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Abstract

For any odd prime `, let h`(−d) denote the `-part of the class number of the imaginary
quadratic field Q(

√
−d). Nontrivial pointwise upper bounds are known only for ` = 3;

nontrivial upper bounds for averages of h`(−d) have previously been known only for
` = 3, 5. In this paper we prove nontrivial upper bounds for the average of h`(−d) for
all primes ` > 7, as well as nontrivial upper bounds for certain higher moments for all
primes ` > 3.

1. Introduction

Fix an imaginary quadratic field Q(
√
−d) with square-free −d < 0, and let Cl(−d) be the

corresponding class group. The size of the class group, denoted h(−d), is the class number
of Q(

√
−d), a fundamental invariant that appears widely in number theory. The divisibility

properties of class numbers of quadratic fields are subject to the conjectures known as the
Cohen–Lenstra heuristics [CL84], which despite significant attention remain open in most cases.
For any prime ` > 2, let h`(−d) denote the `-part of the class number, that is the number of
ideal classes in the class group Cl(−d) whose `th power is the principal ideal class. One may
obtain a trivial pointwise upper bound for h`(−d) by noting that

h`(−d) 6 h(−d)� d1/2+ε.

It is conjectured that

h`(−d)� dε (1.1)

for all d and any ε > 0. (Throughout, we will use the convention that all implied constants may
depend upon ` and ε.)

This conjecture (and a more general version for `-torsion in class groups of number fields
of any degree) is motivated by the Cohen–Lenstra heuristics [CL84], by counting elliptic curves
with fixed conductor [BS96], by counting number fields of fixed degree and discriminant [Duk98],
and by questions on equidistribution of CM-points on Shimura varieties [Zha05]. For ` = 2, the
conjecture (1.1) is known by the genus theory of Gauss. For ` = 3 the currently best-known
upper bound is due to Ellenberg and Venkatesh [EV07]:

h3(−d)� d1/3+ε. (1.2)

For primes ` > 5, no nontrivial upper bound for h`(−d) is known to hold for all d.

Received 15 October 2015, accepted in final form 11 February 2017, published online 14 August 2017.
2010 Mathematics Subject Classification 11R29, 11D45 (primary).
Keywords: class numbers, Cohen–Lenstra heuristics.
This journal is c© Foundation Compositio Mathematica 2017.

https://doi.org/10.1112/S0010437X1700728X Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X1700728X


D. R. Heath-Brown and L. B. Pierce

One may also consider averages ∑
0<d<X

h`(−d).

In the case ` = 3, Davenport and Heilbronn [DH71] established that∑
0<d<X

h3(−d) ∼ 2
∑

0<d<X

1, (1.3)

as X → ∞, in which both sums are restricted to fundamental discriminants. This asymptotic
has recently been refined further to include secondary main terms (see Bhargava et al. [BST13],
Taniguchi and Thorne [TT13], and Hough [Hou10]), but for the purposes of this paper it is
sufficient that (1.3) provides an upper bound:∑

0<d<X

h3(−d)� X. (1.4)

For ` = 5, the best-known upper bound for the average is due to Soundararajan [Sou00] (also
proved by Hough [Hou10]): ∑

0<d<X

h5(−d)� X5/4+ε. (1.5)

For primes ` > 7, the literature appears to contain no bound better than the trivial estimate∑
0<d<X

h`(−d)� X3/2+ε.

However Soundararajan noted in [Sou00] that he has shown for any prime ` > 3 that

h`(−d)� d1/2−1/2`+ε (1.6)

for all but one square-free discriminant d in any dyadic range [X, 2X). Summing over O(logX)
dyadic ranges implies the nontrivial average bound∑

0<d<X

h`(−d)� X3/2−1/2`+ε (1.7)

for any ` > 3. While this is superseded by (1.4) and (1.5) for ` = 3 and 5, no improvement has
been given hitherto for larger values of `.

One can further consider the second moment; motivated by the conjecture (1.1) for the
pointwise upper bound for h`(−d), one would expect that∑

0<d<X

h`(−d)2 � X1+ε.

For ` = 3 and 5, one may bound the second moment by applying the best-known pointwise
upper bound (respectively (1.2) and (1.6)) to one factor h`(−d), and then applying the best-
known average upper bound to the remaining sum (respectively (1.4) and (1.5)). For ` > 7, it
is advantageous to apply Soundararajan’s result (1.6) to both factors of h`(−d). This approach
results in the following upper bounds for the second moment:

∑
0<d<X

h`(−d)2 �


X4/3+ε ` = 3,

X33/20+ε ` = 5,

X2−1/`+ε ` > 7, prime.

(1.8)
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More generally, for any real number k > 1, known results lead to bounds for the kth moment of
the form ∑

0<d<X

h`(−d)k �


X1+(k−1)/3+ε ` = 3,

X5/4+(k−1)(2/5)+ε +Xk/2+ε ` = 5,

X1+k((`−1)/2`)+ε +Xk/2+ε ` > 7, prime.

1.1 Statement of the theorems
The purpose of this paper is to improve on these bounds for the averages and moments of h`(−d)
for d square-free and ` an odd prime. (For the rest of this paper the notations d and ` are reserved
for square-free integers and odd primes respectively.)

Theorem 1.1. For each prime ` > 5,∑
0<d<X

h`(−d)� X3/2−3/(2`+2)+ε,

for any ε > 0.

This recaptures Soundararajan’s result (1.5) for ` = 5 and improves on the bound (1.7) for all
primes ` > 7. (Since Davenport and Heilbronn’s result (1.3) is best possible, our work provides
no new information for the average of h3(−d).)

We also consider higher moments. First we consider the moments of h3(−d), for which our
main result is the following.

Theorem 1.2. ∑
0<d<X

h3(−d)4 � X11/6+ε for any ε > 0.

It may be surprising to see the fourth moment here, but it turns out to give the best results
of its type, as we shall see.

By the reflection principle of Scholz [Sch32], log3 h3(−d) and log3 h3(+3d) differ by at most
one. Thus the corresponding bound for the 3-part of the class number of real quadratic fields
follows as a corollary, making an identical improvement over previously known bounds as in the
imaginary case.

Corollary 1.3. ∑
0<d<X

h3(d)4 � X11/6+ε for any ε > 0.

Nontrivial bounds for other moments are also an immediate corollary. For 1 6 k < 4 one
merely uses Hölder’s inequality in conjunction with (1.4), while for k > 4 one just applies (1.2)
in combination with Theorem 1.2.

Corollary 1.4. For all real k ∈ [1, 4], and for any ε > 0,∑
0<d<X

h3(−d)k � X(5k+13)/18+ε,∑
0<d<X

h3(d)k � X(5k+13)/18+ε.
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For all real k > 4, and for any ε > 0,∑
0<d<X

h3(−d)k � X(2k+3)/6+ε,∑
0<d<X

h3(d)k � X(2k+3)/6+ε.

In particular, for any ε > 0, ∑
0<d<X

h3(−d)2 � X23/18+ε.

This final bound improves on (1.8); we note that 23/18 = 1.2777 . . . .
We next consider higher moments for h`(−d) for primes ` > 5. Theorem 1.1 combined with

(1.6) implies that, for any real k > 1,∑
0<d<X

h`(−d)k � X3/2−3/(2`+2)+(k−1)(1/2−1/2`)+ε +Xk/2+ε,

where the last term arises from the possible exceptions to (1.6). For purposes of comparison, we
rewrite this as ∑

0<d<X

h`(−d)k � X1+k((`−1)/2`)−(2`−1)/(2`(`+1))+ε +Xk/2+ε.

We will improve on this for all real 1 < k < (2`2 + 1)/(`+ 1).

Theorem 1.5. For any prime ` > 5, all real k > 1, and any ε > 0,

∑
0<d<X

h`(−d)k �


X1+k((`−2)/(2`+2))+ε if 1 6 k 6

`2 − 1

2`− 1
,

X1+k((`−1)/2`)−((`−1)/2`)+ε if
`2 − 1

2`− 1
6 k 6 `+ 1,

Xk/2+ε if k > `+ 1.

In particular, we single out the consequence of Theorem 1.5 for the second moment (noting
that k = 2 lies in the first case of the theorem for ` > 5).

Corollary 1.6. For any prime ` > 5, for any ε > 0,∑
0<d<X

h`(−d)2 � X2−3/(`+1)+ε.

This improves on (1.8) in every case. Theorem 1.1 may of course be deduced from the above
corollary via the Cauchy–Schwarz inequality. However we have stated and proved Theorem 1.1
separately since it is, in effect, used in the proof of Theorem 1.5.

Our approach is to develop an unconditional upper bound for h`(−d) that holds for almost
all d, by using the relation between h`(−d) and small split primes in Q(

√
−d). The original

observation of this relation is credited to Soundararajan (and to Michel in a related context) in
the work of Helfgott and Venkatesh [HV06] and Ellenberg and Venkatesh [EV07], and has been
used in [HV06], for example, to prove a bound for h3(−d) for all d, conditional on the Generalized
Riemann Hypothesis. Here we prove an unconditional version, at the cost that it only holds for
‘almost all’ d. To treat higher moments, we combine this with upper bounds for the number of
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simultaneous representations of integers by certain polynomials; this counting problem is similar
to computations performed in [Sou00] and [HB07]. Finally, we remark that the methods of § 6
may also be applied to prove upper bounds for mixed averages of the form∑

0<d<X

h`(−d)h`′(−d)

for distinct odd primes `, `′; we leave the details to the interested reader.
We reiterate that throughout this paper we consider sums over 0 < d < X to be restricted

to square-free integers, and ` represents an odd prime. We will frequently combine factors of
size Xε for various ε; in all cases ε may be taken to be an arbitrarily small real number, so we
re-define it wherever appropriate so that the total factor remains represented by Xε. We also
use the notation A � B to indicate that there is a constant c, possibly depending on certain
allowable parameters such as ` or ε, such that |A| 6 c|B|, and similarly for A� B.

2. An unconditional pointwise upper bound

Our starting point is the following unconditional pointwise upper bound for h`(−d).

Proposition 2.1. Fix any prime ` > 3 and real parameters 1
4X

1/2` 6 Z 6 X. There exists a
small exceptional set E(Z;X) ⊂ [X, 2X) such that for all square-free d ∈ [X, 2X)\E(Z;X),

h`(−d)� Xε{d1/2Z−1 + d1/2Z−2S`(d;Z)},

for any ε > 0, where S`(d;Z) is the cardinality of the set of pairs of primes p, p′ satisfying

Z 6 p 6= p′ < 2Z

for which there exist u, v ∈ Z\{0} with (v, pp′) = 1 such that

4(pp′)` = u2 + dv2.

Moreover, the exceptional set satisfies

#E(Z;X)� Xε′ (2.1)

for any ε′ > 0.

Corollary 2.2. Fix any ε′ > 0. For all d ∈ [X, 2X) apart from at most O(Xε′) exceptions,

h`(−d)� d1/2−1/2`+ε

for any ε > 0.

This corollary, which we will prove at the end of § 2, gives a weak form of Soundararajan’s
result concerning the bound (1.6).

It is clear from Proposition 2.1 that an understanding of S`(d;Z), both in terms of its average
over d and its second moment, will yield corresponding information for h`(−d). Our two main
technical results are for the average and second moment of S`(d;Z).

Proposition 2.3. For any prime ` > 3 and X1/2` 6 Z 6 X,∑
X6d<2X

S`(d;Z)� Xε{Z2X1/2 + Z`+2X−1/2}

for any ε > 0.
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Proposition 2.4. For ` = 3 and X1/6 6 Z 6 X,∑
X6d<2X

S3(d;Z)2 � Xε{Z2X1/2 + Z12X−3/2}

for any ε > 0. For any prime ` > 5 and X1/2` 6 Z 6 X,∑
X6d<2X

S`(d;Z)2 � Xε{Z2X1/2 + Z2`+4X−1}

for any ε > 0.

We include the case ` > 5 in Proposition 2.4 as it requires little extra effort, but we will not
make use of it: while it does result in a nontrivial upper bound for the second moment of h`(−d),
a stronger result may be obtained by applying Proposition 2.3 directly.

In the remainder of this section, we prove Proposition 2.1 and its corollary. We prove
Propositions 2.3 and 2.4 in §§ 3 and 4, respectively. Finally, in §§ 5 and 6 we record the
consequences of these results for averages and moments of h`(−d).

2.1 Proof of Proposition 2.1
Fix a prime ` > 3 and a square-free integer X 6 d < 2X. Let H = Cl(−d) be the class group of
Q(
√
−d), with class number h(−d) = #Cl(−d). Let H` denote the maximal elementary abelian

`-group in H, with h`(−d) = #H`. Since

#H/H` =
h(−d)

h`(−d)
, (2.2)

in order to show that h`(−d) is small it suffices to show that there are many cosets of H` in
H. Let χd(·) denote the quadratic character associated to Q(

√
−d). Picking a prime p - 2d such

that χd(p) = 1, it follows that p splits in Q(
√
−d) as ppσ, say, where σ is the nontrivial Galois

automorphism of Q(
√
−d). Suppose that two distinct primes p, p′ split in this manner as ppσ

and p′p′σ respectively, and suppose that p and p′ represent the same class in H/H`, so that
pH` = p′H`. It follows that p−1p′ ∈ H`, so that (p−1p′)` is a principal ideal. Thus (pσp′)` is also
a principal ideal, say

(pσp′)` =

(
u+ v

√
−d

2

)
, (2.3)

for some u, v ∈ Z. Hence taking norms, it follows that

4(pp′)` = u2 + dv2. (2.4)

Note that we may require that gcd(v, pp′) = 1 (and in particular that v 6= 0). For supposing
that p | v, say, then by (2.4) we see that also p | u so that p | ((u+ v

√
−d)/2). Hence p |

((u+ v
√
−d)/2), which by (2.3) implies that p | (pσp′)`. Since p is unramified this would then

imply that p | p′, which contradicts the fact that p 6= p′. A similar argument shows that we may
require that u 6= 0.

We will show that for all but a small number of ‘exceptional’ d there are many primes p, p′

that split in this manner, while also showing there can only be few solutions (u, v) to (2.4) with
gcd(v, pp′) = 1 and u, v in an appropriate range. This forces there to be many distinct cosets of
H` in H, and provides an upper bound for h`(−d), as long as d is not exceptional.
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We first fix X 6 d < 2X and count the number of primes p that split appropriately, with

Z 6 p < 2Z

for some parameter Z with 1
4X

1/2` 6 Z 6 X (to be chosen precisely in applications). We see
that

#{Z 6 p < 2Z : χd(p) = 1} =
1

2

∑
Z6p<2Z

(1 + χd(p)) +O(ω(d)),

where the last term reflects the contribution of the primes that divide d, and contributes no more
than O(logX) = O(logZ). We now separate the two terms within the sum over p and apply the
prime number theorem, obtaining

#{Z 6 p < 2Z : χd(p) = 1} = 1
2Z(logZ)−1 + 1

2M(d;Z) +O(Z(logZ)−2),

say, where

M(d;Z) =
∑

Z6p<2Z

χd(p).

Thus the number of split primes in this range is at least of order Z(logZ)−1, unless we have
|M(d;Z)| > 1

4Z(logZ)−1; we will show this exceptional scenario can occur for only a small
number of d.

Given a character χ, set

V (χ) =

( ∑
Z6p<2Z

χ(p)

)4`

.

Upon unfolding the product, we see that this is a character sum of the form∑
Z4`6n<(2Z)4`

anχ(n)

for some coefficients |an| � d(n)4` � Zε. Now we note that with the particular choice χ = χd,∑
X6d<2X

|M(d;Z)|8` =
∑

X6d<2X

|V (χd)|2. (2.5)

By positivity, we can enlarge the sum on the right-hand side of (2.5) to include all primitive
characters modulo d and apply the large sieve (see, for example, [Dav00, Theorem 4, ch. 27]), to
obtain ∑

X6d<2X

|M(d;Z)|8` 6
∑

X6d<2X

∑∗

χ (mod d)

|V (χ)|2

� (X2 + Z4`)

( ∑
Z4`6n<(2Z)4`

|an|2
)

� Z4`+2ε(X2 + Z4`)� Z8`+2ε, (2.6)

since X1/2` � Z by assumption. Let E(Z;X) denote the exceptional set,

E(Z;X) = {X 6 d < 2X : |M(d;Z)| > 1
4Z(logZ)−1}. (2.7)

Then we may conclude from (2.6) that the exceptional set is small:

#E(Z;X)� Xε,

for any ε > 0.
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We now fix a d with X 6 d < 2X such that d 6∈ E(X,Z); the above argument shows that
there are at least of order Z(logZ)−1 split primes for this d. In particular, summing over all
cosets of H` in H shows that, for this d,∑
C∈H/H`

#{Z 6 p < 2Z : χd(p) = 1, p = ppσ, p ∈ C}= #{Z 6 p < 2Z : χd(p) = 1}�Z(logZ)−1.

On the other hand, applying the Cauchy–Schwarz inequality to the left-hand side shows that

(#H/H`)
1/2(S

(1)
` (d;Z))1/2 � Z(logZ)−1, (2.8)

where we define

S
(1)
` (d;Z) =

∑
C∈H/H`

#{Z 6 p < 2Z : χd(p) = 1, p = ppσ, p ∈ C}2.

By the above discussion, we know that

S
(1)
` (d;Z)� #{Z 6 p, p′ < 2Z : 4(pp′)` = u2 + dv2 for some u, v ∈ Z}, (2.9)

where in the case that p 6= p′ we may impose the additional conditions that u, v 6= 0 and
(v, pp′) = 1. Combining (2.8) and (2.2), we may conclude that

h`(−d)� d1/2+εZ−2(logZ)2S
(1)
` (d;Z),

still under the assumption that d is not exceptional. Finally, we write

S
(1)
` (d;Z) = S

(0)
` (d;Z) + S`(d;Z),

where S
(0)
` (d;Z) is the contribution to the set (2.9) from pairs p = p′ and S`(d;Z) is the

contribution from pairs p 6= p′. Trivially, S
(0)
` (d;Z)� Z, and we see that Proposition 2.1 holds.

To deduce the corollary we take Z = 1
4X

1/2`, and note that any pairs of primes p, p′ counted
by S`(d;Z) would satisfy

X 6 d 6 u2 + dv2 = 4(pp′)` 6 4(4Z2)` = 41−`X < X.

Thus S`(d;Z) must vanish, so that h`(−d)�Xεd1/2Z−1� d1/2−1/(2`)+ε unless d lies in E(Z;X).
The result then follows.

3. Proof of Proposition 2.3

Define the parameters

W = Z2, U = 2`+1Z`, V = 2`+1Z`X−1/2. (3.1)

Note that V > 2 as long as
Z > X1/2`,

which we henceforward assume. Note also that up to a constant factor (accounting for changing
signs of u, v), we may express S`(d;Z) as the quantity

#{Z 6 p 6= p′ < 2Z : 4(pp′)` = u2 + dv2 for some u, v > 1 with (v, pp′) = 1}.
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Furthermore, for any X 6 d < 2X, any triple w = pp′, u, v considered in the set above certainly
satisfies W 6 w < 4W , 1 6 u 6 U , 1 6 v 6 V .

We wish to bound S`(d;Z) on average over d; for this we note that∑
X6d<2X
d 6∈E(Z;X)

S`(d;Z)� # {W 6 w < 4W, 1 6 u 6 U, 1 6 v 6 V : gcd(v, w) = 1,

v2 | (4w` − u2), (4w` − u2)/v2 ∈ [X, 2X)} .

It is convenient to work with dyadic ranges; thus for any parameter 1 6 V0 6 V/2, define

N(Z,X;V0) = # {W 6 w < 4W, 1 6 u 6 U, V0 6 v < 2V0 : gcd(v, w) = 1,

v2 | (4w` − u2), (4w` − u2)/v2 ∈ [X, 2X)} .

Then certainly ∑
X6d<2X
d6∈E(Z;X)

S`(d;Z)�
∑

06j6log2(V )−1

N(Z,X; 2j) =
∑

V06V/2
dyadic

N(Z,X;V0).

We turn to bounding an individual term N(Z,X;V0). We first fix w and v and let

M(w; v) = #{u (mod v2) : u2 ≡ 4w` (mod v2)}.

Lemma 3.1. For any coprime w and v,

M(w; v) 6 2ω(v)+1 � vε, (3.2)

where ω(v) denotes the number of distinct prime divisors of v.

Proof. This is proved in a standard fashion. Writing v = qr11 · · · qrss in its prime decomposition,
it suffices by the Chinese Remainder Theorem to count M(w; qrii ) for each qi. Since (w, v) = 1
we may assume that (w, qi) = 1; we also assume for the moment that qi is odd. Then M(w; qrii )
will be nonzero only if w is a quadratic residue modulo qi, in which case u can lie in at most
two residue classes modulo qi; since qi is odd, each solution modulo qi lifts uniquely to a solution
modulo q2rii . Thus we see that in this case

M(w; qrii ) 6 2.

If qi = 2 then the relevant congruence has solutions only if 2 | u, in which case we may equivalently
count solutions to (u/2)2 ≡ w` (mod q2ri−2i ). However if n is odd, a congruence x2 ≡ n (mod 2r)
has at most four solutions. We may therefore conclude that M(w; qrii ) 6 4, thus proving (3.2). 2

Applying Lemma 3.1 directly to count solutions u 6 U to u2 ≡ 4w` (mod v2) would lead to
the upper bound

N(Z,X;V0)�WV 1+ε
0 (UV −20 + 1). (3.3)

But then summing over all dyadic ranges with 1 6 V0 6 V/2 would not allow us to take advantage
of the decay with respect to V0 in (3.3). Thus we return to the definition of N(Z,X;V0) and
utilize the additional piece of information that

X 6
4w` − u2

v2
< 2X,
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which we rewrite as

v2X 6 4w` − u2 < 2v2X. (3.4)

We will conclude from this that u must lie within a short interval around 2w`/2; precisely, we
write (

u

2w`/2

)2

= 1 + E,

in which (3.4) shows that

|E| 6 2Xv2

4w`
6

8XV 2
0

4W `
=

2XV 2
0

Z2`
= 22`+3V

2
0

V 2
.

Thus E � 1 whence
√

1 + E = 1 +O(E). It follows that

u = 2w`/2 +O(w`/2E) = 2w`/2 +O(W `/2V 2
0 V
−2).

Thus for each fixed w, v, in order to be counted by N(Z,X;V0), u must lie in an interval Iw
around 2w`/2 of length O(W `/2V 2

0 V
−2). We apply this information along with the bound (3.2)

to conclude that for each fixed w, v considered in N(Z,X;V0),

#{u ∈ Iw : u2 ≡ 4w` (mod v2)} � V ε
0

(
W `/2V 2

0 V
−2

V 2
0

+ 1

)
= V ε

0 (W `/2V −2 + 1).

As a consequence,

N(Z,X;V0)�
∑

W6w<4W,V06v<2V0
(v,w)=1

#{u ∈ Iw : u2 ≡ 4w` (mod v2)}

�WV 1+ε
0 (W `/2V −2 + 1).

(This improves upon (3.3) by effectively replacing V −20 by V −2; observe that up to constant
factors, U is the same size as W `/2.) Summing over dyadic regions then shows∑

V06V/2
dyadic

N(Z,X;V0)�W 1+`/2V −1+ε +WV 1+ε

� Xε{Z2X1/2 + Z`+2X−1/2},

which proves Proposition 2.3.

4. Proof of Proposition 2.4

We define a quantity R`(d;Z) according to the parameters U, V,W given in (3.1) as follows: set
R`(d;Z) = 0 if d is not square-free, and for d square-free let R`(d;Z) be the number of triples
(w, u, v) ∈ N3 satisfying

W 6 w < 4W, u 6 U, v 6 V, gcd(w, v) = 1,

w = p1p2 with p1 6= p2 ∈ [Z, 2Z),

and

4w` = u2 + dv2.
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Recall also the quantity S`(d;Z) defined in Proposition 2.1. Upon letting w = p1p2, we observe
that (up to signs) any tuple p1, p2, u, v contributing to S`(d;Z) must have W 6 w < 4W ,
1 6 u 6 U , 1 6 v 6 V , so that S`(d;Z)� R`(d;Z). Thus we may write∑

X6d<2X

S`(d;Z)2 �
∑

X6d<2X

R`(d;Z) +
∑

X6d<2X

R`(d;Z)(R`(d;Z)− 1). (4.1)

The advantage of separating the terms in this fashion is that in the second term on the right-hand
side we may now count only distinct tuples (u, v, w) 6= (u′, v′, w′) in R`(d;Z).

We note that for X1/2` 6 Z 6 X the first term on the right-hand side of (4.1) satisfies∑
X6d<2X

R`(d;Z)�
∑

V06V/2
dyadic

N(Z,X;V0)� Xε{Z2X1/2 + Z`+2X−1/2}, (4.2)

by Proposition 2.3. The main remaining task is to treat

T` = T`(Z;X) :=
∑

X6d<2X

R`(d;Z)(R`(d;Z)− 1).

We will prove the following proposition.

Proposition 4.1. For X1/2` 6 Z 6 X,

T` � Z2`+4Xε−1. (4.3)

Moreover when ` = 3 and X1/6 6 Z 6 X we have

T3 � Xε(Z7X−1/2 + Z12X−3/2). (4.4)

Combining (4.2) and (4.3), we see that∑
X6d<2X

S`(d;Z)2 � Xε(Z2X1/2 + Z`+2X−1/2 + Z2`+4X−1).

Note that

Z`+2X−1/2 6 Z2`+4X−1

for Z > X1/(2`), so that under this assumption∑
X6d<2X

S`(d;Z)2 � Xε(Z2X1/2 + Z2`+4X−1).

This suffices for Proposition 2.4 for ` > 5. For ` = 3 we improve on this; from (4.2) and (4.4) we
obtain ∑

X6d<2X

S3(d;Z)2 � Xε(Z2X1/2 + Z5X−1/2 + Z7X−1/2 + Z12X−3/2).

However

Z5X−1/2 6 Z7X−1/2 = {Z2X1/2}1/2{Z12X−3/2}1/2 6 Z2X1/2 + Z12X−3/2,

whence the case ` = 3 of Proposition 2.4 also follows.

2297

https://doi.org/10.1112/S0010437X1700728X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1700728X


D. R. Heath-Brown and L. B. Pierce

4.1 Proof of Proposition 4.1: a first bound for T`

We now prove (4.3). We recall the parameters U, V,W of (3.1) and note that T` is at most the
number of 6-tuples (w1, w2, u1, u2, v1, v2) in the ranges

W 6 w1, w2 < 4W, 1 6 u1, u2 6 U, 1 6 v1, v2 6 V

that satisfy the conditions

(u1, v1, w1) 6= (u2, v2, w2), (4.5)

gcd(w1, v1) = gcd(w2, v2) = 1, (4.6)

v21 | (4w`1 − u21) and v22 | (4w`2 − u22), (4.7)

v21(4w`2 − u22) = v22(4w`1 − u21) 6= 0. (4.8)

We will obtain a first upper bound for T` by following the approach of [Sou00], ignoring the
divisibility conditions (4.7); note that we are also now ignoring the fact that each of w1, w2 is a
product of two distinct primes. We claim that for tuples satisfying the above conditions,

v21w
`
2 − v22w`1 6= 0. (4.9)

To prove this we recall that gcd(wi, vi) = 1 for i = 1, 2, whence v21w
`
2 = v22w

`
1 would imply that

v1 = v2 and w1 = w2, and hence u1 = u2. This would then contradict (4.5).
We now observe that once v1, v2, w1, w2 are fixed then u1, u2 are fixed up to Xε choices. For

indeed, fixing v1, v2, w1, w2 in (4.8) gives

4(v22w
`
1 − v21w`2) = (v2u1 − v1u2)(v2u1 + v1u2). (4.10)

The left-hand side is a nonzero integer by (4.9), so that u1, u2 are fixed up to Xε choices. Thus
we obtain

T` �W 2V 2Xε � Z2`+4X−1+ε,

which is the bound given in (4.3).

4.2 Proof of Proposition 4.1: a second bound for T`

We may obtain the alternative upper bound (4.4) for T` by following the method of [HB07], but
with the addition of certain technical considerations because in the present case the variables vi
are not restricted to be primes. Although it is easy enough to do this for general odd primes `
we shall confine our attention to ` = 3, since this is the only case we shall use.

First we consider the contribution to T3 arising from the case in which gcd(w1, w2) 6= 1. We
write T 0

3 for the number of 6-tuples of this type. Since each of w1 and w2 is a product of two
primes in the interval [Z, 2Z) this can happen only when there is at least one prime p ∈ [Z, 2Z)
dividing both of w1 and w2. The number of possible pairs w1, w2 is thus O(Z3). We now follow
the argument of § 4.1. There are O(V 2) pairs v1, v2, and the factorization (4.10) shows that there
are O(Xε) possibilities for u1, u2 once w1, w2, v1, v2 are fixed. It follows that

T 0
3 � Z3V 2Xε.

From now on we assume that gcd(w1, w2) = 1. For each integer 1 6 δ 6 V , we will let T3(δ)
denote the contribution to T3 from triples (u1, v1, w1) and (u2, v2, w2) with w1, w2 coprime, such
that gcd(v1, v2) = δ. We will prove the following proposition.
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Proposition 4.2. For each integer 1 6 δ 6 V ,

T3(δ)� Xε(W 2V 2/3δ−2/3 + V 3Uδ−3 +WV δ−1).

From this we conclude that

T3 � T 0
3 +

V∑
δ=1

T3(δ)

� Xε

{
Z3V 2 +

V∑
δ=1

(W 2V 2/3δ−2/3 + V 3Uδ−3 +WV δ−1)

}
� Xε(Z3V 2 + VW 2 + V 3U +WV )

� Xε(Z3V 2 + VW 2 + V 3U),

since clearly WV � VW 2. Upon recalling the parameter definitions (3.1) this shows that

T3 � Xε{Z9X−1 + Z7X−1/2 + Z12X−3/2}.

This provides the second bound for T3 given in Proposition 4.1, since Z > X1/6.

Proof of Proposition 4.2. To prove Proposition 4.2, we fix δ and write vi = δyi for i = 1, 2 so that
gcd(y1, y2) = 1. We first isolate solutions (u1, v1, w1) and (u2, v2, w2) that contribute to T3(δ)
such that y1, y2 satisfy a relation

y21µ
3
2 = y22µ

3
1 (4.11)

for some integers µ1, µ2. Given a relation of the form (4.11), we may divide both sides by
gcd(µ1, µ2)

3 to obtain an equivalent relation

y21λ
3
2 = y22λ

3
1

in which (λ1, λ2) = 1 and (y1, y2) = 1. This implies that for each i = 1, 2,

y2i = λ3i . (4.12)

This implies that yi is itself a perfect cube, say yi = s3i . We recall from (4.10) that once v1, v2,
w1, w2 are fixed, u1, u2 are fixed up to Xε choices. Thus we count how many v1, v2 6 V with
gcd(v1, v2) = δ are of the type (4.12) by noting that there are at most O((V δ−1)1/3) choices for
each si. We bound the number of choices for w1, w2 trivially by O(W 2), and conclude that the
contribution to T3(δ) of solutions for which a relation of the form (4.11) holds is at most

�W 2V 2/3δ−2/3Xε. (4.13)

We now proceed to count the remaining contribution to T3(δ); we may assume from now on
that no relation of the form (4.11) holds for y1 and y2. Define

k = y2u1 + y1u2. (4.14)

Note that if δ, w1, w2, y1, y2 and k are fixed, then u1, u2 are fixed uniquely by (4.10). Thus we
will count the number of solutions w1, w2 contributing to T3(δ) for each fixed y1, y2, k.

Recalling the definition of y1, y2 we see that the condition (4.8) now becomes

y21(4w`2 − u22) = y22(4w`1 − u21) 6= 0,
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and since gcd(y1, y2) = 1, this implies a system of congruences

4y22w
3
1 ≡ k2 (mod y1), (4.15)

4y21w
3
2 ≡ k2 (mod y2), (4.16)

4y22w
3
1 ≡ 4y21w

3
2 (mod k). (4.17)

We first reduce this to a similar system of congruences with square-free moduli. For i = 1, 2 let
qi denote the odd square-free kernel of yi, that is

qi =
∏
p|yi
p>2

p.

The congruence (4.15) implies that 4y22w
3
1 ≡ k2 (mod q1). Since (4y2, q1) = 1 this congruence

may be re-written as w3
1 ≡ a1 (mod q1) for some constant a1 determined by y2 and k. A similar

observation applies to (4.16). Next, we define

r =
∏
p|k
p>2

p

to be the odd square-free kernel of k, and deduce from (4.17) an analogous congruence modulo
r. It follows that any solutions w1, w2 of the system (4.15)–(4.17) must satisfy the congruences

w3
1 ≡ a1 (mod q1), (4.18)

w3
2 ≡ a2 (mod q2), (4.19)

y22w
3
1 ≡ y21w3

2 (mod r) (4.20)

for some constant a1 determined by y2, k (mod q1) and some constant a2 determined by y1,
k (mod q2).

Certainly (q1, q2) = 1. In addition, we note that (y1, r) = 1 and (y2, r) = 1. For indeed, if some
odd prime p satisfies p | k and p | y1, then by (4.14) it follows that p | u1, since by construction
(y1, y2) = 1. However, by the condition v21 | (4w3

1 − u21), this would imply that p | w1, which
contradicts the fact that (v1, w1) = 1. The fact that (y2, r) = 1 may be shown similarly. As a
consequence of these observations,

(q1, q2) = 1, (q1, r) = 1, (q2, r) = 1. (4.21)

The next step is to note that the conditions (4.18)–(4.20) may be interpreted as lattice conditions.

Lemma 4.3. The congruence (4.18) requires that w1 lies in one of at most 3ω(q1) residue classes
modulo q1, and similarly (4.19) requires that w2 lies in one of at most 3ω(q2) residue classes
modulo q2.

Furthermore, there exists a collection of at most 3ω(r) lattices Λi ⊂ Z2 of determinant r, such
that any coprime pair (w1, w2) satisfying (4.20) must lie in Λi for some i. Conversely any pair
(w1, w2) in any of the lattices Λi will satisfy (4.20).

Proof. To prove this, we first consider the congruence (4.18). Fix a prime divisor p | q1; then w1

can only be a solution to (4.18) if

w3
1 ≡ a1 (mod p). (4.22)
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There are at most three residue classes modulo p in which a solution w1 to (4.22) may lie. We
may conclude that w1 lies in one of at most 3ω(q1) residue classes modulo q1. A similar argument
applies to (4.19), establishing that w2 may lie in at most 3ω(q2) residue classes modulo q2.

We now turn to (4.20). Since (y1, r) = 1 and (w1, w2) = 1 we must have (w1, r) = 1. (Indeed,
otherwise, if we suppose p is a prime factor of both w1 and r, we would see in (4.20) that p | y21w3

2,
but since (w1, w2) = 1 we cannot have p | w2, so we would conclude p | y1. This would in turn
contradict that fact we previously proved that (y1, r) = 1.) Using the fact that (w1, r) = 1 we
see that (4.20) implies

w3 ≡ a (mod r), (4.23)

where w ≡ w2w
−1
1 (mod r) and a ≡ (y2y

−1
1 )2 (mod r) is coprime to r. Now, just as with our

analysis of (4.18), we see that there is a collection of at most 3ω(r) residue classes w ≡ bi (mod r) in
which w must lie. This leads to a corresponding collection of lattice conditions w2 ≡ biw1 (mod r)
which, taken together, are equivalent to (4.23). Finally we note that the resulting lattice of pairs
(w1, w2) has a basis {(1, bi), (0, r)}, so that its determinant is just r. This completes the proof of
the lemma. 2

4.3 Counting lattice points
Since q1, q2, r are coprime in pairs, we may conclude from Lemma 4.3 that (w1, w2) must lie in
one of at most 3ω(q1)+ω(q2)+ω(r) lattice cosets of the form (c1, c2) + Λ, where Λ is a lattice with
det(Λ) = q1q2r. We note that the total number of lattices is � Xε, since under the assumption
Z 6 X, we have vi 6 V � X5/2 and k 6 2UV � X11/2. We now fix one of these lattices,
which we will denote by Λ, and its corresponding shift (c1, c2). Note that we may choose (c1, c2)
such that W 6 ci < 4W for i = 1, 2, since otherwise w1, w2 would lie outside the desired range
W 6 w1, w2 < 4W . We now write (z1, z2) = (w1, w2)− (c1, c2), and proceed to count the number
of

(z1, z2) ∈ Λ, |zi| < 3W.

Let λ1 6 λ2 be the successive minima of Λ, so that the standard Minkowski inequalities show
that det(Λ)� λ1λ2 � det(Λ) (see, for example, Davenport [Dav58, Eqn (5)]). We note that in
our particular case,

λ1 �
√

det(Λ)� √q1q2r � V 3/2U1/2δ−3/2. (4.24)

Here we have used the fact that qi 6 yi 6 V δ−1 for i = 1, 2 and hence r 6 k� UV δ−1. Moreover,
by Lemma 1 of Davenport [Dav58], the number of lattice points in Λ with |(z1, z2)| 6 x is (up
to a constant) at most (1 + x/λ1)(1 + x/λ2). Thus the number of allowable z1, z2 in our case is

�(1 +W/λ1)(1 +W/λ2)

�1 +W 2/ det(Λ) +W/λ1

�1 +W 2/(q1q2r) +W/λ1.

Thus we have

T3(δ)� Xε
∑
y1,y2,k

(
1 +

W 2

q1q2r
+
W

λ1

)
, (4.25)

where we recall that qi is the odd square-free kernel of yi and for each triple y1, y2, k we take
λ1 to be the smallest value from all the corresponding lattices Λ. Recall that y1, y2 6 V δ−1 and
k 6 2UV δ−1. Then we see that the contribution of the first term in (4.25) to T3(δ) is at most

�XεV 3Uδ−3. (4.26)
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The contribution to T3(δ) from the second term in (4.25) is

�XεW 2

( ∑
y16V δ−1

1

q1

)( ∑
y26V δ−1

1

q2

)( ∑
k62UV δ−1

1

r

)
. (4.27)

To bound each internal sum we apply the following minor variant of [HB07, Lemma 1].

Lemma 4.4. Given an integer k, let k∗ denote its odd square-free kernel. For any fixed integer
κ 6 K,

#{k 6 K : k∗ = κ} � Kε.

We defer the proof of this lemma until § 4.4, and merely apply it now to (4.27); for example
the first sum is bounded by∑

y16V δ−1

1

q1
6

∑
ν6V δ−1

1

ν
#{v 6 V δ−1 : v∗ = ν} � V ε

∑
ν6V δ−1

1

ν
� V ε.

One may handle the second and third sums in (4.27) similarly, and deduce that the second term
in (4.25) is O(W 2Xε) overall. Since W 2 6 W 2V 2/3δ−2/3 for δ 6 V we see that this error is
dominated by (4.13).

Finally, the contribution, say T ′3(δ), of the third term in (4.25) may be bounded by following
the same argument as in [HB07], which we sketch for completeness. For each triple y1, y2, k, let
Λ be the lattice to which λ1 corresponds, and let (µ1, µ2) be the shortest nonzero vector in Λ,
so that λ1 is the length of (µ1, µ2). Then

T ′3(δ)� XεW
∑
µ1,µ2

#{y1, y2, k}√
|µ1|2 + |µ2|2

,

where we count the number of y1, y2, k that generate a lattice in which (µ1, µ2) is a vector of
minimal length. We note by (4.24) that

µ1, µ2 � V 3/2U1/2δ−3/2. (4.28)

Since (µ1, µ2) lies in the lattice Λ, then by construction

q1 | µ1, q2 | µ2 (4.29)

and
r | (y22µ31 − y21µ32), (4.30)

as described in Lemma 4.3.
We first consider the case where both µ1, µ2 are nonzero. By (4.29), once µ1, µ2 are fixed,

they determine at most Xε values of q1, q2 and hence at most Xε values for y1, y2 by Lemma 4.4.
If y22µ

3
1 − y21µ32 is nonzero, then it determines at most Xε values for r by (4.30) and hence at

most Xε values for k. On the other hand, if

y22µ
3
1 = y21µ

3
2, (4.31)

then y1, y2 would satisfy a relation of the form (4.11); pairs y1, y2 of this type have already been
treated, and are excluded from the contribution we are currently calculating. We therefore see
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that the contribution to T ′3(δ) from µ1, µ2 both nonzero is

T ′3(δ)� X4εW
∑
µ1,µ2

1√
|µ1|2 + |µ2|2

.

To bound the sum, we begin by focusing on a fixed dyadic range

1
2B <

√
|µ1|2 + |µ2|2 6 B,

for any appropriate B > 1; we note that the restriction (4.28) implies that B � V 3/2U1/2δ−3/2.
There are O(B2) pairs µ1, µ2, each of which contribute O(B−1) to the sum. Summing over dyadic
B � V 3/2U1/2δ−3/2 therefore produces a total contribution of � XεWV 3/2U1/2δ−3/2 to T ′3(δ).

On the other hand if µ1 vanishes, then there are V δ−1 choices for y1 and O(X2ε) choices
for q2, r, hence O(X4ε) choices for y2, k. (In particular, (4.31) cannot occur, since it would force
µ1 = µ2 = 0.) Thus the contribution from these terms to T ′3(δ) is

� X5εVWδ−1
∑

µ2�V 3/2U1/2δ−3/2

1

|µ2|
� X6εVWδ−1.

The case where µ2 vanishes may be treated by an analogous argument. We may conclude that

T ′3(δ)� Xε(WV 3/2U1/2δ−3/2 + VWδ−1).

Combining this with the contributions (4.13) and (4.26) shows that

T3(δ)� Xε(W 2V 2/3δ−2/3 + V 3Uδ−3 +WV 3/2U1/2δ−3/2 + VWδ−1).

Since

WV 3/2U1/2δ−3/2 = {W 2}1/2{V 3Uδ−3}1/2

6 {W 2V 2/3δ−2/3}1/2{V 3Uδ−3}1/2

for δ 6 V , the third term above is dominated by the first two, so that Proposition 4.2 follows. 2

4.4 Proof of Lemma 4.4
We now prove Lemma 4.4, in the following more general form. Given any finite set P of primes
(possibly empty), let

k(P) =
∏
p|k
p 6∈P

p.

Consider the set {k 6K : k(P) = κ} for a fixed positive integer κ. The set is empty unless κ 6K
is square-free and satisfies (κ,

∏
p∈P p) = 1, which we now assume. Then for any η > 0,

#{k 6 K : k(P) = κ} 6
K∑
k=1

k(P)=κ

(
K

k

)η

6 Kη
∞∑
k=1

k(P)=κ

k−η

= Kη
∏
p∈P

( ∞∑
e=0

p−eη
)∏

p|κ

( ∞∑
e=1

p−eη
)
.
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Setting A(η) =
∑∞

e=0 2−eη we then see that

#{k 6 K : k(P) = κ} 6 KηA(η)ω(κ)+#P 6 KηA(η)(#P+1)ω(κ).

Upon recalling that ω(κ)� (log 3κ)(log log 3κ)−1 and κ 6 K we may conclude that

#{k 6 K : k(P) = κ} �η K
(#P+2)η

for any η > 0, which proves Lemma 4.4. 2

5. Average of h`(−d)

We now turn to applications of the key propositions. We first apply Proposition 2.1 to derive a
nontrivial upper bound for the average of h`(−d). Fix a dyadic region X 6 d < 2X and assume
that X1/(2`) 6 Z 6 X. Then Proposition 2.1 implies that∑

X6d<2X

h`(−d)� Xε

{
X1/2#E(Z;X) +X3/2Z−1 +X1/2Z−2

∑
X6d<2X
d6∈E(Z;X)

S`(d;Z)

}
.

We apply the upper bound (2.1) to the exceptional set E(Z;X) and Proposition 2.3 to the
average of S`(d;Z) to conclude that∑

X6d<2X

h`(−d)� Xε{X3/2Z−1 +X + Z`}.

It is optimal to choose Z = X3/(2`+2), resulting in∑
X6d<2X

h`(−d)� X3/2−3/(2`+2)+ε.

Summing over O(logX) dyadic intervals to cover the full range 0 < d < X then yields the result
of Theorem 1.1.

6. Higher moments of h`(−d)

We now consider higher moments. For any odd prime `, define for any real H > 1 the set

A`(H;X) = {X 6 d < 2X : h`(−d) > H},

with corresponding counting function

N`(H;X) = #A`(H;X).

We also define for any 1
4X

1/2` 6 Z 6 X the set

A0
` (H,Z;X) = {X 6 d < 2X : h`(−d) > H}\E(Z;X),

where E(Z;X) is as usual the exceptional set provided by Proposition 2.1. We define the
corresponding counting function

N0
` (H,Z;X) = #A0

` (H,Z;X).

We note that for any fixed choice of Z in the above range,

N`(H;X) 6 #E(Z;X) +N0
` (H,Z;X)� Xε +N0

` (H,Z;X). (6.1)
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6.1 The case ` = 3
Restricting to the case ` = 3, we see that (1.4) implies that

N3(H;X)� XH−1. (6.2)

We also note that A3(H;X) is empty by (1.2) unless H 6X1/3+ε for some small ε > 0. In general
we have the following.

Proposition 6.1. For 1 6 H 6 X1/3+ε,

N3(H;X)� Xε(X1/2 +X7/2H−10).

Proof. To prove this we consider A0
3(H,Z;X) with the choice Z =X1/2+2εH−1; note in particular

Z > X1/6 when H 6 X1/3+ε. Moreover we will have

h3(−d) > H � d1/2+εZ−1

for all d in A0
3(H,Z;X), whence Proposition 2.1 shows that

h3(−d)� d1/2+εZ−2S3(d;Z).

We therefore have

S3(d;Z)� d−1/2−εZ2h3(−d)� X−1/2−εZ2h3(−d) > X−1/2−εZ2H,

for all d ∈ A0
3(H,Z;X). This leads to the bound

N0
3 (H;X)(X−1/2−εZ2H)2 �

∑
d∈A0

3(H,Z;X)

S3(d;Z)2 �
∑

X6d<2X

S3(d;Z)2.

We can now apply the case ` = 3 of Proposition 2.4 to obtain

N0
3 (H,Z;X)(X−1/2−εZ2H)2 � Xε{Z2X1/2 + Z12X−3/2},

so that

N0
3 (H,Z;X)� X3εH−2{Z−2X3/2 + Z8X−1/2} � X19ε{X1/2 +X7/2H−10}

in view of our choice of Z. This is sufficient to prove Proposition 6.1, by (6.1). 2

Proof of Theorem 1.2. We may now derive Theorem 1.2 from Proposition 6.1. It will suffice to
consider a dyadic range X 6 d < 2X. Then∑

X6d<2X

h3(−d)k �
∑

H6X1/3+ε

dyadic

∑
X6d<2X

H<h3(−d)62H

h3(−d)k

6
∑

H6X1/3+ε

dyadic

N3(H;X)(2H)k.

In view of (6.2) we have
N3(H;X)(2H)k � XHk−1.

On the other hand, Proposition 6.1 yields

N3(H;X)(2H)k � Xε(X1/2Hk +X7/2Hk−10).
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In particular for k = 4 we deduce that

N3(H;X)(2H)4 � Xε min{XH3, X1/2H4 +X7/2H−6}
� Xε min{XH3, X1/2H4}+ min{XH3, X7/2H−6}.

For H 6 X1/3+ε the first term is at most

X1/2H4 6 X11/6+4ε

while the second term is at most

{XH3}2/3{X7/2H−6}1/3 = X11/6.

It follows that N3(H;X)(2H)4 � X11/6+4ε, whence∑
X6d<2X

h3(−d)4 � X11/6+5ε.

This suffices to prove Theorem 1.2. 2

As noted in the introduction, one can deduce estimates for other moments from the fourth
moment. The reader may check that a direct application of the methods of this section to the
general moment only reproduces these consequences of the special case k = 4.

6.2 The case ` > 5
We now consider the kth moment of h`(−d) for primes ` > 5 and any real k > 1. By Corollary 2.2
we see that

N`(H;X)� Xε if H > X1/2−1/2`+ε.

We also record the trivial bound
N`(H;X)� X, (6.3)

valid for all H. In addition, we claim the following.

Proposition 6.2. For any prime ` > 3 and 1 6 H 6 X1/2−1/(2`)+ε,

N`(H;X)� Xε(XH−1 +X`/2H−(`+1)).

With Proposition 6.2 in hand, we will prove the following.

Proposition 6.3. For any prime ` > 5 and any real number k > 1,∑
X6d<2X

h`(−d)k � Xσ+ε,

where
σ = max{σ1, σ2, σ3}

and

σ1 = 1 + k

(
`− 2

2`+ 2

)
,

σ2 = 1 + k

(
`− 1

2`

)
−
(
`− 1

2`

)
,

σ3 =
k

2
.

2306

https://doi.org/10.1112/S0010437X1700728X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1700728X


Averages and moments associated to class numbers

We note that the maximum is σ1 in the range 1 6 k 6 (`2 − 1)/(2`− 1); it is σ2 in the range
(`2 − 1)/(2`− 1) 6 k 6 `+ 1; and it is σ3 for k > `+ 1. This leads immediately to the statement
of Theorem 1.5. We note that Proposition 6.2 does not imply any new results in the case of
h3(−d).

Proof of Proposition 6.2. The proof of Proposition 6.2 follows similar lines to that of
Proposition 6.1. As before we set Z = X1/2+2εH−1, so that Z > X1/(2`) for H 6 X1/2−1/(2`)+ε.
We deduce that

S`(d;Z)� d−1/2−εZ2h`(−d)� X−1/2−εZ2h`(−d) > X−1/2−εZ2H,

again under the assumption that d ∈ A0
` (H,Z;X). As a result,

N0
` (H,Z;X)X−1/2−εZ2H �

∑
d∈A0

` (H,Z;Z)

S`(d;Z)�
∑

X6d<2X

S`(d;Z).

Upon applying Proposition 2.3 we obtain

N0
` (H,Z;X)X−1/2−εZ2H � Xε(Z2X1/2 + Z`+2X−1/2),

so that

N0
` (H,Z;X)� X2ε(XH−1 + Z`H−1)� X(2+2`)ε(XH−1 +X`/2H−(`+1)),

upon recalling the choice of Z. This is sufficient to prove Proposition 6.2, by (6.1). 2

Proof of Proposition 6.3. We turn finally to Proposition 6.3, for which we initially fix any real
number k > 1. We have already observed that N`(H;X)� Xε if

X1/2−1/(2`)+ε 6 H 6 X1/2+ε,

which shows that for such H,
N`(H;X)Hk � Xk/2+ε. (6.4)

Thus we now instead assume that

H 6 X1/2−1/(2`)+ε. (6.5)

Then by the trivial bound (6.3) and Proposition 6.2 we have

N`(H;X)Hk � Xε min{XHk, XHk−1 +X`/2Hk−`−1}
� Xε(XHk−1 + min{XHk, X`/2Hk−`−1}).

Under (6.5), the first term is � Xσ2 . As long as k 6 ` + 1, the second term is largest when
XHk = X`/2Hk−`−1, namely when

H = X(`−2)/(2`+2) = X1/2−3/(2`+2).

We may conclude that if k 6 `+ 1 and H 6 X1/2−1/(2`)+ε then

N`(H;X)Hk � Xε(Xσ1 +Xσ2),

with the notation of Proposition 6.3. On the other hand, if k > `+ 1 then

X`/2Hk−`−1 6 X`/2Hk−` 6 X`/2(X1/2)k−` = Xk/2.
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Thus N`(H;X)Hk � Xε(Xσ2 +Xk/2) in this case; note that the second term dominates in the
range k > `+ 1. To conclude, we have

N`(H;X)Hk � Xε(Xσ1 +Xσ2 +Xσ3) (6.6)

for all k > 1.
Combining (6.4) and (6.6) shows that∑

X6d<2X

h`(−d)k �
∑

H�X1/2+ε

dyadic

∑
X6d<2X

H<h`(−d)62H

h`(−d)k

6
∑

H�X1/2+ε

dyadic

N`(H;X)(2H)k

� Xε(Xσ1 +Xσ2 +Xσ3).

We note that k/2 6 max{σ1, σ2} in the range k 6 `+ 1. This proves Proposition 6.3, and hence
Theorem 1.5. 2

The reader may verify that a similar computation based on Proposition 2.4 yields no
improvements.
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