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THE FIT AND FLAT COMPONENTS OF BARRELLED SPACES

STEPHEN A. SAXON AND IAN TWEDDLE

The Splitting Theorem says that any given Hamel basis for a (Hausdorff) barrelled
space E determines topologically complementary subspaces Ec and ED , and that
Ec is flat, that is, contains no proper dense subspace. By use of this device it was
shown that if E is non-flat it must contain a dense subspace of codimension at least
Ho; here we maximally increase the estimate to Hi under the assumption that the
dominating cardinal V equals Hi [strictly weaker than the Continuum Hypothesis
(CH)]. A related assumption strictly weaker than the Generalised CH allows us
to prove that ED is fit, that is, contains a dense subspace whose codimension in
ED is dim ( E D ) , the largest imaginable. Thus the two components are extreme
opposites, and E itself is fit if and only if dim (ED) ^ dim (Ec), in which case
there is a choice of basis for which ED = E. Morover, E is non-flat (if and) only
if the codimension of E' is at least 2Ml in E* . These results ensure latitude in the
search for certain subspaces of E* transverse to E', as in the barrelled countable
enlargement (BCE) problem, and show that every non-flat GM-space has a BCE.

1. INTRODUCTION

The codensity character of a topological vector space E (here always assumed to
be Hausdorff) is the supremum of the set of codimensions of all dense subspaces in E.

The dimension of E is an obvious upper bound. When E contains a dense subspace
with codimension equal to the dimension of E we say E is fit. At the other extreme,
when the only dense subspace of E is E itself we say E is flat. Clearly E is flat if and
only if its (continuous) dual E' and its algebraic dual E* coincide, E has its strongest
locally convex topology if and only if E is flat and barrelled, and the only space that is
both fit and flat is the space consisting of the single element 0. These and intermediate
ideas and examples are found in [5].

In the present note we show that, under an axiomatic assumption strictly weaker
than the Generalised Continuum Hypothesis (GCH), every barrelled space can be ex-
pressed as the topological direct sum of two subspaces, one of which is fit while the
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522 S.A. Saxon and I. Tweddle [2]

other is flat. Consequently, the codensity character of a barrelled space E is always
attained as the maximum of its denning set (that is, E is firm [5]) and is either 0
or at least Ni. Under our axiomatic assumption this optimally improves the estimate
of No given in [3]. Moreover, the simple method we used in [5] is the only way of
constructing barrelled spaces that are neither fit nor flat. We also apply the result to
obtain important information about the codimension of the dual in the algebraic dual
of a barrelled space and to extend the class of spaces for which it can be shown that a
barrelled countable enlargement exists [10].

If A is a subset of a topological vector space, sp(A) denotes the linear span of A,

with closure sp(A). For convenience we state the following theorem from [3], which is
crucial for our work.

SPLITTING THEOREM. Let E be a barrelled space and let {xi, /,},eB be a
biorthogonal system in E x E* whose first coordinates form a Hamel basis in E. II

Ec = sp({xi :ieB,fie E'}) and ED = sp{{xi :i£B,fi$. E'})

then E is the topological direct sum of Ec and ED, and Ec has its strongest locally

convex topology.

2. AN AXIOMATIC ASSUMPTION

If A is any set we write \A\ for its cardinality, which we consider to be the set of all
ordinals of smaller size. For an infinite cardinal fi we employed in [5] a Condition (1)
weaker than the GCH, namely that 2<fi — \i. Here we shall make use of the following
yet weaker axiomatic condition:

CONDITION (2 ) . Given any set A of cardinality less than fi there exists a set
T of functions f from A into the set N of natural numbers such that the cardinality
of T is at most \i and such that for any g: A —» N there exists f £ T such that
/ (a) > g(a) for all a e A.

REMARKS, (i) If No ^ \A\ < fi then under GCH the set of all functions g: A -> N

has cardinality N^1 ^ (2N°)|A| = 2^ < fi; if A is finite then this set of functions is

countable. Thus GCH implies Condition (2) for all fi > Ho. (The case ft = No does

not require any assumptions.)

(ii) In the case fi = Ni, the set A must be countable and so it can be regarded as

N if it is infinite. Condition (2) may then be reformulated as

CONDITION ( 2 ' ) . There exists a set T of functions f from N into N suci
tiiat t i e cardinality of T is at most Hi and such that for any g: N —> N tiere exists
f £ T such that f(n) > g(n) for all n G N.
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[3] Barrelled spaces 523

In fact, the minimum cardinality for such an T is the dominating cardinal 5 ([1,
Section 3]; see also [7, 9]). It is easily seen that Hi ^ J) ^ c, and any combination of
strict or non-strict inequalities is consistent with the usual ZFC set theory [1, Section
5]; Condition (2 ' ) is equivalent to 5 = Nj.

SET-THEORETIC LEMMA. Let fj. be a fixed infinite cardinal. Condition (2)
holds for fi if and only if for any fixed set B of cardinality fi there exists a family
{{Bai, Ba2, ...}}(,£(! of partitions {Bai, Ba2, . . .} of B into sets Bap, each of cardi-
nality (i, such that, given any g: p —» N and any a0 G p.,

B \ \J{Bak • a ^ «o, k ^ g(a)} ^ 0.

PROOF: Suppose Condition (2) holds and let B be a fixed set of cardinality ft.
Let C1, C2, . . . ; B a (a G fi) be a partition of B into /x sets Cp, Ba (p G N, a G fi)
each having \i elements. Now for each a G fi there exists a family Ta of at most \i
functions from Aa = {/? G \i\ /3 ^ a} into N which is "dominating" in the sense of
Condition (2). Let {Baf}fera be a partition of Ba into (^ /x) sets each having \i
elements; let

-i ( I K ^ >) u

and let

Bak = ([j{B0f: P > a, f G Pp, f(a) = *}) U Ck {k = 2, 3, .. .)•

Given any a G ft, one easily verifies that the sets Ba\, Ba2, . . . are pairwise disjoint,
each has y. elements and their union contains each Cv (p G N) and each B& (/?£/i),
so that their union is B. Finally, let g: fi —» N and a0 £ /i be fixed and suppose we
have a, k, P and / such that

a ^ ao, 1 ^ k ^ <?(<*), P ^ ct and / G Tp with f(a) = fc.

Choose /o G ^ao such that /o(5) > g{6) for ^ < a0. Then if P ^ a0 we have
jg/9/ c 5^ _ yfhich is disjoint from 5 a " D Ba° }° , and if /? = a0 then -B"' = 5 a " / ,
which is disjoint from Ba° fo, since fo^f. (Note that / (a) = Jfe ^ ^(a) < /o(a).)
Thus in any case B@f is disjoint from 5a° °̂ as then is jBOfc, since P and / were
arbitrary, subject only to the conditions P ^ a, /(o) = k. But a (^ ao) and fc($J g{a))
arbitrary now implies that

B \ \J{Bak: a < a0 | fc ^ </(<*)} D S a " A ^ 0.
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Conversely, suppose Bav(a 6 fi, p 6 N) are given and let A be a set of cardinality
less than fi. Condition (2) holds trivially for A — 0. If A is nonempty we may assume
that for some a € /*, A = {/?: f3 ^ a}. Then for each g: A —» N we can choose
i , £ B \ \J{Bpk: P ^a,k ^ g(P)} and define fXg: A^Nby letting U3{P) be the
unique p € N such that xfl £ -B/9P (/? < a). Clearly, then, fXg(P) > g{P) for each g and
each /? ^ a, and if a;s = a;̂  for 5 and h possibly different, we still have fXg = fXh, so
that the cardinality of T = {fxg '• g maps A into N} cannot exceed fj,, the cardinality
of B. D

3. FIT AND FLAT COMPONENTS

An application of the Set-theoretic Lemma yields our main result, for which we
require considerably less than barrelledness. In fact, precisely what we require is the
very weakest of all the weak barrelledness conditions currently under study by Saxon
and Sanchez Ruiz, strictly weaker than Property (S) or dual locally completness, for
example.

DEFINITION: A locally convex space E has property f\z,n if any given linear func-
tional is continuous whenever its restrictions are continuous on each member of some
increasing sequence of linear subspaces covering E.

THEOREM 1 . Let E be a locally convex space with property / | i n . Suppose BL)C
is a Hamel basis for E with \B\ = fi ^ No, i ? n C = 0 (C possibly empty), where
the linear coefficient functionals corresponding to elements of B axe all discontinuous.
Then under Condition (2) for fi there is a dense fi-codimensional subspa.ce EQ of E of
the form Eo = sp(B0 U C) with B0CB.

PROOF: Let Bap (a G /i, p 6 N) be as in the Set-theoretic Lemma. We inductively
define a function g: fi —> N and choose a family {xa}aeii C B such that for each a € /i:

(i) x* G U Bak \ \J{Bpk :p<a,k^ g{0)}, and
)

(ii)

Let ato € / i , and suppose g(a) £ N and xa d B have been chosen for each a < ao
so that (i) and (ii) hold. Choose 7j: (i —> N such that g~(a) = g(a) for a < ao. The
Set-theoretic Lemma guarantees some x^ £ B \ \J{Bpk- P ^ «o, k ^ d(P)}- Let /
denote the discontinuous linear functional which is 1 at xao and 0 elsewhere in B U C.
Set
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so that {2?p}£Li is an increasing sequence of subspaces covering E . The hypothesis on
E ensures that J\EV is discontinuous for some p . Choose g ^ p so that xao G Eq and
define g(a0) = q. Now (i) and (ii) clearly hold for a = a0, completing the transfinite
induction, so that J : / I - » N and {sa}a6j» C B exist with (i) and (ii) holding for all
a G /i.

If ai < a2, then xa i G U Baik C LJ{5/3*: Z3 < "2, k ^ g(P)}, and xa, is

excluded from the latter set by (i), so xai ^ x a j ; that is, the xa 's ( a G /i) are distinct.

This also shows that

CUB\{xa}a€llDCU | J

thus if we suppose that F = ap(C U B \ {xa}a€n) contains xa for all a < a i , we find
that

FDap(XU{xa}a<ai),

which contains asai ^y (")• Since ^ is well-ordered, we have xa G F for all a G /x, so
that F = ap(C Ii B) = E, and EQ = «p(C U B \ {«a}ae/i) is a dense /i-codimensional
subspace of the desired form. U

Now let {xi: i G B} be a Hamel basis in a barrelled space E and let E = Ec @ ED
be the corresponding decomposition given by the Splitting Theorem. Certainly Ec,
having its strongest locally convex topology, is flat. The restriction to ED of the
coefficient functional corresponding to any member of D is still discontinuous, and D
is either empty or infinite. In the first case ED = {0} is, trivially, fit. And for D
infinite, applying Theorem 1 with B = D, C = 0 ensures ED is fit. Thus in any case
we have

THEOREM 2 . [Assume Condition (2) generally.] Every barrelled space E splits
with respect to a given basis into a fit component ED and a flat component Ec •

COROLLARY 1. Under the above assumptions the codensity character of E is
dim (.ED) and is Sim, that is, is attained.

PROOF: Let G be a dense subspace of ED with codimension in ED equal to
dim(Eu). Then Ec + G is a dense subspace of E with codimension equal to dim(£c)-

Now if F is any dense subspace of E, its image under the projection of E onto
Ec along ED is dense in Ec and thus is all of the flat Ec • Therefore F + ED = E,
and codimc (F) < dim ( E D ) . D

Theorem 2 also shows that barrelled spaces that are neither fit nor flat can be
constructed only as in [5]; indeed, since a non-flat barrelled space must have dimension
at least Hi we have

https://doi.org/10.1017/S0004972700014374 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014374


526 S.A. Saxon and I. Tweddle [6]

COROLLARY 2 . A barrelled space E is neither fit nor flat if and only if E —
Ex © E2 (topologically), where Ex is Hat, E2 is fit and dim(£i) > dim(-E2) > Ni •

The next result says the codensity character of a non-flat barrelled space is at least
Ni, which extends Corollary 1 of Theorem 3 in [3] and was announced without proof in
[6]. This extension is optimal under our assumption that Nj = 0, since the metrisable
(and thus fit) barrelled space V"b of [7] must then have codensity character Ni.

THEOREM 3 . [Assume Z> = Ni.] Every non-flat barrelled space E has a dense
subspa.ce of codimension at least Ni.

PROOF: Take B any subset of a given basis for E with B C ED and \B\ — Ni;
apply Theorem 1. LJ

COROLLARY 1. [Assume 0 = Ni.] If E is a non-flat barrelled space, then

codimB. (E1) ^ 2Nl.

PROOF: By Theorem 3 E has an Ni-codimensional dense subspace. The result
then follows immediately from Theorem 4 of [3]. D

REMARK. Under the stronger assumption that the Continuum Hypothesis (CH) holds
we get analogously that the codimension of E' in E* must be at least 2C; consequently,
there is no barrelled space whose dual has codimension c in the algebraic dual.

Now we recall two definitions from [5]. Let {XJ, /i}i6B be a biorthogonal system
in E x E* whose first coordinates form a Hamel basis in E. Then {xi, fi)i^B is
called a discontinuous basis if each fi is discontinuous, and a fully discontinuous basis
if ap({fi: i e B}) D E' — {0}. It is shown in Theorem 6 of [5], without any non-
ZFC assumptions, that any fit topological vector space has a fully discontinuous basis.
Combining this with Theorem 1 we have immediately:

THEOREM 4 . When E has property f\in the following are equiva/ent;

(a) E is fit;
(b) E has a fully discontinuous basis;
(c) E has a discontinuous basis.

NOTE. Generally, (a) => (b) => (c) and neither arrow is reversible [5].
For a barrelled space E with a given basis, the fit and flat components ED and EQ

are uniquely defined. By Corollary 1 to Theorem 2 the dimension of ED is always the
codensity character of E, which is independent of the basis. However, the topological
nature of ED may vary widely with the choice of basis, as may the algebraic nature of
Ec • To see this, let E — M @ N be the topological direct sum of two barrelled spaces
M and N of the same infinite dimension, with M metrisable and N flat, as considered
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in [5]. Let Ni and N2 represent arbitrary algebraic complements in N; they must be
topologically complementary as well, since N has its strongest locally convex topology,
and E is the topological direct sum of M + N\ and N2 • Since M is fit (indeed, M
is Baire-like and thus quasi-Baire) and d im(M) ^ dim(iVi), we have M + Ni is also
fit. By Theorem 4 (or by [5, Theorem 6]) there is a (fully) discontinuous basis B\ for
M + Ni. If Bi is any basis for N2 , then B — B\ U Bi is a basis for E with respect to
which ED is M + N\ = M © Ni and Ec is N2 • Now the choice of dimensions for Ni
and JV2 ranges maximally from 0 to dim (E), thus also for Ec, and ED is metrisable
if and only if dim(TVi) is finite. In fact, all distinct infinite values for dim(iVi) yield
non-isomorphic values for ED , for if a subspace N^ of M © Ni has infinite dimension
exceeding dim(iVi) then N^ contains an infinite-dimensional (metrisable) subspace
of M and cannot be flat.

4. A N APPLICATION T O THE B C E PROBLEM

The following problem has been extensively studied in recent years (for a survey
see [10]):

PROBLEM. Let E be a non-flat barrelled space. Does there exist a subspace M of E*

such that d im(M) = No , E' DM — {0} and E is barrelled under the Mackey topology
T(E, E' + M)?

When the answer is "yes" we say E has a barrelled countable enlargement (BCE).
According to Eberhardt and Roelcke [2] a GM-space is a locally convex space E

such that any linear mapping t: E —» F, where F is any metrisable locally convex
space and t has closed graph, is continuous. Since F may be any Banach space it is
immediate that GM-spaces are barrelled.

Let E be a non-flat GM-space. If we assume 0 = Ni then Theorem 3 guarantees
that E has a dense Ni-codimensional subspace. Since every dense subspace of a GM-
space is barrelled [2, 1.9], Theorem 5 of [8] now tells us that E has a BCE. (The
cardinal b which appears in Theorem 5 of [8] satisfies Ni ^ b ^ d [1, 3.1], so that
under 0 = H\ all three coincide.)

THEOREM 5 . [Assume D = Hi ] Every non-Sat GM-space has a BCE.

REMARK. In Section 4 of [4], Theorem 5 is proved, without non-ZFC assumptions, for
Ho-products, a subclass of the class of GM-spaces [2, Section 3]. Since No-products
are complete, their proper dense subspaces are non-flat GM-spaces which are not No-
products.

REFERENCES

[l] E.K van Douwen, 'The integers and topology', in Handbook of Set-theoretic Topology, (K.

https://doi.org/10.1017/S0004972700014374 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014374


528 S.A. Saxon and I. Tweddle [8]

Kunen and J.E. Vaughan, Editors) (North-Holland, 1984), pp. 111-168.

[2] V. Eberhardt and W. Roelcke, 'Uber einen Graphensatz fur lineare Abbildungen mit
metrisierbarem Zielraum', Manuacripta Math. 13 (1974), 53-68.

[3] W.J. Robertson, S.A. Saxon and A.P. Robertson, 'Barrelled spaces and dense vector
subspaces', Bull. Austral. Math. Soc. 37 (1988), 383-388.

[4] W.J. Robertson, I. Tweddle and F.E. Yeomans, 'On the stability of barrelled topologies
III', Bull. Austral. Math. Soc. 22 (1980), 99-112.

[5] S.A. Saxon, 'The codensity character of topological vector spaces', in Topological vector
spaces, algebras and related areas, (A. Lau and I. Tweddle, Editors) (Longman, 1994),
pp . 24-36.

[6] S.A. Saxon and W.J. Robertson, 'Dense barrelled subspaces of uncountable codimension',
Proc. Amer. Math. Soc. 107 (1989), 1021-1029.

[7] S.A. Saxon and L.M. Sanchez Ruiz, 'Optimal cardinals for metrizable barrelled spaces',
/ . London Math. Soc. (to appear).

[8] S.A. Saxon and L.M. Sanchez Ruiz, 'Barrelled countable enlargements and the bounding
cardinal', / . London Math Soc. (to appear).

[9] S.A. Saxon and L.M. Sanchez Ruiz, 'Barrelled countable enlargements and the dominating
cardinal', (preprint).

[10] I. Tweddle, S.A. Saxon and L.M. Sanchez Ruiz, 'Barrelled countable enlargements', in
Topological vector spaces, algebras and related areas, (A. Lau and I. Tweddle, Editors)
(Longman, 1994), pp . 3-15.

Department of Mathematics Department of Mathematics
University of Florida University of Strathclyde
PO Box 118000 Glasgow Gl 1XH
Gainesville FL 32611-8000 Scotland
United States of America United Kingdom

https://doi.org/10.1017/S0004972700014374 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014374

