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Abstract

We consider spectral radius algebras associated with C0 contractions. When the operator A is algebraic,
we describe all invariant subspaces that are common for operators in its spectral radius algebra B A. When
the operator A is not algebraic, B A is weakly dense and we characterize a set of rank-one operators in B A
that is weakly dense in L(H).
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1. Introduction

Denote by L(H) the algebra of all bounded linear operators on a complex Hilbert
space H. Given an operator A ∈ L(H) with spectral radius r , we define a sequence
of positive numbers dm (or dm(A)) by dm = m/(1+ rm), and we note that, for
each m ∈ N, the series

∑
∞

n=0 d2n
m A∗n An converges in the norm topology to a

positive invertible operator. We denote by Rm (or Rm(A)), its positive square root
(
∑
∞

n=0 d2n
m A∗ n An)1/2. The spectral radius algebra B A consists of all operators

T ∈ L(H) such that supm∈N ‖RmTR−1
m ‖<∞. The study of these algebras started

in [6] where it was shown that, when A is compact, the algebra B A has a nontrivial
invariant subspace. A similar result followed for some normal operators [3]. A major
role in these results was played by the ideal Q A = {T : ‖RmTR−1

m ‖→ 0}. We state
the facts that are used in this paper and direct the reader to the articles [2–9] for more
information.

PROPOSITION 1.1. Let A be an operator in L(H). If AT = λTA, where λ ∈ C and
|λ| ≤ 1, then T ∈ B A. In particular, the commutant {A}′ ⊆ B A. If there exists a
nonzero compact operator in Q A, then B A has a nontrivial invariant subspace. Finally,
BA = L(H) if and only if the operator A is similar to a constant multiple of an
isometry.
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A contraction A is completely nonunitary if there is no invariant subspace M for
A such that A|M is a unitary operator. A completely nonunitary contraction A is said
to be of class C0 if there exists a nonzero function h ∈ H∞ such that h(A)= 0. The
inner function v such that vH∞ = {u ∈ H∞ : u(A)= 0} is the minimal function of A
and is denoted by mA. The operator A is algebraic if there is a polynomial p such that
p(A)= 0.

One of the most studied concrete Hilbert spaces is the Hardy space H2, and one of
the best-understood operators is the unilateral shift. Throughout the paper we use S to
denote the forward unilateral shift of multiplicity 1, and {en}

∞

n=0 the orthonormal basis
such that Sen = en+1 when n ≥ 0. It is known that S may be viewed as multiplication
by z on H2. A classical result of Beurling states that every invariant subspace of S
is of the form θH2 for some inner function θ . The compression of S to H2

	 θH2

is called a Jordan block. This subspace is denoted by H(θ) and the compression in
question by S(θ).

At this stage it is useful to point out that the term Jordan block has a different
meaning in linear algebra. For example, if θ(z)= µα(z)2µβ(z)3 for all z ∈ C, where
the Möbius transformation is given by µλ(z)= (z − λ)/(1− λz), then S(θ) acts on a
space of dimension five and is a direct sum of two Jordan blocks. To avoid confusion,
we will say that, in this example, S(θ) is a direct sum of two simple Jordan blocks.

This paper may be viewed as a sequel to [9]. We continue the study of spectral
radius algebras associated with C0 contractions. However, in the previous paper, the
emphasis was on establishing that the inclusion {A}′ ⊂ B A is proper. Here, our focus
is on the structure of the algebra B A. In particular, we show that there are significant
differences between the cases when mA is a finite Blaschke product and when it is not.
In the latter case, B A is always weakly dense in L(H). (Throughout the paper, density
will always mean weak density.) We establish this fact by characterizing the set of
rank-one operators in B A and by showing that its (finite) span is dense in L(H). This
set is more easily understood in the case when A = S(θ) (Theorem 2.4) and less so
for a general contraction of class C0 (Theorem 4.3). The case where A is algebraic is
studied using mostly finite-dimensional tools. For such an operator, the quasisimilarity
model S(2) is a (possibly infinite) direct sum

⊕
k S(θk), but each operator S(θk) acts

on a finite-dimensional space. Therefore, S(2) is similar to a direct sum of simple
Jordan blocks and, moreover, S(2)= S(21)⊕ S(22) where S(22) contains all the
blocks with maximal eigenvalues (that is, of absolute value equal to the spectral radius
of A). Our main result for algebraic C0 contractions (Theorem 4.6) is that if, relative
to this decomposition,

T =

(
T1 T2
T3 T4

)
∈ BS(2),

then T3 = 0 and T4 consists of upper triangular blocks, relative to the representation of
S(22) as a direct sum of simple Jordan blocks.

The organization of this paper is as follows. In Sections 2 and 3 we investigate
the basic C0 contraction S(θ). In Section 2 we consider the case where θ is not
a finite Blaschke product. We show that BS(θ) is weakly dense in L(H(θ)) and
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characterize a set of rank-one operators with dense span that it contains (Theorem 2.4).
In Section 3 we study the Jordan block S(θ), where θ is a finite Blaschke product, so
that S(θ) acts on a finite-dimensional space. As a first step we show that if S(θ)
is a simple Jordan block, then BS(θ) is the algebra of all upper triangular matrices
(Theorem 3.4). We then consider a more general situation, where S(θ) is a direct
sum of simple Jordan blocks but the corresponding eigenvalues are all of the same
absolute value. In this case, T ∈ BS(θ) if and only if T is a block matrix (relative
to the same decomposition), in which each block is upper triangular (Corollary 3.7).
The main result of this section (Theorem 3.10) takes care of the most general S(θ),
a direct sum of simple Jordan blocks with no restriction on their eigenvalues, and gives
a complete characterization of operators in BS(θ). In Section 4, we consider general
C0 contractions and we describe the corresponding spectral radius algebras. We use a
quasisimilarity model for A ∈ C0 and we show that relevant properties are preserved
under quasisimilarity. In particular, it turns out that the structure of B A depends on
whether the minimal function mA is a finite Blaschke product or not. In the latter case,
we get the analogue of Theorem 2.4, namely, B A contains a set of rank-one operators
with dense span (Theorem 4.3). When mA is a finite Blaschke product, we obtain a
complete characterization of B A (Theorem 4.6), analogous to that in Section 3.

2. Jordan blocks on infinite-dimensional spaces

In this section, we consider the operators S(θ), where θ is an inner function that
is not a finite Blaschke product. This implies that H(θ) is an infinite-dimensional
subspace of H2. We demonstrate that, in this situation, the algebra BS(θ) is dense in
L(H(θ)) because it contains a set of rank-one operators with dense span. We make
use of two operators acting on H2. When f =

∑
k≥0 fkek ∈ H2, we define

D f =
∑
k≥1

√
k fkek−1 and J f =

∑
k≥0

( fk/
√

k + 1)ek+1.

Although D is an unbounded operator on H2, it is not hard to see that the operator
D J ∗ is bounded. We start by introducing an important dense subset of H(θ).

PROPOSITION 2.1. Let θ be an inner function that is not a finite Blaschke product,
and let N = {u ∈H(θ) : Du ∈ H2

}. Then the set N is dense in H(θ).

PROOF. Suppose, to the contrary, that there exists h ∈H(θ) such that h ⊥N . Note
that, if g is any function satisfying g ⊥ J (θH2), then J ∗g ∈N . Therefore h ⊥ J ∗g
and Jh ⊥ g, which implies that Jh belongs to the closure of J (θH2). In other words,
there exists a sequence of polynomials {pn} such that J (θpn)→ Jh in the norm of
H2. Moreover, J (θpn − h)→ 0 weakly. Let f ∈ H2. Then

〈θpn − h, J ∗ f 〉 = 〈J (θpn − h), f 〉 → 0.

Since the range of J ∗ is dense, it follows that θpn − h→ 0 weakly. In particular,
〈θpn − h, θv〉 → 0 for all v ∈ H2. But 〈h, θv〉 = 0, so 〈θpn, θv〉 → 0. Taking into
account that multiplication by θ is an isometry, we see that 〈pn, v〉 → 0, that is,
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the sequence pn converges weakly to 0. Consequently, the same is true of J (θpn).
However, J (θpn)→ Jh, and it follows that Jh = 0, and hence that h = 0. We
conclude that N is dense in H(θ). 2

Next we demonstrate the relevance of N .

THEOREM 2.2. Let θ be an inner function that is not a finite Blaschke product. A
rank-one operator u ⊗ v is in BS(θ)∗ if and only if u ∈N .

PROOF. Suppose first that u ∈N . Since ‖Rm(u ⊗ v)R−1
m ‖ = ‖Rmu‖‖R−1

m v‖ and
‖R−1

m ‖ ≤ 1 hold universally, it suffices to show that supm ‖Rm(S(θ)∗)u‖<∞. The
assumption on θ guarantees that the spectral radius r(S(θ)) is equal to 1, so

dm(S(θ))= dm(S
∗)= m/(m + 1).

Relative to the decomposition H2
= θH2

⊕H(θ),

R2
m(S
∗)=

(
? ?

? R2
m(S(θ)

∗)

)
,

while u may be identified with w = 0⊕ u. Clearly,

〈R2
m(S
∗)w, w〉 = 〈R2

m(S(θ)
∗)u, u〉,

so ‖Rm(S∗)w‖ = ‖Rm(S(θ)∗)u‖. In order to prove that supm ‖Rm(S∗)w‖<∞,
we note that Rm(S∗) may be represented in the basis {ek} as a diagonal matrix
diag(αm,0, αm,1, . . .) where αm,k = 1+ d2

m + d4
m + · · · + d2k

m . Now

Rm(S
∗)w = Rm(S

∗)
∑

wkek =
∑

wk Rm(S
∗)ek =

∑
wkαm,kek

and
‖Rm(S

∗)w‖2 =
∑
|wk |

2
|αm,k |

2
≤

∑
|wk |

2(k + 1).

Since Dw = Du ∈ H2, the last series converges, which shows that the condition
u ∈N is sufficient and in addition that the algebra BS(θ)∗ contains the set N ⊗H(θ),
which is dense in the set of all rank-one operators on H(θ). Consequently, BS(θ)∗ is
dense in L(H(θ)).

Suppose now that u ⊗ v ∈ BS(θ)∗ . Then ‖Rm(S(θ)∗)u‖‖R−1
m (S(θ)∗)v‖ is

a bounded sequence, so supm ‖Rm(S(θ)∗)u‖<∞ or limm ‖R−1
m (S(θ)∗)v‖ = 0.

However, the latter is impossible. Indeed, if there exists such a nonzero vector v, then
‖Rm(S(θ)∗)u0‖‖R−1

m (S(θ)∗)v‖→ 0 for all u0 ∈N . In other words, u0 ⊗ v ∈QS(θ)∗

and it would follow from Proposition 1.1 that the algebra BS(θ)∗ has a nontrivial
invariant subspace, contradicting the fact that it is dense. Thus, ‖Rm(S(θ)∗)u‖ must
be bounded and, as above, if w = 0⊕ u, then supm ‖Rm(S∗)w‖<∞. Consequently,
there exists M > 0 such that

∑
|wk |

2
|αm,k |

2
≤ M for all m ∈ N. Since the last series

converges uniformly in m, we may pass to the limit as m→∞. We obtain that∑
|wk |

2(k + 1)≤ M , which implies that Dw ∈ H2 and u ∈N . 2

As a consequence of Proposition 2.1 and Theorem 2.2 we obtain the following
characterization.
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THEOREM 2.3. Let θ be an inner function that is not a finite Blaschke product. Then
the algebra BS(θ)∗ is dense in L(H(θ)). Moreover, it contains a set of rank-one
operators with dense span, and u ⊗ v ∈ BS(θ)∗ if and only if u ∈N , with N as in
Proposition 2.1.

In order to describe BS(θ), we employ a connection between the Jordan block
S(θ) and the operator S(θ̃)∗, where θ̃ (z)= θ(z). We recall (see [1, Corollary 3.1.7])
that there exists a unitary operator U :H(θ)→H(θ̃) such that S(θ̃)∗U =U S(θ).
Further, [3, Theorem 2.4] implies that there exists an isomorphism U : BS(θ)→ BS(θ)∗ ,
defined by U(X)=U XU∗. Using Theorem 2.3, we obtain that BS(θ) is dense. We
omit the proof since it is straightforward.

THEOREM 2.4. Let θ be an inner function that is not a finite Blaschke product and let
N ′ = {u ∈H(θ) : DUu ∈ H2

}. Then the algebra BS(θ) is weakly dense in L(H(θ)).
Moreover, it contains a dense set of rank-one operators and u ⊗ v ∈ BS(θ) if and only
if u ∈N ′, where U is the unitary operator such that S(θ̃)∗U =U S(θ).

REMARK 2.5. In [1, Exercise 5, p. 42] the operator U is given explicitly. Using this
formula, a short calculation shows that the condition DUu ∈ H2 may be written as∑

m≥1

m

∣∣∣∣∑
j≥0

θm+ j+1u j

∣∣∣∣2 <∞,
where θk and uk are Taylor coefficients of θ and u, respectively.

3. Jordan blocks on finite-dimensional spaces

We now turn our attention to the case where θ is a finite Blaschke product, and
S(θ) acts on a finite-dimensional space. In this situation, S(θ) may be represented as
a direct sum of simple Jordan blocks. More precisely, S(θ)=

⊕n
i=1 Jαi , where

Jαi =


αi 1

αi 1
. . .

. . .

αi 1
αi

.
We start with the case where n = 1. The following analysis is based on results and
techniques from [4]. We review them here in order to make the article self-contained.

LEMMA 3.1 (See [4, Lemma 4.5]). Let |x |< 1 and let sk(x)=
∑
∞

n=0 nk xn . Then
sk(x) is a polynomial of degree k + 1 in (1− x)−1, whose leading coefficient is k!.

PROPOSITION 3.2 (See [4, Proposition 4.6]). Let B be the n × n matrix whose
(i, j)th entry is

(i+ j
i

)
, when 0≤ i, j ≤ n − 1. Then det(B)= 1.

Next we present a result that is a combination of [4, Theorem 4.7] and a fact that
may be found in its proof. Following [4], we denote 1/(1− |α|2d2

m) by λm .
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THEOREM 3.3. Let α be a nonzero complex number and let Jα be the simple N × N
Jordan block with eigenvalue α. If Rm = Rm(Jα), then the (i, j)th entry of R2

m is
a polynomial in λm of degree i + j + 1. Also, det(Rm) is a polynomial (in λm) of
degree N 2. Finally, the ( j, j)th entry of R−2

m is a rational function P(λm)/Q(λm),
where P and Q are polynomials of degrees N 2

− 2 j − 1 and N 2, respectively.

PROOF. Note that An is an upper triangular Toeplitz matrix whose (k, j)th entry is( n
j−k

)
αn+k− j when 0≤ j − k ≤ n and 0 if j < k or j − k > n. Consequently, the

(i, j)th entry of A∗n An is

min{i, j}∑
k=0

(
n

i − k

)
αn+k−i

(
n

j − k

)
αn+k− j .

It is not hard to see that this expression may be written as a sum of terms
clnl
|α|2n+2k/αiα j , where 0≤ l ≤ i + j , and ci+ j = |α|

2n/(i ! j !αiα j ) (consider what
happens when k = 0). It follows that the (i, j)th entry of R2

m satisfies

(R2
m)i, j =

∑
n≥0

d2n
m (n

i+ j
|α|2n/(i ! j !αiα j )+ pi+ j−1(n)),

and, using Lemma 3.1, we deduce that

(R2
m)i, j = (i + j)!/(i ! j !αiα j )λ

i+ j+1
m + qi, j (λm),

where qi, j is a polynomial of degree at most i + j .
To prove the second assertion, note that the determinant of Rm is a polynomial

in λm . When polynomial is calculated, its leading term is obtained without using
the nonleading terms in any of the entries of Rm . Thus, we concentrate on the
matrix Fm , whose (i, j)th entry is

(i+ j
i

)
λ

i+ j+1
m /(αiα j ). This matrix may be written as

a product Gm BLm , where Gm stands for the diagonal matrix diag(λi
m/α

i )i≥0, while
Lm = diag(λi+1

m /αi )i≥0 and B is the matrix with (i, j)th entry
(i+ j

i

)
. A calculation

shows that
det(Gm BLm)= λ

N 2

m det(B)|α|N−N 2
.

The result now follows from Proposition 3.2.
Finally, we turn our attention to the ( j, j)th entry of R−2

m . It is known that this
entry may be calculated by dividing the appropriate cofactor Am by the determinant
of R2

m . Let F ′m , G ′m , B ′, and L ′m denote the matrices Fm , Gm , B, and Lm with the
j th rows and columns deleted. The determinant Am (obtained by deleting the j th row
and column from det(R2

m)) is a polynomial, and in order to calculate its leading term,
we need to consider only the matrix F ′m . It is not hard to see that F ′m = G ′m B ′L ′m , so
det(F ′m)= det(G ′m) det(B ′) det(L ′m). Now,

det(G ′m)= (λm/α)
1+2+···+(N−1)− j

= (λm/α)
(N−1)N/2− j ,

det(L ′m)= λ
N (N+1)/2−( j+1)
m /α(N−1)N/2− j .
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Of course, det(B ′) is independent of m, and so Am is a polynomial of degree
N 2
− (2 j + 1). Consequently ‖R−1

m e j‖
2 is a rational function P/Q, where deg(P)=

N 2
− 2 j − 1 and deg(Q)= N 2. 2

We can now describe the algebra B Jα .

THEOREM 3.4. The spectral radius algebra associated with a simple Jordan block Jα
is the algebra of all upper triangular matrices.

PROOF. We consider separately the cases where α 6= 0 and α = 0. Take α 6= 0 and
Jα of size N × N , and let e0, e1, e2, . . . , eN−1 be the corresponding basis for CN .
It suffices to show that the rank-one operator ei ⊗ e j belongs to B Jα if and only if
i ≤ j . Indeed, any upper triangular matrix is a finite linear combination of these rank-
one operators. On the other hand, let A = (ai j ); if A ∈ B Jα , then ei ⊗ ei Ae j ⊗ e j =

ai j ei ⊗ e j ∈ B Jα too, and ai j 6= 0 only when i ≤ j .
By definition, ei ⊗ e j ∈ B Jα if and only if supm ‖Rm(ei ⊗ e j )R−1

m ‖<∞. Since

‖Rm(ei ⊗ e j )R
−1
m ‖ = ‖Rmei‖‖R

−1
m e j‖,

we can determine when ‖Rmei‖‖R−1
m e j‖ is bounded. Note that ‖Rmei‖

2
=

〈R2
mei , ei 〉, the (i, i)th entry of R2

m , and similarly, ‖R−1
m e j‖

2 is equal to the ( j, j)th
entry of R−2

m . By Theorem 3.3, ‖Rmei‖
2
‖R−1

m e j‖
2 is a rational function P̂/Q, where

deg(P̂)= (2i + 1)+ (N 2
− 2 j − 1)= N 2

+ 2i − 2 j and deg(Q)= N 2.

If m→∞, then dm→ 1/r(Jα)= 1/|α|, so λm→∞. Therefore ‖Rmei‖
2
‖R−1

m e j‖
2

is bounded if and only if i ≤ j .
The case where α = 0 leads to a different form for Rm . Let J0 be the simple Jordan

block of size N × N corresponding to the eigenvalue α = 0. A calculation shows that

Rm = diag(1, αm,1, αm,2, . . . , αm,N−1),

where αm,k = (1+ d2
m + · · · + d2k

m )
1/2. If T = (ti j ), then RmTR−1

m = (αm,i ti jα
−1
m, j ).

Since the spectral radius of J0 is 0, it follows that dm = m and αm,k→∞ as m→∞.
Consequently, T ∈ B J0 if and only if ti j = 0 for i > j , that is, if and only if T is an
upper triangular matrix. 2

Next we consider a slightly more complicated scenario: we allow θ to have more
than one zero, but require that they all be of the same modulus. The corresponding
operator S(θ) is then a direct sum of simple Jordan blocks, which need not be of the
same size. Thus, in the block representation of the matrix for this operator, the off-
diagonal blocks may be rectangular. We extend the meaning of an upper triangular
matrix to apply to such blocks. Namely, if A = (ai j )1≤i≤n,1≤ j≤m , then we say that A
is upper triangular if ai j = 0 whenever i > j . Similarly, we say that A is diagonal if
ai j = 0 for i 6= j . Now we can prove an extension of Theorem 3.4.

THEOREM 3.5. Let N and K be positive integers, and let Jα and Jβ be simple
Jordan blocks of sizes N × N and K × K with eigenvalues α and β, and suppose
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98 S. Petrovic [8]

that |α| = |β|. If J = Jα ⊕ Jβ and {ek}
N+K−1
k=0 is the corresponding basis for CN+K ,

then ei ⊗ e j ∈ B J if and only if i and j satisfy: i ≤ j when 0≤ i, j ≤ N − 1 or
N ≤ i, j ≤ N + K − 1; i ≤ j − N when 0≤ i ≤ N − 1 and N ≤ j ≤ N + K − 1;
i ≤ j + N when N ≤ i ≤ N + K − 1 and 0≤ j ≤ N − 1. In other words, a block
matrix T =

(T1 T2
T3 T4

)
belongs to B J if and only if each of the four blocks is upper

triangular.

PROOF. We note that Rm(J )= Rm(Jα)⊕ Rm(Jβ) so the estimates for ‖Rmei‖
2

depend on whether i ≤ N − 1 or i ≥ N . Using the same computations as in the
proof of Theorem 3.4, together with the fact that the quantity λm depends only on
the modulus of the eigenvalue, we see, when α 6= 0, that ‖Rmei‖

2 is a polynomial
of degree 2i + 1 if 0≤ i ≤ N − 1 or 2(i − N )+ 1 if N ≤ i ≤ N + K − 1. Similarly,
‖R−1

m e j‖
2 is a rational function P/Q, where

deg(P)=

{
N 2
− 2 j − 1 if 0≤ j ≤ N − 1

N 2
− 2( j − N )− 1 if N ≤ j ≤ N + K − 1,

and the degree of Q is N 2. The rest of the proof, including the case where α = 0, is
straightforward. 2

REMARK 3.6. If the ordered basis {ek} is replaced by its permutation

e0, eN , e1, eN+1, . . . , eK−1, eN+K−1, eK , eK+1, . . . , eN−1,

then the matrix for T becomes an N × K block upper triangular matrix. (We have
assumed that N ≥ K . A similar permutation may be written if N < K .)

It is easy to see that Theorem 3.5 and the previous remark may be extended to the
case where θ has any finite number of zeros of the same absolute value.

COROLLARY 3.7. Let J = Jα1 ⊕ Jα2 ⊕ · · · ⊕ Jαn , where |αk | = α and the simple
Jordan block Jαk is of dimension Nk × Nk when 1≤ k ≤ n. If we set N = N1 +

N2 + · · · + Nn , and the operator T is of the form (Ti j )
n
i, j=1, then T ∈ B J

if and only if each block Ti j is an upper triangular Ni × N j matrix. Furthermore,
if the ordered basis {ek} is replaced by its permutation

e0, eN1, eN2, . . . , eNn−1, e1, eN1+1, eN2+1, . . . , eNn−1+1, . . . ,

then an operator T ∈ B J if and only if it is block upper triangular relative to the new
basis.

It remains to consider the situation in which the zeros of θ may be of different
absolute values. Here we prove a more general result, which is true regardless of the
dimension of the Hilbert space.

PROPOSITION 3.8. Let Ak ∈ L(Hk) where k = 1, 2 and r(A1) < r(A2), and let
A = A1 ⊕ A2. Suppose that there exists an orthonormal basis {en} of H2 such that
ei ⊗ ei ∈ B A2 and limm ‖Rm(A2)ei‖ =∞when i ≥ 0. If T is an operator on H1 ⊕H2
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with matrix (
T1 T2
T3 T4

)
relative to this decomposition, then T ∈ B A if and only if T3 = 0 and T4 ∈ B A2 .

PROOF. Let Cm =
∑

n≥0 dm(A)2n A∗1
n An

1 . Note that R2
m(A)= Cm ⊕ R2

m(A2) since
dm(A)= dm(A2). The inequality r(A1) < r(A2) implies that the sequence Cm is norm
bounded. Since Cm ≥ 1 and R2

m(A2)≥ 1, we see that C−1
m and R−1

m (A2) are con-
tractions. Consequently, supm ‖Cm T1C−1

m ‖<∞ and supm ‖Cm T2 Rm(A2)
−1
‖<∞

for all T1 and T2. Further, ‖Rm(A2)T4 Rm(A2)
−1
‖ is bounded if and only if T4 ∈ B A.

Finally, let {en} be the basis as stipulated, and let (ti j ) be the matrix for T3, relative to
the same basis {en} for both H1 and H2. (When N = dim(H1) < dim(H2) the basis
of H1 is {en}n≤N ; when dim(H1) > dim(H2) the basis of H1 is obtained by extending
{en} to an arbitrary orthonormal basis.) We note that(

0 0
0 ei ⊗ ei

)(
T1 T2
T3 T4

)(
e j ⊗ e j 0

0 0

)
=

(
0 0

ti j ei ⊗ e j 0

)
. (3.1)

If T ∈ B A, then in (3.1), all Ti j ∈ B A, and it follows that ‖R2
m(A2)ti j ei ⊗ e j C−1

m ‖ is a
bounded sequence. However, C−1

m ≥ 1 and limm ‖Rm(A2)ei‖ =∞ so ti j = 0 for all i
and j , and hence T3 = 0. Since the other direction is trivial, the proof is complete. 2

REMARK 3.9. The existence of an orthonormal basis satisfying the conditions listed
in Proposition 3.8 is essential for the conclusion that T3 = 0. Indeed, if A2 = 0⊕ 1
and T3 = 1⊕ 0, then Rm(A2)T3 = T3, whence the boundedness of C−1

m implies that
supm ‖Rm(A2)T3C−1

m ‖<∞.

We now establish the most general result for the case where S(θ) acts on a finite-
dimensional space.

THEOREM 3.10. Let N1, N2, . . . , Nn and K1, K2, . . . , Km be positive integers,
let N = N1 + · · · + Nn and K = K1 + · · · + Km , and let {αi }

n
i=1 and {β}mj=1 be

sequences of complex numbers such that

|α1|< |α2|< · · ·< |αn|< |β1| = |β2| = · · · = |βm |.

Suppose that simple Jordan blocks Jαi and Jβ j are of dimensions Ni × Ni and
K j × K j respectively, and let J denote Jα ⊕ Jβ , where Jα = Jα1 ⊕ · · · ⊕ Jαn and
Jβ = Jβ1 ⊕ · · · ⊕ Jβm . Relative to the decomposition CN+K

= CN
⊕ CK , let

T =

(
T1 T2
T3 T4

)
.

Then T ∈ B J if and only if T3 = 0 and T4 ∈ B Jβ .

PROOF. Clearly r(Jα) < r(Jβ) and ei ⊗ ei ∈ B Jβ by Corollary 3.7. Furthermore,
limm ‖Rmei‖

2
= limm〈R2

mei , ei 〉 =∞, by Theorem 3.3. The result now follows from
Proposition 3.8. 2
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4. Operators of class C0

In the remainder of the paper we apply the results about Jordan blocks to describe
B A for all A ∈ C0. From [1, Theorem 3.5.1], there exist inner functions {θk} and
Hilbert spaces Hk such that θk+1|θk and A is quasisimilar to a direct sum of Jordan
blocks S(2)≡

⊕
k S(θk), acting on

⊕
k Hk . Therefore, we need to establish some

ties between spectral radius algebras associated with quasisimilar operators. We start
with a result from [9]. Recall that an operator Z ∈ L(H) is a quasiaffinity if it has
trivial kernel and dense range.

LEMMA 4.1. Suppose that A and B are quasisimilar C0 contractions and let Y, Z be
quasiaffinities such that AY = YB and Z A = B Z. If T ∈ B B , then Y T Z ∈ B A.

We now establish a much stronger result.

THEOREM 4.2. Suppose that A and B are quasisimilar C0 contractions and let Y, Z
be quasiaffinities such that AY = YB and Z A = B Z. Then B A is weakly dense in L(H)
if and only if the same is true of B B . Moreover, if one of the algebras possesses a set of
rank-one operators with a dense span, then so does the other. In fact, if there is a dense
set N such that supm ‖Rm(A)u‖<∞ for all u ∈N , then supm ‖Rm(B)w‖<∞ for
all w in the dense set Z N . On the other hand, if one of the algebras has a nontrivial
invariant subspace, then the same is true of the other algebra.

PROOF. Suppose that B B is dense. It suffices to show that the weak closure of B A
contains all rank-one operators in L(H), because the closure of B A is an algebra
that contains all finite rank operators, and hence is dense. So let ε > 0, and let
W be a rank-one operator in L(H). Since Y and Z∗ have dense ranges, there
are u, v ∈H such that W1 ≡ Y u ⊗ Z∗v satisfies |〈(W1 −W )x, y〉|< ε‖x‖‖y‖ for
all x, y ∈H. Also, B B is dense, hence there exists an operator W2 ∈ B B such that
|〈(W2 − u ⊗ v)x, y〉|< ε‖x‖‖y‖ for all x, y ∈H. By Lemma 4.1, Y W2 Z ∈ B A and it
is easy to see that

|〈(Y W2 Z −W )x, y〉|< ε(‖Z‖‖Y‖ + 1)‖x‖‖y‖,

whence B A is dense in L(H). Also, if W2 is a finite-rank operator, then so is Y W2 Z .
This shows that if {uα ⊗ vα} is a collection of rank-one operators with dense span,
then the same is true of {Y (uα ⊗ vα)Z}. Finally, since A and B share the same
quasisimilarity model, they have the same spectral radius and thus dm(A)= dm(B).
Since ‖Bn Z‖ = ‖Z An

‖ ≤ ‖Z‖‖An
‖, we obtain that ‖Rm(B)Zu‖ ≤ ‖Z‖‖Rm(A)u‖.

We now turn our attention to the existence of an invariant subspace. This part of the
proof is based on the proof of [10, Theorem 6.19]. Let M A be an invariant subspace
for B A. We define the subspace M B to be the closure of {T Z x : x ∈M A, T ∈ B B}.
Since B B is an algebra, it is easy to see that M B is invariant for B B . Clearly M B 6= {0},
so it remains to prove that M B is not the whole space. To that end, we show that
Y {T Z x : x ∈M A, T ∈ B B} ⊆M A, whence the result follows from the fact that Y
has dense range, except that the last inclusion follows from the facts that Y T Z ∈ B A
and M A is invariant for B A. 2
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With Theorem 4.2 in hand, we proceed to analyze the operator S(2). It turns out
that, as before, there are two very different cases, depending on the type of the minimal
function of A. We present these results separately, in Theorems 4.3 and 4.6.

THEOREM 4.3. Let A be a C0 contraction and let mA be its minimal function. If mA is
not a finite Blaschke product, then the algebra B A contains a set of rank-one operators
with a dense span, so it is dense.

PROOF. Suppose first that none of the functions θk in the quasisimilarity model S(2),
defined to be

⊕
k∈N S(θk), is a finite Blaschke product. By Theorem 2.4, for each

k there is a dense set of vectors Nk ⊆Hk such that supm ‖Rm(S(θk)u‖<∞ for all
u ∈Nk . Define the subset N of

⊕
k∈N Nk as follows: if x =

⊕
k∈N xk ∈

⊕
k∈N Nk ,

then x ∈N if there are at most a finite number of k such that xk 6= 0. Then N is
dense in

⊕
k Hk and supm ‖Rm(S(2))u‖<∞ for all u ∈N . Further, if Y, Z are

quasiaffinities such that S(2)Y = YA and Z S(2)= AZ , then Z N is dense and, by
Theorem 4.2, it follows that supm ‖Rm(A)w‖<∞ for all w ∈ Z N .

Thus, we turn our attention to the case where there exists k0 > 0 such that θk is
a finite Blaschke product for k ≥ k0 but not for k < k0. In this situation, we use
the notation S(21)=

⊕
k≥k0

S(θk) and S(22)=
⊕

k<k0
S(θk), so S(2)= S(21)⊕

S(22). Note that r(S(21)) < r(S(22))= 1. If

T =

(
T1 T2
T3 T4

)
∈ BS(2)

(relative to the same decomposition), then it follows as in the proof of Proposition 3.8
that T3 and T4 must satisfy the conditions

sup
m
‖Rm(S(22))T3 Rm(S(21))

−1
‖<∞

and
sup

m
‖Rm(S(22))T3 Rm(S(22))

−1
‖<∞.

Since R−1
m is always a contraction, each of these conditions is met when the relevant

operator (T3 or T4) is the rank-one operator u ⊗ v and supm ‖Rm(S(22))u‖<∞. The
first part of the proof shows that this is true when u ∈

⊕
k<k0

Nk , which is dense in⊕
k<k0

Hk . Consequently, BS(2) contains a set of rank-one operators with a dense
span, and by Theorem 4.2, the same is true of B A. 2

It remains to consider the case where mA is a finite Blaschke product. We note that,
due to the relation θk+1|θk between the inner functions in the quasisimilarity model
S(2), the function θ0 is a finite Blaschke product, and each zero of each of the func-
tions θk must be a zero of θ0. Let {αi }

n
i=1 and {β}mj=1 be the zeros of θ0, labelled so that

|α1|< |α2|< · · ·< |αn|< |β1| = |β2| = · · · = |βm |.

We denote by J ′ and J ′′ direct sums of copies of simple Jordan blocks with
eigenvalues αi (where 1≤ i ≤ n) and β j (where 1≤ j ≤ m) respectively, so that S(2)
is quasisimilar to the direct sum J ′ ⊕ J ′′. In order to apply Proposition 3.8, we need
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to understand the algebra B J ′′ . Note that J ′′ is a (possibly infinite) direct sum of a
finite number of distinct simple Jordan blocks. We split these blocks into two sets—
those that are repeated infinitely many times and those that are repeated finitely many
times. Of course, if the former set is empty, the characterization of B J ′′ was obtained
in Corollary 3.7. Our first step is to consider the case where the latter set is empty.

THEOREM 4.4. Let J = Jα1 ⊕ Jα2 ⊕ · · · ⊕ Jαn , where |αk | = α and the simple
Jordan block Jαk is of dimension Nk × Nk when 1≤ k ≤ n. Let N = N1 + N2 + · · · +

Nn and let A be a direct sum of infinitely many copies of J . If T = (Ti j )
∞

i, j=1 relative
to the decomposition

H= CN1 ⊕ CN2 ⊕ · · · ⊕ CNn ⊕ CN1 ⊕ CN2 ⊕ · · · ⊕ CNn ⊕ · · · ,

then T ∈ B A if and only if each block Ti j is upper triangular.

PROOF. Relative to the given decomposition, let H1 = CN1 , H2 = CN2 , and so on.
Suppose now that T ∈ B A, and that one of its blocks, say Tpq , is not upper triangular.
Let A′ denote the restriction of A to H p ⊕Hq . Since both Rm(A) and R−1

m (A) are
block diagonal matrices with blocks of the same spectral radius α, the (p, q)th block
of Rm(A)TRm(A)−1 is equal to Rm(A′)Tpq Rm(A′)−1. Therefore

sup
m
‖Rm(A

′)Tpq Rm(A
′)−1
‖ ≤ sup

m
‖Rm(A)TRm(A)

−1
‖<∞

and Tpq ∈ B A′ , contradicting Theorem 3.5. That shows that the upper triangularity
condition is necessary.

To prove that it is sufficient, let T = (Ti j ) be a matrix relative to the given
decomposition of H, and suppose that each block is upper triangular. We now replace
the basis {en} by its permutation {ẽn}, so that in the new basis the matrix of T becomes
block upper triangular. In the first of two steps, we write H=

⊕
k≥0 Gk , where each

Gk is a copy of H1 ⊕H2 ⊕ · · · ⊕Hn , and we permute the basis vectors within each Gk
as described in the remark following Theorem 3.5. Relative to the new decomposition
and basis of H, T is now a block matrix and each block is an N × N matrix that is itself
block upper triangular. We denote this new basis of Gk by { f (k)i }

N
i=1, or just { fi }

N
i=1.

Next we perform what is sometimes called ‘the canonical shuffle’: we write H as a
direct sum K1 ⊕K2 ⊕ · · · ⊕K N , where Ki has as an ordered basis f (1)i , f (2)i , . . . . If
we denote this new basis of H by {ẽ j }, we see that the corresponding matrix for T is
block upper triangular; more precisely, T = (Ci j )

N
i, j=1, and Ci j = 0 when i > j . The

transition from { fn} to {ẽn} also affects the matrices of Rm(A) and Rm(A)−1. Since A
is a direct sum of the same operator J , the operators Rm(A) and Rm(A)−1 exhibit the
same pattern: Rm(A) is a direct sum of infinitely many copies of Rm(J ), and Rm(A)−1

is a direct sum of infinitely many copies of Rm(J )−1. Therefore, if in the basis { fn}

the matrices for Rm(J ) and R−1
m (J ) are (r (m)i j )N

i, j=1 and (s(m)i j )N
i, j=1 respectively, then

in {ẽn} the matrices for Rm(A) and R−1
m (A) are (r (m)i j I )N

i, j=1 and (s(m)i j I )N
i, j=1.

We can now prove that T ∈ B A. Clearly, Rm(A)TRm(A)−1 is an N × N matrix
with operator entries, so we need to show that each of its N 2 blocks remains bounded
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as m→∞. To that end, fix i and j . Then the (i, j)th block of Rm(A)TRm(A)−1

is
∑N

k,l=1 r (m)ik Ckls
(m)
l j , so it suffices to prove that supm ‖r

(m)
ik Ckls

(m)
l j ‖<∞ for each

pair (k, l) where k ≤ l. We fix such a pair (k, l). Since Ckl is a bounded operator, it
remains to prove that supm |r

(m)
ik s(m)l j |<∞. Note that

|r (m)ik | ≤ ‖(r
(m)
1k , r (m)2k , . . . , r (m)Nk )‖ = ‖Rm(J ) fk‖.

Also, Rm(J )−1 is a Hermitian matrix, and it follows that

|s(m)l j | = |s
(m)
jl | ≤ ‖(s

(m)
1l , s(m)2l , . . . , s(m)Nl )‖ = ‖(Rm(J )

−1) fl‖.

Thus

sup
m
|r (m)ik s(m)l j | ≤ sup

m
‖Rm(J ) fk‖‖(Rm(J )

−1) fl‖ = sup
m
‖Rm(J ) fk ⊗ fl(Rm(J )

−1)‖.

It is not hard to see that the second assertion of Corollary 3.7 applies to the operator J
and the basis { fi }

N
i=1. Since k ≤ l, the theorem is proved. 2

Next we address the situation when J ′′ is a direct sum of simple Jordan blocks, in
which some blocks are repeated finitely many times, and others infinitely many times.

THEOREM 4.5. Let J1 = Jα1 ⊕ Jα2 ⊕ · · · ⊕ Jαn and J2 = Jαn+1 ⊕ Jαn+2 ⊕ · · · ⊕ Jαn+m ,
where |αk | = α and the simple Jordan block Jαk is of dimension Nk × Nk whenever
1≤ k ≤ n + m. Let A be a direct sum of infinitely many copies of J1 followed by J2.
If T = (Ti j )

∞

i, j=1 relative to the decomposition

H = CN1 ⊕ CN2 ⊕ · · · ⊕ CNn ⊕ CN1 ⊕ CN2 ⊕ · · · ⊕ CNn

⊕ · · · ⊕ CNn+1 ⊕ CNn+2 ⊕ · · · ⊕ CNm+n ,

then T ∈ B A if and only if each block Ti j is upper triangular.

PROOF. We cannot apply Theorem 4.4 directly, because when k ≥ n + 1, the blocks
Jαk are not repeated infinitely many times. We correct this ‘error’ by defining the
operator Ĵ as a direct sum of A with infinitely many copies of J2. This operator acts
on the direct sum Ĥ=H⊕H′, where

H′ = CNn+1 ⊕ CNn+2 ⊕ · · · ⊕ CNm+n ⊕ CNn+1 ⊕ CNn+2 ⊕ · · · ⊕ CNm+n ⊕ · · · .

Further, we identify the operator T acting on H with the operator T̂ = T ⊕ 0 acting
on Ĥ. Then

Rm( Ĵ )T̂R−1
m ( Ĵ )= Rm(J )TR−1

m (J ),

so T ∈ B A if and only if T̂ ∈ B Ĵ . Now the result follows from Theorem 4.4 since each

block of T̂ is upper triangular if and only if the same is true of T . 2

Combining Corollary 3.7, Theorems 4.4 and 4.5 we obtain the general case.

THEOREM 4.6. Let A be a C0 contraction on H and let mA be its minimal function.
If mA is a finite Blaschke product, then A is quasisimilar to S(2), which is a finite or
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infinite direct sum of simple Jordan blocks. Further, S(2)= S(21)⊕ S(22), where
all blocks in S(21) have eigenvalues of absolute value less than the spectral radius
of A and all blocks in S(22) have eigenvalues of absolute value equal to the spectral
radius of A. If

T =

(
T1 T2
T3 T4

)
relative to this decomposition, then T ∈ BS(2) if and only if T3 = 0 and T4 ∈ BS(22).
Moreover, S(22)=

⊕
Jαk and, relative to this decomposition, an operator T =

(Ti j ) ∈ BS(22) if and only if each Ti j is upper triangular.

Theorem 4.6 shows that the algebra BS(2) has a nontrivial invariant subspace. Using
Theorem 4.2, we obtain our final result.

THEOREM 4.7. Let A be a C0 contraction on H and let mA be its minimal function. If
mA is a finite Blaschke product, then the algebra BS(2) possesses a nontrivial invariant
subspace.
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