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Self propulsion due to oscillations
on the surface of a cylinder

at low Reynolds number
J.R. Blake

The two-dimensional flow around an infinite cylinder at low

Reynolds number has interested fluid dynamicists for many years.

In this paper it is shown that an infinite cylinder can propel

itself through a viscous fluid (for example micro-organisms) if

it has certain undulations on its surface.

1. Introduction

It is well known, that for two-dimensional flow around an infinite

cylinder at very low Reynolds number, there is no solution which satisfies

the no-slip condition on the surface of the cylinder and tends to a finite

stream at infinity (Stokes paradox). In this paper a similar problem that

may have some applications in the theory behind propulsion of

micro-organisms is treated. The solution to the two-dimensional problem of

flow due to a cylinder with oscillations on its surface at very low

Reynolds number is discussed. These oscillations are caused by a wave

passing around the cylinder, and for generality we include both radial and

angular oscillations in these movements. The cylinder is propelled at a

constant steady velocity through the fluid. For convenience we take axes

fixed in the moving organism.

The rate of change of momentum is zero, which indicates that the body
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256 J.R. Blake

exerts no net force on the fluid and hence allows us to equate the drag

term to zero (this is the two-dimensional stokeslet which is the logr

term in the series expansion for the velocity). This then enables us to

obtain the velocity of propulsion.

2. Equations of motion

The equations of motion for this problem are those for creeping flow,

Vp = uV2u
(1)

V.U = 0 ,

where y is the viscosity, p the pressure and U the velocity vector.

In this two-dimensional problem, it is more convenient to define these

equations in terms of the stream function \p by,

(2) V1^ = 0 ,

where V2 is the Laplacian, defined in cylindrical polar coordinates as,

The velocity components in terms of *J> are,

(•*) u = lii v = . ii
l 3 ; " r 36 ' V 8r '

where u and V are the radial and angular velocities respectively.

Boundary conditions on the cylinder r = a (see Figure 1, p. 257) are

given in terms of the surface coefficients A and B . Thus,

00 CO

(1*) u{a, 6) = I AncosnQ , v(a, 9) = £ B^inwe .
n=0 n n=l

Equation (1+) gives r i s e to the effective s l i p velocity around the cylinder.

The coefficients A and B in (h) are obtained la te r in terms of the
n n

deformations to the surface of the cylinder.

We require V to be an odd function in 9

(5) v{r, 6) = -v(r, -9) ,

so that streaming past the cylinder can occur. It was stated earlier in
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258 J.R. Blake

the introduction that it is more convenient to use a moving origin, so we

add i/) = -UrsinQ to the solution for the stream function equation. Thus

the solution for the stream function which allows this finite velocity of

propulsion U is,

(6)
a\ °° ra b -i

\p = -Ursine + ao6 + — sin9 + 7 — + — — s i n 9 .
n=2 ^r r J

On satisfying the boundary conditions on the cylinder of radius a , we

obtain the following solutions for the velocities in terms of the surface

coefficients.

/ \ 1 / \ CL r* 1 I CL i \CC I
(TJ w = — £/cos0 + + —[A-\+Bi ) — c o s 8 + ) — A cos?t8\YI '"' — in—2.)~-

v 2 1 1 9 n 2 n n-1 n+11 f c
w+1 n

^ B c o s n e2 n

and

2 i r
(8) V = Wsine + iUj+f l^S- sine + I |(»i-2)4 sinneP

2

Uj+fl^ sine + I |(»i2)4 s
r2 «=2

The velocity of propulsion is defined in terms of the first two

coefficients Ai and S : in (k) by,

(9) U =^Bi-Ai) .

This may be compared to a similar result obtained for a sphere by Lighthi I I

[3] and Blake [/].

Other physical quantities which have applications to this problem

are the pressure and the stresses exerted by the body on the fluid; these

being found in terms of the surface velocity coefficients. The solution

for the pressure is,

oo n-l

(10) p = 2u I ( n - l ) 2 - ^ -B JcosnB ,
n=2 r

which is found by substitution of the velocity component solutions ((7) and
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(8)) into the creeping flow equation (l). The surface stresses a.,

exerted by the body on the fluid are defined by,

(11) a. . = p6 • . - 2ue • . >
13 1-0 1-3

where e. . is the rate of strain tensor. After substitution, equation

(11) yields the following stresses on the fluid,

(12) a = 2u
rr

a2 ao
(Ax+B1)— cos6 +

n=2
\b cosne

.n-1

+ I J B cosne [n(n+1 ) 2 — - (^-1)^+2)^-1
n=2 L r r J

(13)

cosne (n-1)^
L

I
n=2

n+1 n-l

= y ) — sine
v,3

sinne
n=2

n=2
sinn9

n(n-l) (n-2)(n+l)-

L Pn r

( n + l ) 2 — - - (n-l)
n+2 ' n \

These equations then enable us to calculate the rate of working per

unit area P , which is defined by the following integral,

(15)
f2-n

P = ̂ - [ua +va J dQ .
2TT J »• rr rQ>

This on evaluation yields ,
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260 J.R. Blake

00 p *• •» -i

(16) P = H I nU2+S2 + 2A B .

We define an efficiency for this model by the formula,

(17) n = ? ,

where X) is the efficiency ($) , T an average characteristic thrusting

force per unit area, U the velocity of propulsion and P the mean rate

of working defined in (15).

An average characteristic thrusting force per unit area (?) can be

obtained by taking a suitable average of the stresses over the oscillating

surface of the organism. It is found that this thrusting force is

proportional to \iU/a . There is, of course, an equal and opposite

resistance force which balances this thrusting force. However, we will

defer calculation of this force until the oscillatory surface is defined

because we need to take T over this surface.

3. Surface conditions and velocity of propulsion

The oscillatory surface of the cylinder is defined by,

(18)

r N i
if = a 1 + e I a (t)cosw6

L n=2 n J

90 = 6 + e I 3 (t)sin«6 ,
n-1 n

where a (t) and 6 (t) are periodic functions in time and £ is

suitably small for a small parameter expansion. To obtain the surface

velocity coefficients A and B , an iterative technique is employed by

using a Taylor series expansion for the velocity components.

(19) u(a, 6) = u[N]{a, 9)

m=.l W> " L dPMq l
m=p+q
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Self propulsion of a cylinder 261

where U (a, 6) is the iV-th approximation to the velocity on the

cylinder (a, 9) . u(i?, 9g) is the velocity vector at the oscillating

surface and is easily obtained by taking the time derivative of (l8). The

series term on the right hand side of (l8) is the Taylor series expansion

about (a, 6) .

The first approximation can be obtained from the velocities at the

.oscillating surface due to the no-slip condition.

N
(20) u(R, 90) = Ft = ae I a cosn9

n=2 n

and

v(R, 90) = i?90 = aell + e I a cos«6 I 3 sinn6
I M=2 n >n=l n

yields the following components for the f i r s t approximation:

(21) An = azan , B^ = a e ^ , (n = 1, 2, . . . , N) .

Because Bj , to the first approximation, is purely periodic in time, the

velocity of propulsion is zero (A\ = 0 , to first approximation, as

«! = 0 ).

To obtain the second approximation for both A and B , we

substitute into the Taylor series expansion (19) as follows,

(22) u(a, 6) = ae \ a. coswG
n=2 n

N r N -i
az2 I a cosnG jocose + I (a +n(3 )COSM9

«=2 n L «=2 n n J

N r N -1

y & sinn9 j no. sinn9+ at*

and
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262 J.R. Blake

r N , N
(23) v(a, 9) = a t l + £ I a cos«9 [ f$ s in«9

1 rc=2 * J«=l "

N r N -i
+ ae2 I a cosn6 gjsine - 7 {(w-2)ct -(2n-l)B }sin«9

n=2 " L n=2
 M n J

- ae2 ^ g sinn9 J nB cosn9 .

From these equations we can calculate A and B to second order. The

n n

important values are A\ and B\ which enable us to derive the second

order velocity of propulsion

(2k) U = |

N-l+ J 2

As a and & are purely periodic in time, we need to go to this second

order approximation to obtain a mean velocity of propulsion U .

4. Examples of models

In the five simple examples considered in this section, two can be

thought of in terms of a standing wave form, whereas the other three have a

progressive wave character. These models are best defined by the

following equation for the surface shape,

R = a

(25)
60 = 9

For these particular models, it is found that the average

characteristic thrusting force per unit area T which is extracted from

the stress integral is equal to 2y(tf/a)U . This can be compared to the

thrusting force employed in Blake [2] for other infinite models of

micro-organism propulsion where the thrusting force was equal to 2\ikU (k

is the wave number). For the above models the equivalent wave number is

N/a , so it can be seen that this compares with the results we would expect

from previous experience. Thus the efficiency is defined for the models
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discussed above by

(26)

The following table gives the values of e. (i = 1, 2, 3, U) ,

velocity of propulsion and efficiency for N = 20 and £ = .025 •

Models ex/e £ 2/E £3/£ e t / e U/j&z2a r\{%)

( 1 )

( 2 )

(3)

00
(5)

1

- 1

0

0

-•707

0

1

0

1

.707

0

0

- 1

1

-•707

1

0

1

0

.707

2//+1

2N-3

-{2N+1)

2N-1

-{2N+2)

3 . 2

2.6

3.2

2.9

3 . 2

Figure 2. Table of velocity of propulsion and efficiency for models

defined by (25)

It should be emphasised that these values of the velocity of propulsion are

only valid for small £ , a better approximation being obtained if we go to

fourth order. In models (2), (3) and (5) the wave is travelling to the

left (that is, increasing 0 for 0 < 6 S u ). It is noticed that models

(2) and (3) propel themselves in opposite direction relative to the wave,

which is anticipated from Blake [7] and [2],

In conclusion, a solution to flow around a circular cylinder at low

Reynolds number is obtained which has interesting comparisons to the

classic Stokes paradox problem. It has been shown that a cylinder with

wave motions on its surface can propel itself through a very viscous fluid.
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