

Irish Section Meeting, 18-20 June 2014, Changing Dietary Behaviour: Physiology Through to Practice

Efficacy of fortification of cow's milk as a dietary strategy to increase dietary vitamin D intakes

R. R. Weir¹, M. Johnston², C. Lowis², A. M. Fearon³, J. A. M. Beattie³, J. J. Strain¹ and L. K. Pourshahidi¹

¹Northern Ireland Centre for Food and Health (NICHE), University of Ulster, Coleraine, BT52 1SA, UK, ²Dairy Council for Northern Ireland, Shaftesbury House, Edgewater Office Park, Belfast, BT3 9JQ, UK and ³Agri-Food and Biosciences Institute (AFBI), Belfast, BT9 5PX, UK

The majority of vitamin D required by humans is derived by ultraviolet (UV) radiation of the 7-dehydrocholesterol in the skin⁽¹⁾. Vitamin D can also be obtained from the diet, and these sources of vitamin D are of particular importance here in the UK and Ireland as a number of factors, including age, skin pigmentation, clothing and the use of sun protection, and geographical location, negatively influence the skin's ability to synthesise the vitamin⁽²⁾. Milk is a source of naturally occurring vitamin D (albeit providing a small contribution); the vitamin D content of whole, semi-skimmed and skimmed milk is currently listed as 0.03 µg, 0.01 µg and trace per 100 g, respectively⁽¹⁾. Numerous studies have reported the effectiveness of dairy fortification as a strategy to increase dietary vitamin D intakes at the population level^(3,4). The aim of this study was to use population level dietary data to simulate how fortified cow's milk could contribute to total dietary vitamin D intake using a dietary modelling approach.

Data from the National Diet and Nutrition Survey (NDNS) rolling programme (2008–2011) were obtained from the UK Data Service⁽⁵⁾. A total of 12,239 recorded diary days (n3,073) were available for analysis. The vitamin D content of whole, semi-skimmed, skimmed and 1% fat milk was then manipulated to apply three incremental levels of fortification (1 µg, 1.5 µg and 2 µg per 100 ml), and the effect on total vitamin D intake was investigated in all milk consumers.

A total of 82.5% diary days reported an intake of cow's milk, with intakes of consumption ranging from 2–1,764 ml with a mean intake of 202 (SD 180) ml/d. While semi-skimmed milk proved the most popular type of milk among consumers (51% of diary days), the mean volume of whole milk consumed was higher, compared to that of semi-skimmed milk (249.7(SD 207) vs.187(SD 162.1 ml/d; P < 0.001). As a result, the simulated fortification of whole milk showed the greatest increase in total vitamin D intake.

	Total vitamin D intake (μg/d) Fortification levels of milk							
	0 μg/100 ml*		1 μg/100 ml		1.5 μg/100 ml		2 μg/100 ml	
	Median	Percentiles	Median	Percentiles	Median	Percentiles	Median	Percentiles
Whole milk	1.86 ^a	0.91-3.39	4.46 ^b	2.72-6.84	5.63°	3.37-8.52	6.73 ^d	4.02-10.39
Semi-skimmed milk	2.13 ^a	1.08-4.03	$4.06^{\rm b}$	2.59-6.44	4.91°	3.14-7.74	5.75 ^d	3.68-9.04
Skimmed milk	2.61 ^a	1.12-5.11	4.32 ^b	2.48 - 7.06	5.20°	2.94-8.28	5.98 ^d	3.37-9.47
1% fat milk	4.12 ^a	2.69-7.18	2.69 ^b	4.12 - 7.18	5.25°	3.14-7.94	6.47 ^d	3.55-9.07

^{*} Vitamin D content of milk as listed in the McCance and Widdowson⁽¹⁾. Percentiles (25th, 75th).

Results show that fortification of UK cow's milk with vitamin D, at concentrations similar to that applied in the US/Canada (approximately 1 μ g/100 ml), would significantly increase consumer's vitamin D intake. Such fortification would therefore be an effective strategy to increase vitamin D intakes, and subsequently improve the vitamin D status at the population level. While this study has focused solely on the effect of vitamin D fortification of cow's milk, more research is needed to investigate the impact of such fortification on the vitamin D content of other dairy products and their contributions to consumer's dietary vitamin D intakes.

- 1. McCance RA & Widdowson E (2002) In McCance and Widdowson's The Composition of Foods, 6th Edition. Cambridge: Royal Society of Chemistry.
- 2. Hagenau T, Vest R, Gissel TN et al. (2009) OsteoporisInt 20, 133-40.
- Calvo MS, Whiting SJ, Barton CN (2004) Am J ClinNutr 80, 1710S-6S.
 Kruger MC, Schollum LM, Kuhn-Sherlock B et al. (2010) Bone 46, 759-67.
- 5. UK Data Service http://discover.ukdataservice.ac.uk/

a,b,c,d values within a row with different superscript letters represent significance (P < 0.001, Friedman Test and Wilcoxon Signed Rank Test).