O. (2019) Folding left and right over Peano numbers. Journal of Functional Programming.

29(e6).
Danvy, O. & Filinski, A. (1990) Abstracting control. Proceedings of the 1990 ACM Conference on

Lisp and Functional Programming. Nice, France. ACM Press. pp. 151–160.
Dowek, G. (2006) Gödel’s system T as a precursor of modern type theory. Talk given at the meeting

Modern Type Theory, Institut d’Histoire et de Philosophie des Sciences et des Techniques.
Field, A. J. & Harrison, P. G. (1988) Functional Programming. Addison Wesley.
Gibbons, J. (2006) The third homorphism theorem. Journal of Functional Programming. 6(4),

657–665.
Giesl, J. (1999) Context-moving transformations for function verification. Logic Program Synthesis

and Transformation (LOPSTR’99). Springer-Verlag. pp. 293–312.
Gordon, M. J. C. (1979) On the power of list iteration. The Computer Journal. 22(4), 376–379.
Henson, M. C. (1987) Elements of Functional Languages. Computer Science Texts. Blackwell

Scientific Publications.
Hermes, H. (1965) Enumerability, Decidability, Computability – an Introduction to the theory of

recursive functions. vol. 127 of Die Grundlehren der Mathematischen Wissenschaften. Springer-
Verlag.

Hughes, J. (1986) A novel representation of lists and its application to the function “reverse”.
Information Processing Letters. 22(3), 141–144.

Hutton, G. (1999) A tutorial on the universality and expressiveness of fold. Journal of Functional
Programming. 9(4), 355–372.

Hutton, G., Jaskelioff, M. & Gill, A. (2010) Factorising folds for faster functions. Journal of
Functional Programming. 20(3-4), 353–373.

Iverson, K. E. (1962) A Programming Language. John Wiley and Sons.
Kleene, S. C. (1952) Introduction to Metamathematics. Bibliotheca Mathematica. North-Holland

Publishing Co. Amsterdam, The Netherlands.
Kleene, S. C. (1981) Origins of recursive function theory. Annals of the History of Computing. 3(1),

52–67.
Meertens, L. (1992) Paramorphisms. Formal Aspects of Computing. 4(5), 413–424.
Meijer, E., Fokkinga, M. & Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes and barbed wire. Proceedings of the Fifth ACM Conference on Functional
Programming Languages and Computer Architecture. Cambridge, Massachusetts. Springer-
Verlag. pp. 124–144.

Odifreddi, P. (1989) Classical Recursion Theory: The Theory of Functions and Sets of Natural
Numbers. vol. 125 of Studies in Logic and the Foundations of Mathematics. Elsevier.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 35

Ohori, A. & Sasano, I. (2007) Lightweight fusion by fixed point promotion. Proceedings of the
Thirty-Fourth Annual ACM Symposium on Principles of Programming Languages. Nice, France.
ACM Press. pp. 143–154.

Oliveira, J. N. (2020) A note on the under-appreciated for-loop. Technical Report TR-
HASLab:01:2020. HASLab – High-Assurance Software Laboratory, Universidade do Minho.
Braga, Portugal.

Reade, C. (1989) Elements of Functional Programming. Addison Wesley.
Stoy, J. E. (1977) Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory. The MIT Press.
Strachey, C. (1961) Handwritten notes. Archive of working papers and correspondence. Bodleian

Library, Oxford, Catalogue no. MS. Eng. misc. b.267.
Thompson, S. (1991) Type Theory and Functional Programming. International Computer Science

Series. Addison-Wesley.
Thompson, S. (1995) Miranda: The Craft of Functional Programming. International Computer

Science Series. Addison-Wesley. first edition.
Turner, D. (1986) An overview of Miranda. SIGPLAN Notices. 21(12), 158–166.
Turner, D. A. (1976) SASL language manual. Technical report. St. Andrews University, Department

of Computational Science.
Turner, D. A. (1982) Recursion equations as a programming language. Functional Programming and

its Applications. Cambridge University Press.
Turner, D. A. (1985) Miranda – a non-strict functional language with polymorphic types. Functional

Programming Languages and Computer Architecture. Nancy, France. Springer-Verlag. pp. 1–16.
Turner, D. A. (1990) Duality and De Morgan principles for lists. In Beauty is our business: A birthday

salute to Edsger W. Dijkstra, Feijen, W. H. J., van Gasteren, A. J. M., D., G., & J., M. (eds). Texts
and Monographs in Computer Science. Springer-Verlag. pp. 390–398.

Wadler, P. (1984) Listlessness is better than laziness. Conference Record of the 1984
ACM Symposium on Lisp and Functional Programming. Austin, Texas. ACM Press.
pp. 282–305.

1 A brief history of folding left and right over lists

In the early 1960s (1961), Christopher Strachey studied the first documented instances
of list_fold_right (naming it R0) and list_fold_left (naming it R1). He pointed out
how instantiating R0 with nil and cons gave rise to the list-copy function (see Sec. 1.2.3)
and how instantiating R1 with nil and cons gave rise to the list-reverse function (see
Sec. 1.3.3). A few years later (1966), Barron and Strachey wrote what is probably the
world’s first functional pearl, an application of list_fold_right to express the Cartesian
product of sets represented as lists (see Sec. 6.2). Gordon investigated the expressive power
of list_fold_right (1979) and Burstall, MacQueen, and Sannella pointed out its sim-
ilarity with the reduction operator from APL (Iverson, 1962), in their presentation of
Hope (1980).

Under various names (e.g., “reduce” and “accumulate”), these functions then became a
staple of functional programming, witness the introductory textbooks that flourished near
the turn of the 1990s – e.g., Henson (1987), Bird and Wadler (1988), Field and Harrison
(1988), Reade (1989), Bailey (1990), Clack, Myers, & Poon (1995), and Thompson (1995).
Each of these textbooks featured folding left and right over lists.

The first parameters of the fold functions stand for the base case (nil) and the induction
step (cons), in either order, despite the tradition to follow the same order as the one in

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


36 O. Danvy

the definition of the inductive data type at hand.1 In the late 1980s, however, and for
undocumented reasons, something strange happened: to fold left, the order of arguments
for the induction-step parameter was swapped, making the type of list_fold_left read

forall V W : Type, W -> (W -> V -> W) -> list V -> W

instead of

forall V W : Type, W -> (V -> W -> W) -> list V -> W

One can surmise that the swap aimed to stress the eponymous laterality of the two fold
functions – namely folding left vs. folding right, which is particularly visible using an
infix notation. To wit, applying list_fold_right to a, (⊕), and 1 :: 2 :: 3 :: nil gives rise to

1 ⊕ (2 ⊕ (3 ⊕ a))

where ⊕ is visibly associated to the right, whereas applying the swapped version of list_
fold_left to a, (⊕), and 1 :: 2 :: 3 :: nil gives rise to

((a ⊕ 1) ⊕ 2) ⊕ 3,

where ⊕ is visibly associated to the left.
The author perused all the textbooks and users’ manuals he had access to but could

not spot the tipping point, neither in Bird’s writings – though the title of Section 3 in his
Introduction to the Theory of Lists (1986) comes close: “Left and right reduction” – nor in
Turner’s epistemological arc from SASL (1976) to KRC (1982) and then Miranda (1985,
1986). Indeed, according to the SASL language manual (1976) and the KRC prelude,
written by Turner and dated April 2016:2

• foldl :- folds up a list using a given binary operator opl and start value w in a
left-associative way, so that

foldl opl w [v1, v2] = opl v2 (opl v1 w)

• foldr :- folds up a list using a given binary operator opr and start value w in a
right-associative way, so that

foldr opr w [v1, v2] = opr v1 (opr v2 w)

where opl, w, v1, v2, and opr were renamed (and both opl and opr come before w).
In his homage to Dijkstra (1990), Turner points out that the version of foldl where the

arguments of the given binary operator are swapped is due to Bird. And in an e-mail

1 For each inductive type declared in Gallina (typically, a recursive sum of products), the Coq Proof Assistant
generates both an associated parafold function (for programming, postfixed with “rect”) and an associated
induction principle (for proving, postfixed with “ind”). The arguments of the parafold function and of the
induction principle follow the order of the summands in the type, and for each of these summands, the argu-
ments of the corresponding operators also follow the order in each product. Likewise, in Standard ML and
Common Lisp’s fold functions for lists, the nil case comes before the cons case. But in SASL, KRC, Miranda,
Haskell, OCaml, and Scheme’s fold function for lists, the cons case comes before the nil case.

2 https://www.cs.kent.ac.uk/people/staff/dat/krc//prelude.html

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://www.cs.kent.ac.uk/people/staff/dat/krc//prelude.html
https://doi.org/10.1017/S0956796822000156


Folding left and right matters 37

exchange with the author (15 to 21 Dec 2021), he wrote that in 1988, he changed the
definition of foldl for Release 2 of Miranda, so that Bird and Wadler’s book (1988) could
be used as a textbook with Miranda, its Appendix C notwithstanding. The subsequent text-
books about Miranda (Clack et al., 1995; Thompson, 1995) echoed this change, and that
is how the order of arguments for the induction-step parameter of foldl got swapped, a fait
accompli.

So all in all, the names “foldl” (read “fold left” in reference to associating to the left)
and “foldr” (read “fold right” in reference to associating to the right) appeared in SASL
and are due to Turner, the order of arguments for the induction-step parameter of foldl
got swapped for compatibility with Bird and Wadler’s book, and the swapping is due to
Bird.

In Bird and Wadler’s second duality theorem (App. 2.2), one of the two conditions for

foldl opl a vs = foldr opr a vs

to hold is

opl (opr v1 w) v2 = opr v1 (opl w v2).

Without the eye crossing induced by swapping the arguments of opl, the operators opl and
opr are the same and so this condition reads

op v2 (op v1 w) = op v1 (op v2 w)

which is left-permutativity. As for the other condition, it is

opl a v = opr v a

and is no longer needed since opl and opr are the same.
The situation is mirrored for “tsils” (i.e., right-to-left lists): tsil_fold_left and

tsil_fold_right are equivalent if and only if their induction-step parameter is
right-permutative. In that light, swapping the argument of the binary operator for
list_fold_left is akin to first mapping the given list into a tsil and then applying
tsil_fold_left (not swapping any arguments!):

tsil

tsil_fold_left

��

list��

���
�
�
�
�
�
�
�

At any rate, the current state of things is confusing for programmers, making foldl
come across as, well, gauche. For example, in Standard ML and in Common Lisp, the type
of foldl is the same as the type of foldr, but not so in, e.g., Haskell, OCaml, and Scheme,
where the user needs to swap the arguments of the inductive parameter of foldl in their
programs to undo the swapping in the implementation of foldl. For example, in Scheme:

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


38 O. Danvy

(define list-copy
(lambda (xs)
(fold-right cons ’() xs)))

(define list-reverse
(lambda (xs)
(fold-left (lambda (ys y) (cons y ys)) ’() xs)))

On the one hand, this swap makes for left-leaning and right-leaning trees of applica-
tions that are visually compelling, and it has been put to beautiful use in, e.g., Gibbons’s
work (2006). But on the other hand,

• for programming, Strachey’s original order makes it a lot easier to grow an
awareness of the reverse order induced by accumulation – for example, apply-
ing the original version of fold-left to a, op, and 1 :: 2 :: 3 :: nil gives rise to
op 3 (op 2 (op 1 a)) where 1, 2, and 3 were visibly accumulated in reverse order on
top of a, iteratively,

• for proving, left-permutativity makes it a lot simpler to formalize Bird and Wadler’s
duality theorems, as articulated in App. 2 (a routine induction vs. a Eureka lemma),
and

• for programming and proving, one can reason about one’s computation using struc-
tural induction (i.e., with fold-right) for simplicity, and one can then implement it
using tail recursion (i.e., with fold-left) for efficiency, with no other refactoring than
changing “right” into “left,” as illustrated throughout the present article.

—

The following note was added by the author after Richard Bird passed away in April 2022.
Was it shyness? Modesty? Discretion? Over the years, Richard Bird was asked by the

author about the origins of the swapping in list_fold_left. But he never volunteered the
information that it originates in his introduction to the theory of lists (1986), magisterially
directing the author to David Turner instead. Be that as it may, the author got to revisit
many classics with a more mature eye, starting with Bird’s theory of lists.

Richard Bird was such a keen giant (2010).

2 Bird and Wadler’s duality theorems, revisited

For completeness, let us review Bird and Wadler’s three duality theorems (1988), starting
with the swapped definition of list_fold_left:

Definition list_fold_left_swapped (V W : Type) (n : W) (c : W -> V -> W)
(vs : list V) : W :=

let fix loop vs a :=
match vs with nil => a

| v :: vs’ => loop vs’ (c a v)
end

in loop vs n.

In the spirit of swapping, we start with the third theorem, since our Eureka lemma for the
the second uses it, and we finish with the first, since it is a corollary of the second.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


Folding left and right matters 39

2.1 The third duality theorem, revisited

The third duality theorem says that folding left over a list is equivalent to folding right over
the reverse of this list and that folding left over the reverse of a list is equivalent to folding
right over this list, a property that Burge and Landin were familiar with (Burge, 1975). So
this theorem is stated in two ways:

Theorem third_duality_theorem_left :
forall (V W : Type) (a : W) (opl : W -> V -> W) (vs : list V),

list_fold_left_swapped V W a opl vs =
list_fold_right V W a (fun v w => opl w v) (rev vs).

Theorem third_duality_theorem_right :
forall (V W : Type) (a : W) (opr : V -> W -> W) (vs : list V),

list_fold_left_swapped V W a (fun w v => opr v w) (rev vs) =
list_fold_right V W a opr vs.

Either version is proved by routine induction, and the other is proved as a corollary, using
the extensionality axiom for functions (see Sec. 1.6) to account for the swapping.

2.2 The second duality theorem, revisited

The second duality theorem is about folding left and right over lists:

Theorem second_duality_theorem :
forall (V W : Type) (opr : V -> W -> W) (opl : W -> V -> W),

(forall (v1 : V) (w : W) (v2 : V), opl (opr v1 w) v2 = opr v1 (opl w v2)) ->
forall a : W,
(forall v : V, opl a v = opr v a) ->
forall vs : list V,

list_fold_left_swapped V W a opl vs =
list_fold_right V W a opr vs.

Without the swap, this theorem is proved by routine induction. With the swap, a
Eureka lemma is required, e.g., the following one about folding left and right over the
concatenation of two lists:

Lemma second_duality_theorem_aux :
forall (V W : Type) (opr : V -> W -> W) (opl : W -> V -> W),

(forall (v1 : V) (w : W) (v2 : V), opl (opr v1 w) v2 = opr v1 (opl w v2)) ->
forall a : W,
(forall v : V, opl a v = opr v a) ->
forall v1s : list V,

list_fold_left_swapped V W a opl v1s =
list_fold_right V W a opr v1s ->
forall v2s : list V,

list_fold_left_swapped V W a opl (v1s ++ v2s) =
list_fold_right V W a opr (v1s ++ v2s).

This lemma is proved by induction on v2s, using the third duality theorem as well as the
following characterizations of applying a fold function to the concatenation of two lists:

Property about_list_fold_right_and_list_append :
forall (V W : Type) (a : W) (opr : V -> W -> W) (v1s v2s : list V),

list_fold_right V W a opr (v1s ++ v2s) =
list_fold_right V W (list_fold_right V W a opr v2s) opr v1s.

Property about_list_fold_left_swapped_and_list_append :
forall (V W : Type) (a : W) (opl : W -> V -> W) (v1s v2s : list V),

list_fold_left_swapped V W a opl (v1s ++ v2s) =
list_fold_left_swapped V W (list_fold_left_swapped V W a opl v1s) opl v2s.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156


40 O. Danvy

The Eureka in this lemma is that when reasoning about

list_fold_left_swapped V W w opl vs = ... (list_fold_right V W a opr vs),

rather than trying to relate w in the left-hand side and the context of the call to list_fold_
right in the right-hand side, as done in Sec. 1.7.3 to abstract a recursive function
into an instance of a fold-left function, we are better off reasoning about the calls to
list_fold_left_swapped and to list_fold_right that constructed w and this context,
reflectively.

2.3 The first duality theorem, revisited

Bird and Wadler characterized the first duality theorem as a corollary of the second where
V and W are the same type and opl and opr are the same operator, which is associative. The
following statement is slightly tighter than the original, in that W, the base-case parameter,
and the induction-step parameter, rather than forming a monoid, only need to form a semi
group with a commuting element, since there is no need for the base-case parameter to be
neutral. The proof is tighter too:

Corollary first_duality_theorem :
forall (W : Type) (op : W -> W -> W),
(forall w1 w3 w2 : W, op (op w1 w3) w2 = op w1 (op w3 w2)) ->
forall a : W,

(forall w : W, op a w = op w a) ->
forall ws : list W,

list_fold_left_swapped W W a op ws =
list_fold_right W W a op ws.

Proof.
intros W op.
exact (second_duality_theorem W W op op).

Qed.

An impressive point about the first duality theorem is that op is not required to be
commutative – only to have a commuting element, a.

https://doi.org/10.1017/S0956796822000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000156

	FUNCTIONAL PEARL
	Introduction
	The domain of discourse
	Primitive iteration over Peano numbers
	Primitive recursion over Peano numbers
	Primitive iteration over lists
	Primitive recursion over lists
	Summary and synthesis

	The elements of discourse, on the right
	Primitive iteration over Peano numbers
	Primitive recursion over Peano numbers
	Primitive iteration over lists
	Primitive recursion over lists

	The elements of discourse, on the left
	Primitive iteration over Peano numbers, tail recursively
	Primitive recursion over Peano numbers, tail recursively
	Primitive iteration over lists, tail recursively
	Primitive recursion over lists, tail recursively

	The properties in the discourse
	Primitive iteration over Peano numbers (nat-fold-left & nat-fold-right)
	Primitive recursion over Peano numbers (nat-parafold-left & nat-parafold-right)
	Primitive iteration over lists (list-fold-left & list-fold-right)
	Primitive recursion over lists (list-parafold-left & list-parafold-right)

	The converse properties in the discourse
	Primitive iteration over lists (list-fold-left & list-fold-right)
	Primitive recursion over Peano numbers (nat-parafold-left & nat-parafold-right)
	Primitive recursion over lists (list-parafold-left & list-parafold-right)

	On the power and limitation of Leibniz equality in the Coq Proof Assistant
	The tools for the discourse
	Abstracting a tail-recursive function into an instance of a fold-right function
	Corollary: expressing each fold-left function as an instance of the corresponding fold-right function
	Abstracting a recursive function into an instance of a fold-left function
	Corollary: expressing each fold-right function as an instance of the corresponding fold-left function
	Lightweight fusion by fixed-point promotion

	The discourse
	Structure of the discourse

	Folding left and right over Peano numbers
	Parafolding left and right over Peano numbers
	Folding left and right over lists
	Parafolding left and right over lists
	Applications and generalization
	A tail-recursive version of du Feu's powerset function
	A tail-recursive version of Barron and Strachey's Cartesian-product function
	Abstracting a recursive function into an instance of a fold-left function, revisited
	Primitive iteration and recursion over Peano numbers, revisited
	Fig. 2, revisited and generalized

	Related work
	Conclusion and perspectives
	A brief history of folding left and right over lists
	Bird and Wadler's duality theorems, revisited
	The third duality theorem, revisited
	The second duality theorem, revisited
	The first duality theorem, revisited



