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MURNAGHAN-NAKAYAMA RULES FOR
CHARACTERS OF IWAHORI-HECKE ALGEBRAS OF

THE COMPLEX REFLECTION GROUPS G(r, p, n)

TOM HALVERSON AND ARUN RAM

ABSTRACT. Iwahori-Hecke algebras for the infinite series of complex reflection
groups G(r, p, n) were constructed recently in the work of Ariki and Koike [AK], Broué
and Malle [BM], and Ariki [Ari]. In this paper we give Murnaghan-Nakayama type for-
mulas for computing the irreducible characters of these algebras. Our method is a gen-
eralization of that in our earlier paper [HR] in which we derived Murnaghan-Nakayama
rules for the characters of the Iwahori-Hecke algebras of the classical Weyl groups. In
both papers we have been motivated by C. Greene [Gre], who gave a new derivation
of the Murnaghan-Nakayama formula for irreducible symmetric group characters by
summing diagonal matrix entries in Young’s seminormal representations. We use the
analogous representations of the Iwahori-Hecke algebra of G(r, p, n) given by Ariki and
Koike [AK] and Ariki [Ari].

1. Introduction.
The finite irreducible complex reflection groups come in three infinite families: the

symmetric groups Sn on n letters; the wreath product groups Zr o Sn, where Zr denotes
the cyclic group of order r; and a series of index-p subgroups G(r, p, n) of Zr o Sn for
each positive integer p that divides r. In the classification of finite irreducible reflection
groups, besides these infinite families Sn, Zr, and G(r, p, n), there exist only 34 excep-
tional irreducible reflection groups, see [ST].

A formula for the irreducible characters of the Iwahori-Hecke algebras for Sn is
known [Ram], [KW], [vdJ]. This formula is a q-analogue of the classical Murnaghan-
Nakayama formula for computing the irreducible characters of Sn. Similar formulas for
the characters of the groups G(r, p, n) are classically known, see [Mac], [Ste], [AK], [Osi]
and the references there. Formulas of this type are also known for the Iwahori-Hecke al-
gebras of Weyl groups of types B and D [HR], [Pfe1], [Pfe2]. Recently, Iwahori-Hecke
algebras have been constructed for the groups Zr oSn and G(r, p, n) [AK], [BM], [Ari]. In
this paper we derive Murnaghan-Nakayama type formulas for computing the irreducible
characters of the Iwahori-Hecke algebras that correspond to Zr o Sn and G(r, p, n).

Hoefsmit [Hfs] has given explicit analogues of Young’s seminormal representations
for the Iwahori-Hecke algebras of types An�1, Bn, and Dn. Ariki and Koike, [AK] and
[Ari], have constructed “Hoefsmit-analogues” of Young’s seminormal representations
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for Iwahori-Hecke algebras Hr,p,n of the groups G(r, p, n). Our approach is to derive
the Murnaghan-Nakayama rules by computing the sum of diagonal matrix elements
in an explicit “Hoefsmit” representation of each algebra. We are motivated by Curtis
Greene [Gre], who takes this approach using the Young seminormal form of the irre-
ducible representations of the symmetric group and gives a new derivation of the clas-
sical Murnaghan-Nakayama rule. Greene does this by using the Möbius function of a
poset that is determined by the partition which indexes the irreducible representation.
We generalize Greene’s poset theorem so that it works for our cases. In this way we are
able to compute the characters of the Hecke algebras Hr,n ≥ Hr,1,n.

To compute the characters of the Iwahori-Hecke algebra Hr,p,n of G(r, p, n), p Ù 1,
we use double centralizer methods (Clifford theory methods) to write these characters
in terms of a certain bitrace on the irreducible representations of Hr,n ≥ Hr,1,n. We then
compute this bitrace in terms of the irreducible character values of Hr,n.

The character formulas given in this paper contain the Murnaghan-Nakayama rules
for the complex reflection groups G(r, p, n) and the Iwahori-Hecke algebras of classical
type as special cases.

REMARK. In this paper we only give formulas for computing the characters of cer-
tain “standard elements” of the Iwahori-Hecke algebra which are given by (2.10) in the
case of the Iwahori-Hecke algebras of Zr o Sn and by (3.15) in the case of the Iwahori-
Hecke algebras of G(r, p, n), p Ù 1. In this paper we have not made any effort to show
that this is sufficient to determine the values of the characters on all elements. We have
a method for proving this which will be given in another paper. Results of this type for
Iwahori-Hecke algebras of Weyl groups have been given in [GP].

2. Characters of Iwahori-Hecke Algebras of (ZÛrZ) o Sn.
For positive integers r and n, let Sn denote the symmetric group of order n generated

by s2, s3, . . . , sn, where si denotes the transposition si ≥ (i � 1, i), and let Zr ≥ ZÛrZ
denote the finite cyclic group of order r. Then the wreath product group Zr o Sn is a
complex reflection group that can be identified with the group of all n ð n permutation
matrices whose non-zero entries are r-th roots of unity.

Let q and u1, u2, . . . , ur be indeterminates. Let Hr,n be the associative algebra with 1
over the field C(u1, u2, . . . , ur, q) given by generators T1, T2, . . . , Tn and relations

(1) TiTj ≥ TjTi, for ji � jj Ù 1,

(2) TiTi+1Ti ≥ Ti+1TiTi+1, for 2 � i � n � 1,

(3) T1T2T1T2 ≥ T2T1T2T1,

(4) (T1 � u1)(T1 � u2) Ð Ð Ð (T1 � ur) ≥ 0,

(5) (Ti � q)(Ti + q�1) ≥ 0, for 2 � i � n.
Upon setting q ≥ 1 and ui ≥ òi�1, where ò is a primitive r-th root of unity, one ob-
tains the group algebra C[Zr o Sn]. The algebras Hr,n were first constructed by Ariki and
Koike [AK], and they were classified as cyclotomic Hecke algebras of type Bn by Broué
and Malle [BM]. In the special case where r ≥ 1 and u1 ≥ 1, we have T1 ≥ 1, and
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H1,n is isomorphic to an Iwahori-Hecke algebra of type An�1. The case H2,n when r ≥ 2,
u1 ≥ p, and u2 ≥ p�1, is isomorphic to an Iwahori-Hecke algebra of type Bn.

Shapes and standard tableaux. As in [Mac], we identify a partition ã with its Ferrers
diagram and say that a box b in ã is in position (i, j) in ã if b is in row i and column j of
ã. The rows and columns of ã are labeled in the same way as for matrices.

An r-partition of size n is an r-tuple, ñ ≥ (ñ(1),ñ(2), . . . ,ñ(r)) of partitions such that
jñ(1)j + jñ(2)j + Ð Ð Ð + jñ(r)j ≥ n. If ó ≥ (ó(1), ó(2), . . . , ó(r)) is another r-partition, we write
ó � ñ if ó(i) � ñ(i) for 1 � i � r. In this case, we say thatñÛó ≥ (ñ(1)Ûó(1), ó(2)Ûñ(2), . . . ,
ñ(r)Ûó(r)) is an r-skew shape. We refer to r-skew shapes and r-partitions collectively as
shapes.

If ï is a shape of size n, a standard tableau L ≥ (L(1), L(2), . . . , L(r)) of shape ï is a
filling of the Ferrers diagram of ï with the numbers 1, 2, . . . , n such that the numbers
are increasing left to right across the rows and increasing down the columns of each L(i).
For any shape ï, let L(ï) denote the set of standard tableaux of shape ï and, for each
standard tableau L, let L(k) denote the box containing k in L.

Representations. Define the content of a box b of a (possibly skew) shape ï ≥

(ï(1), . . . ,ï(r)) by

(2. 1) ct(b) ≥ ukq2(j�i), if b is in position (i, j) in ï(k).

For each standard tableau L of size n, define the scalar (Ti)LL by

(2. 2) (Ti)LL ≥
q � q�1

1 �
ct
�

L(i�1)
�

ct
�

L(i)
�

, for 2 � i � n.

Note that (Ti)LL depends only on the positions of the boxes containing i and i � 1 in L.
Let ï ≥ (ï(1), . . . ,ï(r)) be a (possibly skew) shape of size n, and for each standard

tableau L 2 L(ï), let vL denote a vector indexed by L. Let Vï be the C(u1, . . . , ur, q)-
vector space spanned by fvL j L 2 L(ï)g, so that the vectors vL form a basis of Vï.
Define an action of Hr,n on Vï by defining

(2. 3)
T1vL ≥ ct

�
L(1)

�
vL,

TivL ≥ (Ti)LLvL +
�
q�1 + (Ti)LL

�
vsiL, 2 � i � n,

where siL is the same standard tableau as L except that the positions of i and i � 1 are
switched in siL. If siL is not standard, then we define vsiL ≥ 0.

The following theorem is due to Young [You] for the symmetric group Sn, to Hoefs-
mit [Hfs] for H1,n, and to Ariki and Koike [AK] for Hr,n, r ½ 2.

THEOREM 2.4 ([YOU],[HFS],[AK]). The modules Vï, where ï runs over all r-partitions
of size n, form a complete set of nonisomorphic irreducible modules for Hr,n.

Hoefsmit elements. Define elements ti 2 Hr,n, for 1 � i � n, by

(2. 5) ti ≥ TiTi�1 Ð Ð Ð T2T1T2 Ð Ð Ð Ti�1Ti.
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To our knowledge, these elements were discovered by Hoefsmit in the case of the
Iwahori-Hecke algebras of type Bn and were rediscovered by Ariki and Koike for
Iwahori-Hecke algebras of Zr oSn. For each standard tableau L of size n, define the scalar
(ti)LL by

(2. 6) (ti)LL ≥ ct
�
L(i)

�
, for 1 � i � n.

The following proposition is due to Hoefsmit for r ≥ 1, 2 and to Ariki and Koike for
r Ù 2.

PROPOSITION 2.7 ([HFS], PROP. 3.3.3; [AK], PROP. 3.16). For 1 � i � n, the action of
ti on a vector vL, where L is a standard tableau, is

tivL ≥ (ti)LLvL.

Furthermore, these elements commute:

PROPOSITION 2.8 ([AK], LEMMA 3.3). The subalgebra ·n,r of Hr,n generated by
t1, t2, . . . , tn is an abelian subalgebra, i.e., the ti commute.

Standard elements. For 1 � k Ú ‡ � n and 0 � i � r � 1, define

(2. 9) R(i)
k‡ ≥ (tk)i Tk+1Tk+2 Ð Ð Ð T‡

and, for each 1 � k � n, define R(i)
kk ≥ (tk)i. We say that an Sn-sequence of length m is a

sequence ‡̨ ≥ (‡1, . . . , ‡m) satisfying 1 � ‡1 Ú ‡2 Ú Ð Ð Ð Ú ‡m ≥ n, and we say that a
Zr-sequence of length m is a sequence˛̊≥ (i1, . . . , im) satisfying 0 � ij � r� 1 for each

j. For an Sn-sequence ‡̨ ≥ (‡1, . . . , ‡m) and a Zr-sequence į ≥ (i1, . . . , im), define

(2. 10) T̨˚
‡̨
≥ R(i1)

1,‡1
R(i2)
‡1+1,‡2

Ð Ð Ð R(im)
‡m�1+1,‡m

2 Hr,n.

For example, in H4,10 we have the standard element

T(0,2,3,1)
(3,4,8,10) ≥ R(0)

1,3R(2)
4,4R(3)

5,8R(1)
9,10 ≥ T2T3(t4)2(t5)3T6T7T8t9T10.

For 1 � k Ú ‡ � n and 0 � i � r � 1, we define

(2. 11) ∆(i)
k‡(L) ≥ (tk)i

LL(Tk+1)LL(Tk+2)LL Ð Ð Ð (T‡)LL,

and for 1 � k � n, we define ∆(i)
kk(L) ≥ (tk)i

LL. Since (Tj)LL depends only on the positions
of the boxes j and j�1 in L, the scalar ∆(i)

k‡(L) depends only on the positions of the boxes
containing k, k + 1, . . . , ‡ in L.

PROPOSITION 2.12. Let ‡̨ ≥ (‡1, . . . , ‡m) be an Sn-sequence and˛̊≥ (i1, . . . , im) be a
Zr-sequence, and let L be a standard tableau of size n. Let T˛̊

‡̨
vL

þþþ
vL

denote the coefficient

of vL in T̨˚
‡̨

vL. Then

T˛̊
‡̨

vL

þþþ
vL
≥ ∆(i1)

1,‡1
(L)∆(i2)

‡1+1,l2
(L) Ð Ð Ð ∆(im)

‡m�1+1,‡m
(L).
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In particular, for given sequences ‡̨ and˛̊, the value T̨˚
‡̨

vL

þþþ
vL

depends only on the positions
and the linear order of the boxes in L.

PROOF. This follows from the definition of the action of Hr,n on standard tableaux
and the fact (2.3) that when Ti acts on a standard tableau L it affects only the positions
of L containing i and i � 1. The result follows, since tj acts as a scalar (Prop. 2.7), and
T̨˚
‡̨

otherwise is a product (from right to left) of a decreasing sequence of generators Ti.

Characters. If L is a standard tableau (of any shape, possibly of skew shape) with n
boxes, define

(2. 13) ∆(i)(L) ≥ ∆(i)
1,n(L),

and for any shape ï (possibly skew), define

(2. 14) ∆(i)(ï) ≥
X

L2L(ï)
∆(i)(L).

In making these definitions, the actual values in the boxes of L do not matter, only their
positions and their order relative to one another are relevant. Thus, the definitions make
sense when the standard tableaux have values that form a subset of f1, 2, . . . g (with the
usual linear order).

For an r-partition ï, let üïHr,n
denote the character of the irreducible Hr,n-representation

Vï determined in Theorem 2.4. The following theorem is our analogue of the Murnaghan-
Nakayama rule.

THEOREM 2.15. Let ‡̨ ≥ (‡1, . . . , ‡m) be an Sn-sequence, ˛̊ ≥ (i1, . . . , im) be a Zr-
sequence, and suppose that ï is an r-partition of size n. Then

üïHr,n
(T˛̊

‡̨
) ≥

X
;≥ñ(0)�ñ(1)�ÐÐÐ�ñ(m)≥ï

∆(i1)(ñ(1))∆(i2)(ñ(2)Ûñ(1)) Ð Ð Ð ∆(im)(ñ(m)Ûñ(m�1)),

where the sum is over all sequences of shapes ; ≥ ñ(0) � ñ(1) � Ð Ð Ð � ñ(m) ≥ ï such
that jñ(j)Ûñ(j�1)j ≥ j‡jj.

PROOF. By Proposition 2.12 the character üïHr,n
is given by

üïHr,n
(T̨˚

‡̨
) ≥

X
L2L(ï)

T̨˚
‡̨

vL

þþþ
vL
≥

X
L2L(ï)

∆(i1)
1,‡1

(L)∆(i2)
‡1+1,‡2

(L) Ð Ð Ð ∆(im)
‡m�1+1,‡m

(L).

The result follows by collecting terms according to the positions occupied by the various
segments of the numbers f1, 2, . . . , ‡1g, f‡1 + 1, . . . , ‡2g, . . . , f‡m�1 + 1, . . . , ‡mg.

In view of Theorem 2.15 it is desirable to give an explicit formula for the value of
∆(i)(ï). To do so requires some further notations: The shape ï is a border strip if it is
connected and does not contain two boxes which are adjacent in the same northwest-to-
southeast diagonal. This is equivalent to saying that ï is connected and does not contain
any 2ð 2 block of boxes. The shape ï is a broken border strip if it does not contain any
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2ð2 block of boxes. Therefore, a broken border strip is a union of connected components,
each of which is a border strip.

Drawing Ferrers diagrams as in [Mac], we say that a sharp corner in a border strip is
a box with no box above it and no box to its left. A dull corner in a border strip is a box
that has a box to its left and a box above it but has no box directly northwest of it. The
picture below shows a broken border strip with two connected components where each
of the sharp corners has been marked with an s and each of the dull corners has been
marked with a d.

s

s d
s d

s

FIGURE 2.16

The following theorem is proved using Corollary 4.14 of Theorem 4.6. We have
placed these results in Section 4, because they stand on their own as results on planar
posets.

THEOREM 2.17. Let ï be any shape (possibly skew) with n boxes. Let CC be the set of
connected components of ï, and let cc ≥ jCCj be the number of connected components
of ï.

(a) If ï is not a broken border strip, then ∆(k)(ï) ≥ 0;
(b) If ï is a broken border strip, then

∆(0)(ï) ≥ (q � q�1)cc�1 Y
bs2CC

qc(bs)�1(�q�1)r(bs)�1,

and, for 1 � k � r � 1,

∆(k)(ï) ≥ (�q + q�1)cc�1
� Y

s2SC
ct(s)

�� Y
d2DC

ct(d)�1
�

ð
jDCjX
t≥0

(�1)tet

�
ct(DC)

�
hk�t�cc

�
ct(SC)

�

ð
Y

bs2CC
qc(bs)�1(�q�1)r(bs)�1,

where SC and DC denote the set of sharp corners and dull corners in ï, respectively, and
if bs is a border strip, then r(bs) is the number of rows in bs, and c(bs) is the number of
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columns in bs. The content ct(b) of a box b is as given in (2.1). The function et

�
ct(DC)

�
is the elementary symmetric function in the variables fct(d), d 2 DCg, and the function
hk�t�cc

�
ct(SC)

�
is the homogeneous symmetric function in the variables fct(s), s 2 SCg.

PROOF. Recall from (2.2) that

(Tk)LL ≥
q � q�1

1 �
ct
�

L(k�1)
�

ct
�

L(k)
�

.

It follows from the definitions of ∆(k)(L) in (2.13) and (2.14) that we may apply Corol-
lary 4.14 with xb ≥ ct(b) for all boxes b in ï.

For two boxes a and b in ï that are adjacent in a diagonal, we have

1 � ct(a)ct(b)�1

(q � q�1)
≥

1 � 1
q � q�1

≥ 0.

Thus, ∆(k)(ï) ≥ 0 if ï is not a broken border strip. Furthermore,

(q � q�1)
1 � ct(a)ct(b)�1

≥

8><
>:

(q�q�1)
1�q�2 ≥ q, if a and b are adjacent in a row,

(q�q�1)
1�q2 ≥ �q�1, if a and b are adjacent in a column.

The result now follows from Corollary 4.14.

3. Characters of Iwahori-Hecke Algebras of G(r, p, n).
In this section we define the complex reflection groups G(r, p, n) and their Iwahori-

Hecke algebras Hr,p,n. The groups G(r, p, n) are normal subgroups of indexp in the groups
G(r, 1, n), and the groups G(r, 1, n) are isomorphic to the wreath products Zr o Sn. The
corresponding Hecke algebras Hr,p,n are subalgebras of Hr,n. We compute the irreducible
characters of Hr,p,n in terms of the irreducible characters of Hr,n, which are computed in
Section 2.

The complex reflection groups G(r, p, n). Let r, p, d, and n be positive integers such
that pd ≥ r. The complex reflection group G(r, p, n) is the set of nð n matrices such that

(a) The entries are either 0 or r-th roots of unity.
(b) There is exactly one nonzero entry in each row and each column.
(c) The d-th power of the product of the nonzero entries is 1.

The order of G(r, p, n) is given by jG(r, p, n)j ≥ drn�1n! and G(r, p, n) is a normal sub-
group of G(r, 1, n) of index p.

Let ê ≥ e2ôiÛr be a primitive r-th root of unity. Then G(r, p, n) is generated by the
elements

s0 ≥ êpE11 +
nX

i≥2
Eii, s1 ≥ êE12 + ê�1E21 +

nX
i≥3

Eii,

sj ≥
X

i Â≥j,j�1
Eii + E(j�1)j + Ej(j�1), 2 � j � n,
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where Eij denotes the n ð n matrix with a 1 in the i-th row and j-th column and with all
other entries 0.

EXAMPLE 3.1. The following are important special cases of G(r, p, n).
(1) G(1, 1, n) ≥ Sn, the symmetric group.
(2) G(r, 1, n) ≥ Zr o Sn.
(3) G(2, 1, n) ≥ WBn the Weyl group of type B.
(4) G(2, 2, n) ≥ WDn the Weyl group of type D.
The Hecke algebras. Let ¢ ≥ e2ôiÛp be a primitive p-th root of unity, and let q and

x1Ûp
0 , . . . , x1Ûp

d�1 be indeterminates. Then Hr,n is the associative algebra with 1 over the field

C(x1Ûp
0 , . . . , x1Ûp

d�1, q) given by generators T1, . . . , Tn, and relations
(1) TiTj ≥ TjTi, for ji � jj Ù 1,
(2) TiTi+1Ti ≥ Ti+1TiTi+1, for 2 � i � n � 1,
(3) T1T2T1T2 ≥ T2T1T2T1,
(4) (Tp

1 � x0)(Tp
1 � x1) Ð Ð Ð (Tp

1 � xd�1) ≥ 0,
(5) (Ti � q)(Ti + q�1) ≥ 0, for 2 � i � n.
This is the same as the definition of the algebra Hr,n in Section 2 except that we are

using ¢‡x1Ûp
k , 0 � k � d � 1, 0 � ‡ � p � 1, in place of u1, . . . , ur. Let Hr,p,n be the

subalgebra of Hr,n generated by the elements

(3. 2) a0 ≥ Tp
1 , a1 ≥ T�1

1 T2T1, and ai ≥ Ti, 2 � i � n.

Ariki ([Ari], Proposition 1.6) shows that Hr,p,n is an analogue of the Iwahori-Hecke alge-
bra for the groups G(r, p, n). The special case H2,2,n is isomorphic to an Iwahori-Hecke
algebra of type Dn.

Shapes and tableaux. As above, r, p, d, and n are positive integers such that pd ≥ r.
We organize each r-partition ï of size n into d groups of p partitions each, so that we can
write

ï ≥ (ï(k,‡)), for 0 � k � d � 1 and 0 � ‡ � p � 1,

where each ï(k,‡) is a partition and
P

k,‡ jï
(k,‡)j ≥ n. It is convenient to view the partitions

ï(k,0), . . . ,ï(k,p�1) as all lying on a circle so that we have d necklaces of partitions, each
necklace with p partitions on it. In order to specify this arrangement, we shall say that ï
is a (d, p)-partition.

As in Section 2, we let L(ï) denote the set of standard tableaux of shape ï, and, for
each standard tableau L, let L(i) denote the box containing i in L.

Action on standard tableaux. Let ï ≥ (ï(k,‡)) be a (d, p)-partition of size n. Since
Hr,p,n is a subalgebra of Hr,n, the irreducible Hr,n-representations Vï are (not necessarily
irreducible) representations of Hr,p,n. However, we can easily describe the action of Hr,p,n

on Vï by restricting the action of Hr,n.
With the given specializations of the ui, the content of a box b of ï, see (2.1), is

ct(b) ≥ ¢‡x1Ûp
k q2(j�i), if b is in position (i, j) in ï(k,‡).
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As in Section 2, we define, for each standard tableau L of size n, the scalar

(Ti)LL ≥
q � q�1

1 �
ct
�

L(i�1)
�

ct
�

L(i)
�

, for 2 � i � n.

From (2.3) and (3.2), it follows that the action of Hr,p,n on Vï is given by

(3.3)

a0vL ≥ ct
�
L(1)

�p
vL ≥ xkvL, if 1 2 L(k,‡),

a1vL ≥ (T2)LLvL +
ct
�
L(1)

�
ct
�
s2L(1)

��q�1 + (T2)LL

�
vs2L,

aivL ≥ (Ti)LLvL +
�
q�1 + (Ti)LL

�
vsiL.

Recall that ti ≥ Ti Ð Ð Ð T2T1T2 Ð Ð Ð Ti for 1 � i � n, and define elements Si 2 Hr,p,n,
1 � i � n, by

S1 ≥ a0 ≥ tp
1,

S2 ≥ a1a2 ≥ t�1
1 t2,

Si ≥ aiai�1 Ð Ð Ð a4a3a1a2a3a4 Ð Ð Ð ai�1ai ≥ t�1
1 ti, for 3 � i � n.

It follows from the action of the ti (Prop. 2.7) that the action of Si on Vï is also diagonal
and is given by

(3.4)
S1vL ≥ ct

�
L(1)

�p
vL

SivL ≥ ct
�
L(1)

��1
ct
�
L(i)

�
vL.

Furthermore, since the ti commute (Prop. 2.8), it follows that the Si commute.
AZÛpZ action on shapes. Letï ≥ (ï(k,‡)) be a (d, p)-partition. We define an operation

õ that moves the partitions on each circle over one position. Given a box b in position
(i, j) of the partition ï(k,‡) then õ(b) is the same box b except moved to be in position (i, j)
of ï(k,‡+1), where ‡ + 1 is taken modulo p. The map õ is an operation of order p and acts
uniformly on the shape ï ≥ (ï(k,‡)), on standard tableaux L ≥ (L(k,‡)) of shape ï, and on
the basis vector vL of Vï:

õ(ï) ≥ (ï(k,‡+1)), õ(L) ≥ (L(k,‡+1)), and õ(vL) ≥ võ(L).

We use the notation õ in each case, since the operation is always clear from context. In
the last case, extend linearly to get the vector space homomorphism õ: Vï �! Võ(ï). If
b is a box in a shape ï, then

(3. 5) ct
�
õ(b)

�
≥ ¢ct(b).

LEMMA 3.6. The map õ: Vï ! Võ(ï) is a Hr,p,n-module isomorphism, i.e., õ commutes
with the action of Hr,p,n.

PROOF. Since (Ti)LL, see (2.2), depends only on the row and column of boxes i and
i�1 and not on the position of the tableaux, we have (Ti)õL,õL ≥ (Ti)LL, for all 1 � i � n
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and all standard tableaux L. Since õ(s2L) ≥ s2õ(L), it follows that aivõL ≥ õ(aivL). (Note
that, because ¢ is a p-th root of unity, T1 does not commute with õ but that a0 does.)

The set of transformations

fõã j 0 � ã � p � 1g

defines an action of the cyclic group ZÛpZ on the set of (d, p)-partitions and on the set
of vector spaces Vï.

Irreducible representations. Fix a (d, p)-partition ï of size n, and let Kï be the sta-
bilizer of ï under the action of ZÛpZ. The group Kï is a cyclic group of order jKïj and
is generated by the transformation õfï where fï is the smallest integer between 1 and p
such that õfï (ï) ≥ ï. Thus,

(3. 7) Kï ≥ fõãfï : Vï ! Vï j 0 � ã � jKïj � 1g.

Figure (3.9) is an example of a (3, 6)-partition ï for which fï ≥ 2 and Kï ≥ f1,õ2,õ4g ¾≥

Z3. The elements of Kï are all Hr,p,n-module isomorphisms. The irreducible Kï-modules
are all one-dimensional, and the characters of these modules are given explicitly by

(3. 8)
ëj: Kï �! C
õfï 7�! ¢jfï

where 0 � j � jKïj � 1. To see this note that ° ≥ ¢fï is a primitive jKïj-th root of unity.

0,4

0,5

0,3

0,2

0,1

0,0

1,5

1,0

1,1

1,2

1,3

1,4

2,0

2,1

2,2

2,3
2,4

2,5

FIGURE 3.9. A (3, 6)-partition ï with f
ï
≥ 2.

It follows (from a standard double centralizer result) that as an Hr,p,n ð Kï-bimodule

(3. 10) Vï ¾≥
jKïj�1M

j≥0
V(ï,j) 
 Zj,

where V(ï,j) is an Hr,p,n-module and Zj is the irreducible Kï-module with character ëj.
Ariki ([Ari], Theorem 2.6) has explicitly constructed the modules V(ï,j) and proved that
they form a complete set of irreducible Hr,p,n-modules. From the point of view of (3.10),
one can prove that the V(ï,j) are irreducible Hr,p,n-modules by setting q ≥ 1 and xk ≥ 1
for all 0 � k � d � 1 and appealing to the corresponding result for the group G(r, p, n).
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THEOREM 3.11 ([ARI], THEOREM 2.6). The modules V(ï,j), where ï runs over all r-
partitions and 0 � j � jKïj � 1, form a complete set of nonisomorphic irreducible
modules for Hr,p,n.

REMARK 3.12. It should be noted that if fï ≥ p and thus jKïj ≥ 1, then the irre-
ducible Hr,n-module Vï is also an irreducible Hr,p,n-module.

Characters. Fix a (d, p)-partition ï and letü(ï,j) denote the character of the irreducible
Hr,p,n-module V(ï,j) defined by (3.10). Letüï denote the Hr,p,nðKï-bitrace on the module
Vï, i.e., if h 2 Hr,p,n and õãfï 2 Kï, then

(3. 13) üï(hõãfï ) ≥
X

L2L(ï)
hõãfïvL

þþþ
vL
≥

X
L2L(ï)

hvL

þþþ
v
õ�ãfï L

,

where hõãfïvL

þþþ
vL

denotes the coefficient of vL in the expansion of hõãfïvL in terms of the

basis of Vï corresponding to standard tableaux.
By taking traces in the module equation (3.10), we obtain

üï(hõãfï ) ≥
jKïj�1X

j≥0
ü(ï,j)(h)ëj(õãfï ) ≥

jKïj�1X
j≥0

ü(ï,j)(h)¢jãfï .

By the orthogonality of characters for Kï (or by direct computation) this formula can be
inverted to give

(3. 14) ü(ï,j)(h) ≥
1
jKïj

jKïj�1X
ã≥0

¢�jãfïüï(hõãfï), where fï ≥ pÛjKïj.

Standard elements. For 1 � k � n, define S(i)
kk ≥ Si

k and define S̃(i)
12 ≥ Si

1a1. For all
other k Ú ‡, define

(3. 15) S(i)
k‡ ≥ Si

kak+1 Ð Ð Ð a‡, and S̃(i)
1‡ ≥ Si

1a1a3 Ð Ð Ð a‡.

Following the definitions in (2.10), let (‡1, . . . , ‡m) be an Sn-sequence and let (i1, . . . , im)
be a Zr-sequence. The remainder of this section is devoted to computing the values

ü(ï,j)(S̃i1
1‡1

S(i2)
‡1+1,‡2

Ð Ð Ð S(im)
‡m�1+1,‡m

) and ü(ï,j)(Si1
1‡1

S(i2)
‡1+1,‡2

Ð Ð Ð S(im)
‡m�1+1,‡m

).

Reduction to R(i1)
1,‡1

R(i2)
‡1+1,‡2

Ð Ð Ð R(im)
‡m�1+1,‡m

. Recall the definition (2.9) of the element R(i)
m,‡

of Hr,n. We now show that it is sufficient to compute characters on special products of
these elements.

LEMMA 3.16. The group generated by fai j 0 � i � ng in Hr,n is a normal subgroup
of the group generated by fTj j 1 � j � ng in Hr,n.

PROOF. It is sufficient to show that TjaiT�1
j and T�1

j aiTj can be written as a product
of the ais and their inverses. The only two nontrivial calculations are the following.

T1a2T�1
1 ≥ T1T2T�1

1 ≥ T�1
2 T2T1T2T�1

1 ≥ T�1
2 T�1

1 T2T1T2 ≥ a�1
2 a1a2
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and

T�1
1 a1T1 ≥ T�2

1 T2T2
1 ≥ T�1

1 (T�1
1 T2T1T2)T�1

2 T1

≥ T�1
1 T2T1T2T�1

1 T�1
2 T1 ≥ a1a2a�1

1 .

LEMMA 3.17. For a word g ≥ Tš1
i1 Ð Ð Ð Tš1

im in the generators of Hr,n (i.e., an element
of the group in Hr,n generated by the Ti), let å(g) denote the number of T1’s minus the
number of T�1

1 ’s in g so that å(g) is the net number of T1’s in the word. Let h be in the
group generated by fai j 0 � i � ng in Hr,p,n. Then

üï(ghg�1õãfï ) ≥ ¢�ãfïå(g)üï(hõãfï).

PROOF. First note that, by Lemma 3.16, ghg�1 2 Hr,p,n, so it makes sense to consider
the bitrace. Then

üï(ghg�1õãfï) ≥ üï(hg�1õãfïg).

We must be very careful here, because, although the action of h commutes with the action
of õãfï , the action of g and g�1 do not. In fact, since

(1) T1võL ≥ ct
�
õL(1)

�
võL ≥ ¢ct

�
L(1)

�
võL ≥ ¢õ(T1vL), and

(2) TivõL ≥ õ(TivL), for 2 � i � n, by Lemma 3.6,
it follows that g�1õãfï ≥ ¢�ãfïå(g)õãfïg�1. Thus,

üï(ghg�1õãfï ) ≥ ¢�ãfïå(g)üï(ghõãfïg�1) ≥ ¢�ãfïå(g)üï(hõãfï ).

LEMMA 3.18. Let (‡1, . . . , ‡m) be an Sn-sequence, and let (i1, . . . , im) be a Zr-sequence,
satisfying 0 � ij � r � 1 for each j.

üï(S̃i1
1‡1

S(i2)
‡1+1,‡2

Ð Ð Ð S(im)
‡m�1+1,‡m

õãfï )

≥ ¢ãfï(i2+ÐÐÐ+im�1)üï(R(i1p�i2�ÐÐÐ�im)
1,‡1

R(i2)
‡1+1,‡2

Ð Ð Ð R(im)
‡m�1+1,‡m

õãfï),

üï(Si1
1‡1

S(i2)
‡1+1,‡2

Ð Ð Ð S(im)
‡m�1+1,‡m

õãfï )

≥ ¢ãfï(i2+ÐÐÐ+im)üï(R(i1p�i2�ÐÐÐ�im)
1,‡1

R(i2)
‡1+1,‡2

Ð Ð Ð R(im)
‡m�1+1,‡m

õãfï ).

PROOF. We have

S(i)
k‡ ≥ t�i

1 R(i)
k‡, and S(i)

1‡ ≥ tip�1
1 T2t1T3 Ð Ð Ð T‡.

Since t1 commutes with Ti for i Ù 2 it follows that, for any Sn-sequence (‡1, . . . , ‡m) and
Zr-sequence (i1, . . . , im), we have

S̃i1
1‡1

S(i2)
‡1+1,‡2

Ð Ð Ð S(im)
‡m�1+1,‡m

≥ ti1p�1
1 T2t1�i2�ÐÐÐ�im

1 T3 Ð Ð Ð T‡1R
(i2)
‡1+1,‡2

Ð Ð Ð R(im)
‡m�1+1,‡m

Si1
1‡1

S(i2)
‡1+1,‡2

Ð Ð Ð S(im)
‡m�1+1,‡m

≥ ti1p
1 T2t�i2�ÐÐÐ�im

1 T3 Ð Ð Ð T‡1 R(i2)
‡1+1,‡2

Ð Ð ÐR(im)
‡m�1+1,‡m

.
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Both of these can be conjugated by a power of t1 to give

R(i1p�i2�ÐÐÐ�im)
1,‡1

R(i2)
‡1+1,‡2

Ð Ð Ð R(im)
‡m�1+1,‡m

.

Now use Lemma 3.17.

In view of Lemma 3.18 and (3.14) we shall try to compute the values of üï(hõãfï ), for
elements h 2 Hr,p,n of the form R(i1)

1,‡1
R(i2)
‡1+1,‡2

Ð Ð Ð R(im)
‡m�1+1,‡m

, where i1 +Ð Ð Ð+im ≥ 0 (mod p),

and where ‡̨ ≥ (‡1, . . . , ‡m) is an Sn-sequence and˛̊≥ (i1, . . . , im) is a Zr-sequence. In
fact we shall prove the following theorem. We state the theorem now in order to establish
the notations.

THEOREM 3.19. Let ï be a (d, p)-partition, where pd ≥ r. Let ã be such that 0 � ã �

jKïj � 1 where Kï is as defined in (3.7). Define

fï ≥ pÛjKïj and ç ≥
jKïj

gcd(ã, jKïj)
.

Let
h ≥ R(i1)

1,‡1
R(i2)
‡1+1,‡2

Ð Ð Ð R(im)
‡m�1+1,‡m

where (‡1, Ð Ð Ð , ‡m) is an Sn-sequence and (i1, Ð Ð Ð , im) is a Zr-sequence such that i1 + Ð Ð Ð+
im ≥ 0 (mod p). The element h is an element of Hr,p,n � Hr,n. If all ‡i in the sequence
(‡1, . . . , ‡m) are divisible by ç then define

n̄ ≥ nÛç, r̄ ≥ rÛç, p̄ ≥ pÛç,

(‡̄1, . . . , ‡̄m) ≥ (‡1Ûç, . . . , ‡mÛç),

ï̄(k,ú) ≥ ï(k,ú), for 0 � ú � p̄ � 1 and h̄ ≥ R(0)
1,‡̄1

Ð Ð Ð R(0)
‡̄m�1+1,‡̄m

.

Then:
(a) If ‡i is not divisible by ç for some 1 � i � m then üï(hõãfï ) ≥ 0.
(b) If all ‡i are divisible by ç and if ik Â≥ 0 for some k, then üï(hõãfï ) ≥ 0.
(c) If all ‡i are divisible by ç and if ik ≥ 0 for all k, then

üï(hõãfï ) ≥
çn̄

[ç]n̄�m
üï̄Hr̄,n̄

(h̄)
çY

i≥1

0
@ q

1 � ¢�i
+

q�1

1 � ¢i

1
An̄

,

where Hr̄,n̄ is with parameter qç, in place of q and with parameters ¢çúxçk , 0 � k � d�1,
0 � ú � p̄ � 1g in place of u1, . . . , ur̄. The element h̄ is viewed as an element of the
algebra Hr̄,n̄ and [ç] ≥ (qç � q�ç)Û(q � q�1).

REMARK 3.20. The proof of this theorem will occupy the remainder of this section.
Note that the case when ã ≥ 0, and thus ç ≥ 1, is particularly easy, since we have

üï(hõ0) ≥ üïHr,n
(h),

and these values are known by Theorem 2.17.
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î-laced tableaux. Let the notations be as in Theorem 3.19, and let î ≥ ãfï . Note that
the orbit of a box in ï under the action of õî is of size ç.

Let w1 be the permutation given in cycle notation by

(3. 21) w1 ≥ (1, 2, . . . , ç � 1, ç)(ç + 1, ç + 2, . . . , 2ç) Ð Ð Ð .

Define
L(ï)î ≥ fL 2 L j õ�îL ≥ w1Lg.

The elements of L(ï)î will be called î-laced tableaux of shape ï. It follows from (3.5)
that if L is a î-laced tableau and 1 � j � n then

(3. 22) ct
�
L(j)

�
≥ ¢�(mç�j)îct

�
L(mç)

�
,

where m is the positive integer such that 0 � mç � j � ç � 1.
As an example, the necklace in Figure 3.23 is part of a standard tableau that is 3-laced.

(This is the analogue of the alternating tableaux defined in [HR].)

27

164

8
3     12

20

15   23

6

7

18

26

2     11
19

14    22

 

5

9

17

25

1    10

13   24

21

Figure 3.23. A necklace in a 3-laced standard tableau.

LEMMA 3.24. Let the notations be as in Theorem 3.19. If hvL

þþþ
võ�îL

Â≥ 0, then

(a) L is î-laced and
(b) every ‡i in the sequence (‡1, . . . , ‡m) is divisible by ç.

PROOF. (a) Because of the special form of h the basis elements that appear in hvL

are of the form vwL, where w ≥ sj1 Ð Ð Ð sjk is a product of sj such that j1 Ú j2 Ú Ð Ð Ð Ú jk is
a subset of the sequence f2, 3, . . . , ‡1, ‡1 + 2, ‡1 + 3, . . . , ‡2, ‡2 + 2, . . .g.

This means that, in cycle notation, w is a product of cycles of the form (i, i + 1, i +
2, . . . , j�1, j). Thus, hvL

þþþ
võ�îL

Â≥ 0 only if õ�îL ≥ wL for some permutation of this form.
But any permutation ô such that ôL ≥ õ�îL must have all cycles of length ç, it follows
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that w ≥ w1 as given in (3.21). Thus, if hvL

þþþ
võ�îL

Â≥ 0, then w1L ≥ õ�îL and so L is
î-laced.

(b) By the proof of (a), w1 ≥ sj1 Ð Ð Ð sjk where j1 Ú j2 Ú Ð Ð Ð Ú jk is a subset of
the sequence of factors f2, 3, . . . , ‡1, ‡1 + 2, ‡1 + 3, . . . , ‡2, ‡2 + 2, . . .g. This fact and the
explicit form of w1 in (3.21) implies that each ‡i must be divisible by ç.

“Dividing by ç”. Keeping the notations as in Theorem 3.19, let us now assume that
the sequence (‡1, Ð Ð Ð , ‡m) is such that ‡i is divisible by ç for all i.

Let

(3. 25) wj ≥
Y
i½j

çÂ j (i�1)

si,

where the product is taken with the si in increasing order and over all i ½ j such that i�1
is not divisible by ç. Note that with this definition w1 is the same as given in (3.21) and
that w1L ≥ õ�îL if hvL

þþþ
võ�îL

Â≥ 0. In fact, it follows from the explicit form of h and the
definition of the action in (3.3) that

(3. 26) hvL

þþþ
võ�îL

≥
Y

1� j�n
Fj(L),

where Fj(L) is defined as follows:
(a) Fj(L) ≥ (Tj)wjL,wj+1L, if j � 1 is not divisible by ç,
(b) Fj(L) ≥ (Tj)wj+1L,wj+1L, if j� 1 is divisible by ç but j� 1 Â≥ ‡k for any 1 � k � m,
(c) Fj(L) ≥ (tj)

ik
wj+1L,wj+1L, if j � 1 ≥ ‡k for some 1 � k � m.

We shall compute the values of the Fj(L) explicitly in Lemma 3.30, but first we must
introduce a bit more notation.

Recall the definitions of n̄, r̄, p̄, (‡̄1, . . . , ‡̄m), ï̄, and h̄ in Theorem 3.19. If L is aî-laced
tableau define integers ö1, . . . , ön̄ and a (d, p̄) standard tableau L̄ as follows:

If L(mç) is in position (i, j) of the partition ï(k,ömp̄+úm), then
L̄(m) is in position (i, j) of the partition ï(k,úm).

In the above öm and úm are chosen such that 0 � úm � p̄ � 1.
The map

L 7�! (ö1, . . . , ön̄, L̄)

is a bijection between î-laced tableaux L and sequences (ö1, . . . , ön̄, L̄) where 0 � öm �

ç � 1 for each 1 � m � nÛç, and L̄ is a (d, p̄)-standard tableau. The following is the
necklace of Figure 3.23 after dividing by ç ≥ 3.

(2, 2, 1, 2, 2, 0, 0, 0, )
1     4

2  6

3  9

 5    8

 7

Figure 3.27. The 3-laced necklace of Figure 3.23 after division by 3.
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For each 1 � j � n̄, define

dj ≥

(
öj mod ç, if j � 1 ≥ ‡̄k for some k;
öj�1 � öj mod ç, otherwise;

(an invertible linear transformation of (ZÛçZ)n̄). Then the map

L 7�! (ö1, . . . , ön̄, L̄) 7�! (d1, . . . , dn̄, L̄),

is a bijection between î-laced tableaux L and sequences (d1, . . . , dn̄, L̄) where 0 � dm �

ç � 1 for each 1 � m � n̄, and L̄ is a (d, p̄)-standard tableau.
The reason for introducing these bijections will become more clear in the proof of the

following lemma. First let us define

(3. 28) ct
�
L̄(m)

�
≥ ¢úmx1Ûp

k q2(j�i),

if m is in position (i, j) of the partition ï̄(k,úm) of L̄ and then note that

(3. 29) ct
�
L(mç)

�
≥ ¢ömp̄ct

�
L̄(m)

�
≥ °öm ct

�
L̄(m)

�
,

where ° ≥ ¢p̄ is a primitive ç-th root of unity.

LEMMA 3.30. Let the notations be as given in Theorem 3.19 and assume that î ≥ ãfï,
that L is a î-laced standard tableau, and that the sequence (‡1, . . . , ‡m) is such that ‡i

is divisible by ç for all i. Let ° ≥ ¢p̄ ≥ e2ôiÛç, and let Fj(L) denote the factor defined
in (3.26). Let 1 � j � n and suppose that k is such that (k � 1)ç Ú j � kç.

(a) If j � 1 is not divisible by ç, then

Fj(L) ≥ (Tj)wjL,wj+1L ≥
q

1 � ¢�(kç�j+1)î +
q�1

1 � ¢(kç�j+1)î .

(b) If j � 1 is divisible by ç but j � 1 Â≥ ‡i for any 1 � i � m,

Fj(L) ≥ (Tj)wj+1L,wj+1L ≥
q � q�1

1 � °dk

ct

�
L̄
�

(k�1)
��

ct
�

L̄(k)
�

.

(c) If j � 1 ≥ ‡i�1 ≥ ‡̄i�1ç for some 0 � i � m, then

Fj(L) ≥ (tj)
ik
wj+1L,wj+1L ≥ °d‡̄i�1 +1ct

�
L̄(‡̄i�1 + 1)

�ik .

PROOF. (a) If j� 1 is not divisible by ç then wj+1L(j� 1) ≥ L(j� 1) and wj+1L(j) ≥
L(kç). Thus

ct
�
wj+1L(j � 1)

�
≥ ct

�
L(j � 1)

�
≥ ¢

�î
�

kç�(j�1)
�
ct
�
L(kç)

�
, and

ct
�
wj+1L(j)

�
≥ ct

�
L(kç)

�
.
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It follows that

Fj(L) ≥ (Tj)wjL,wj+1L ≥ q�1 +
q � q�1

1 �
ct
�

wj+1L(j�1)
�

ct
�

wj+1L(j)
�

≥ q�1 +
q � q�1

1 � ¢�î(kç�j+1)

≥
q

1 � ¢�(kç�j+1)î +
q�1

1 � ¢(kç�j+1)î .

(b) If (k�1)ç ≥ j�1 and j�1 Â≥ ‡i then wj+1L(j�1) ≥ L
�
(k�1)ç

�
and wj+1L(j) ≥ L(kç),

and

ct
�
wj+1L(j � 1)

�
≥ ct

�
L
�
(k � 1)ç

��
and ct

�
wj+1L(j)

�
≥ ct

�
L(kç)

�
.

Thus

Fj(L) ≥ (Tj)wj+1L,wj+1L ≥
q � q�1

1 �
ct

�
L
�

(k�1)ç
��

ct
�

L(kç)
�

≥
q � q�1

1 � °ök�1�ök

ct

�
L̄
�

(k�1)
��

ct
�

L̄(k)
�

≥
q � q�1

1 � °dk

ct

�
L̄
�

(k�1)
��

ct
�

L̄(k)
�

.

(c) If j � 1 ≥ ‡i�1 ≥ ‡̄i�1ç then wj+1L(j) ≥ L(‡i�1 + ç) ≥ L
�
(‡̄i�1 + 1)ç

�
and

ct
�
wj+1L(j)

�
≥ ct

�
L
�
(‡̄i�1 + 1)ç

��
.

Thus,

Fj(L) ≥ (tj)
ik
wj+1L,wj+1L ≥ ct

�
L
�
(‡̄i�1 + 1)ç

��ik

≥ °ö‡̄i�1 +1ct
�
L̄(‡̄i�1 + 1)

�ik
≥ °d‡̄i�1 +1ct

�
L̄(‡̄i�1 + 1)

�ik .

Note that the product of the factors of type (a) in the previous lemma satisfy

(3. 31) C ≥
Y

ç Â j (j�1)
Fj(L) ≥

çY
i≥1

0
@ q

1 � ¢�i
+

q�1

1 � ¢i

1
An̄

,

and thus we have that

(3. 32) hvL

þþþ
võ�îL

≥
Y

1�j�n
Fj(L) ≥ C

Y
1�k�n̄

F̄k(L̄),

where we define F̄k(L̄) ≥ F(k�1)ç+1(L). With this notation, the only factor in (3.32) which
depends on the number di is F̄i(L̄).
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Proof of Theorem 3.19.

PROOF. Let î ≥ ãfï. Then

üï(hõî) ≥
X

L2L(ï)
hõîvL

þþþ
vL
≥

X
L2L(ï)

hvõîL

þþþ
vL
≥

X
L2L(ï)î

hvL

þþþ
võ�îL

≥
X

L̄2L(ï̄)

ç�1X
d1,...,dn̄≥0

Y
j

Fj(L)

≥
X

L̄2L(ï̄)

ç�1X
d1,...,dn̄≥0

C
n̄Y

k≥1
F̄k

≥ C
X

L̄2L(ï̄)

n̄Y
k≥1

� ç�1X
dk≥0

F̄k(L̄)
�

,

since the only factor in
Qn̄

k≥1 F̄k(L̄) which depends on the number di is F̄i(L̄).
(a) It follows from Lemma 3.24 that if there is some ‡i that is not divisible by ç then

üï(hõî) ≥ 0.

(b) Suppose that all ‡i are divisible by ç and that ik Â≥ 0 for some 1 � k � m. Let
j ≥ ‡k�1 + 1. Then

ç�1X
d‡̄k�1 +1≥0

F̄‡̄k�1+1 ≥
ç�1X

d‡̄k�1 +1≥0

(tj)
ik
wj+1L,wj+1L

≥
ç�1X

d‡k�1 +1≥0

°
ikd‡̄k�1 +1ct

�
L̄(‡̄k�1 + 1)

�ik
≥ 0,

and it follows that, if ik Â≥ 0 for some k, then

üï(hõî) ≥
X

L̄2Lî

hvõîL

þþþ
vL
≥ 0.

(c) Suppose that all ‡i are divisible by ç and that all ik ≥ 0. Then
ç�1X

d‡̄k�1 +1≥0

F̄‡̄k�1+1 ≥
ç�1X

d‡̄k�1 +1≥0

(tj)
ik
wj+1L,wj+1L ≥

ç�1X
d‡̄k�1 +1≥0

1 ≥ ç

and
ç�1X
dk≥0

(Tj)wj+1L,wj+1L ≥
ç�1X
dk≥0

q � q�1

1 � °dk
ct
�

L̄(k�1)
�

ct
�

L̄(k)
�

≥
(q � q�1)ç

1 �
ct
�

L̄(k�1)
�ç

ct
�

L̄(k)
�ç

≥
ç

[ç]

0
BBBBBBB@

qç � q�ç

1 �
ct
�

L̄(m�1)
�ç

ct
�

L̄(m)
�ç

1
CCCCCCCA
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where j � 1 ≥ (k � 1)ç and [ç] ≥ (qç � q�ç)Û(q � q�1).
It follows that if ik ≥ 0 for all k then

üï(hõî) ≥
X

L2L(ï)î
hvõîL

þþþ
vL
≥ Cçm X

L̄2L̄(ï̄)

Y
1�k�n̄
kÂ≥‡̄i

ç

[ç]

0
BBBBBBB@

qç � q�ç

1 �
ct
�

L̄(k�1)
�ç

ct
�

L̄(k)
�ç

1
CCCCCCCA

.

With the definitions of Hr̄,n̄ as in the statement of the theorem, (2.11) and Proposi-
tion (2.12) imply that

X
L̄2L̄(ï̄)

Y
1�k�n̄
kÂ≥‡̄i

0
BBBBBBB@

qç � q�ç

1 �
ct
�

L̄(k�1)
�ç

ct
�

L̄(k)
�ç

1
CCCCCCCA
≥ üï̄Hr̄,n̄

(h̄).

Thus,

üï(hõãf ) ≥ C
çn̄

[ç]n̄�m
üï̄Hr̄,n̄

(h̄),

where Hr̄,n̄ is as in the statement of the theorem.

4. The Poset Theorem.
Curtis Greene [Gre] uses the theory of partially ordered sets (posets) and Möbius

functions to prove a rational function identity ([Gre], Theorem 3.3) which can be used
to derive the Murnaghan-Nakayama rule for symmetric group characters. In [HR], we
modify Greene’s theorem so that it can be applied to computing Murnaghan-Nakayama
rules for the irreducible characters of the Iwahori-Hecke algebras of type An�1, Bn, and
Dn. In this section, we extend the poset theorem of [HR] so that it can be applied to
computing Murnaghan-Nakayama rules (Theorem 2.17) for the irreducible characters of
the cyclotomic Iwahori-Hecke algebras of type B.

A poset is planar in the (strong) sense if its Hasse diagram may be order-embedded
in R ð R without edge crossings even when extra bottom and top elements are added
(see [Gre] for details). A linear extension of a poset P is a poset L with the same under-
lying set as P and such that the relations in L form an extension of the relations in P to a
total order. We will denote by L(P) the set of all linear extensions L of P.

The Möbius function of a poset P is the function ñ: P ð P ! Z defined inductively
for elements a, b 2 P by

(4. 1) ñ(a, b) ≥ ñP(a, b) ≥

8><
>:

1 if a ≥ b,
�
P

a�xÚb ñ(a, x) if a Ú b,
0 if a Â� b.

(See [Sta] for more details on Möbius functions.)
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Throughout this section P̂ will denote a planar poset with unique minimal element u
and P ≥ P̂�fug will be the poset obtained by removing the minimal element u from P̂.
We let SC be the set of minimal elements of P and we call these elements sharp corners.
Two sharp corners s1 and s2 of SC are “adjacent” if they are not separated by another
sharp corner as the boundary of P is traversed. If s1 and s2 are adjacent elements of SC
and the least common multiple s1 _ s2 exists, then we call s1 _ s2 a dull corner of P. We
let DC denote the set of all dull corners of P. Finally, we let cc denote the number of
connected components of P, and note that cc ≥ jSCj � jDCj.

Let fxa, a 2 P̂g, be a set of commutative variables indexed by the elements of P̂. For
each 0 � k � r � 1 and each pair a Ú b in P̂, define a weight, wt(k)(a, b), by

(4. 2)
wt(k)(a, b) ≥

1 � xax�1
b

q � q�1
for all a, b 2 P, and

wt(k)(u, a) ≥ x�k
a for all a 2 P.

Then for any planar poset P̂ with unique minimal element u, define

(4. 3) ∆(k)(P̂) ≥
Y

a,b2P̂
a Â≥b

wt(k)(a, b)ñP̂(a,b),

where ñP̂(a, b) is the Möbius function for the poset P̂.
In [HR], Theorem 5.3, it is proved that

(4. 4)
X

L̂2L(P̂)

∆(0)(L̂) ≥ ∆(0)(P)(q � q�1)cc�1,

and

(4. 5)
X

L̂2L(P̂)

∆(1)(L̂) ≥ ∆(1)(P)0cc�1
� Y

s2SC
xs

�� Y
d2DC

x�1
d

�
,

The expansion in (4.5) is equal to zero if there is more than one connected component in
P.

The following is our extension of the poset theorem to include values of k Ù 1.

THEOREM 4.6. Let P̂ be a planar poset (as defined above) with unique minimal element
u. Let P ≥ P̂ n fug. Then

X
L̂2L(P̂)

∆(0)(L̂) ≥ (q � q�1)cc�1∆(0)(P),

and, for 1 � k � r � 1,

X
L̂2L(P̂)

∆(k)(L̂) ≥ ∆(k)(P)(�q + q�1)cc�1
� Y

s2SC
xs

�� Y
d2DC

x�1
d

�

ð
jDCjX
t≥0

(�1)tet(xDC)hk�t�cc(xSC)
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where cc is the number of connected components of P, et(xDC) is the elementary sym-
metric function in the variables fxd, d 2 DCg, and hk�t�cc(xSC) is the homogeneous
symmetric function in the variables fxs, s 2 SCg.

PROOF. For each s 2 SC define P̂s to be the same poset as P̂ except with the addi-
tional relations s � s0, for s Â≥ s0 2 SC, and all other relations implied by transitivity.
Each poset Ps is planar, and each linear extension of Ps must place the sharp corner s (a
minimal element of P) immediately after u in the ordering, so we have

X
L̂2L(P̂)

∆(k)(L̂) ≥
X

s2SC

X
L̂s2L(P̂s)

∆(k)(L̂s) ≥
X

s2SC
wt(k)(u, s)�1 X

Ls2L(Ps)
∆(k)(Ls),

In P we have wt(k)(a, b) ≥ wt(0)(a, b), so by [HR], Theorem 5.3, the second sum can be
computed as X

Ls2L(Ps)
∆(k)(Ls) ≥

X
Ls2L(Ps)

∆(0)(Ls) ≥ ∆(0) ≥ ∆(k)(Ps),

since Ps is connected. Moreover, wt(0)(u, s)�1 ≥ 1 for each s 2 SC, so the case k ≥ 0 is
proved.

From now on assume that 1 � k � r � 1. Then we have

(4. 7)

X
L̂2L(P̂)

∆(k)(L̂) ≥
X

s2SC
wt(k)(u, s)�1∆(k)(Ps)

≥ ∆(k)(P)
X

s2SC
wt(k)(u, s)�1 ∆(k)(Ps)

∆(k)(P)

≥ ∆(k)(P)
X

s2SC
wt(k)(u, s)�1 Y

a,b2P
a Â≥b

wt(k)(a, b)ñPs (a,b)

wt(k)(a, b)ñP (a,b)

≥ ∆(k)(P)
X

s2SC
wt(k)(u, s)�1 Y

a,b2P
a Â≥b

wt(k)(a, b)ñPs (a,b)�ñP(a,b).

where ñPi (a, b) and ñP(a, b) are the Möbius functions for their respective posets.
We use the work of Greene [Gre] to compute the differences ñPs(a, b) � ñP(a, b) for

a Ú b 2 P. Let PŁ and PŁ
s denote the dual of P and Ps, respectively (that is u �PŁ v ,

v �P u). Then, ñP(u, v) ≥ ñPŁ(v, u) (see [Sta], p. 120), so we want to compute

ñPŁ
s
(b, a) � ñPŁ (b, a) for a Ú b 2 P.

Using the Möbius notation of [Gre] (p. 8, formulas (7) and (8)), let

éa ≥
X

t�PŁ a
ñPŁ (t, a)t, and é(s)

a ≥
X

t�PŁs
a
ñPŁ

s
(t, a)t,

so that

a ≥
X

t�PŁa
ét, and a ≥

X
t�PŁs

a
é(s)

t .
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In this way, é(s)
a ≥ éa for all a 2 PŁ n SC, and

é(s)
s ≥ és �

X
s02SCnfsg

s0 +
X

d2DC
d.

It follows that

ñPŁ
s
(s0, s) � ñPŁ(s0, s) ≥ �1, for all s0 2 SC n fsg,

ñPŁ
s
(d, s)� ñPŁ (d, s) ≥ +1, for all d 2 DC,

ñPŁ
s
(a, b) � ñPŁ(a, b) ≥ 0, for all other a, b 2 P,

and Y
a,b2P
a Â≥b

wt(k)(a, b)ñPs (a,b)�ñP(a,b) ≥
Y

s02SCnfsg
wt(k)(s, s0)�1 Y

d2DC
wt(k)(s, d).

Substituting back into (4.7) givesX
L̂2L(P̂)

∆(k)(L̂) ≥ ∆(k)(P)
X

s2SC
wt(k)(u, s)�1 Y

s02SCnfsg
wt(k)(s, s0)�1 Y

d2DC
wt(k)(s, d).

Using the fact that jSCj � jDCj ≥ cc (the number of connected components of p), we
cancel factors of q � q�1 and factor out xs and x�1

d as follows

X
L̂2L(P̂)

∆(k)(L̂) ≥ ∆(k)(P)
X

s2SC
xk

s

� Y
s02SCnfsg

q � q�1

1 � xsx�1
s0

�� Y
d2DC

1 � xsx�1
d

q � q�1

�

≥ ∆(k)(P)
� Y

s2SC
xs

�� Y
d2DC

x�1
d

�
(q � q�1)cc�1

X
s2SC

xk�1
s

Y
d2DC

(xd � xs)Y
s02SCnfsg

(xs0 � xs)
.

For notational convenience, let

F ≥ ∆(k)(P)
� Y

s2SC
xs

�� Y
d2DC

x�1
d

�
(q � q�1)cc�1.

Order the sharp corners s1, s2, . . . , sjSCj from left to right as the boundary of P is traversed,
and let jsij ≥ i (its position in the ordering). Then

X
L̂2L(P̂)

∆(k)(L̂) ≥ F
X

s2SC
xk�1

s

Y
d2DC

(xd � xs)Y
s02SCnfsg

(xs0 � xs)

≥ F
X

s2SC
xk�1

s (�1)jSCj�jsj

Y
d2DC

(xd � xs)
Y

pÚq2SCnfsg
(xp � xq)

Y
s0Ús

(xs0 � xs)
Y

s0Ùs
(xs � xs0)

Y
pÚq2SCnfsg

(xp � xq)

≥ F
X

s2SC
xk�1

s (�1)jSCj�jsj

Y
d2DC

(xd � xs)
Y

pÚq2SCnfsg
(xp � xq)

V(xSC)
,
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where V(xSC) is the Vandermonde determinant in the variables fxs, s 2 SCg. Moreover,

Y
d2DC

(xd � xs) ≥
jDCjX
t≥0

et(xDC)(�1)jDCj�txjDCj�t
s ,

where et(xDC) is the elementary symmetric function in the variables fxd, d 2 DCg. Again
for notational convenience, let

G ≥
Y

pÚq2SCnfsg
(xp � xq).

We then have

X
L̂2L(P̂)

∆(k)(L̂) ≥ F

X
s2SC

xk�1
s (�1)jSCj�jsj

jDCjX
t≥0

et(xDC)(�1)jDCj�txjDCj�t
s G

V(xSC)

≥ F
jDCjX
t≥0

(�1)tet(xDC)

X
s2SC

xjDCj�t+k�1
s (�1)jDCj+jSCj�jsjG

V(xSC)

≥ F(�1)jSCj�jDCj�1
jDCjX
t≥0

(�1)tet(xDC)

X
s2SC

xjDCj�t+k�1
s (�1)jsj�1G

V(xSC)
.

Notice that xjDCj�t+k�1
s ≥ xk�t�(jSCj�jDCj)+jSCj�1

s ≥ xk�t�cc +jSCj�1
s and that the numerator

(4. 8)
X

s2SC
xk�t�cc +jSCj�1

s (�1)jsj�1 Y
pÚq2SCnfsg

(xp � xq)

is the alternating symmetrization of the monomial

xk�t�cc +jSCj�1
s1

xjSCj�2
s2

xjSCj�3
s3

Ð Ð Ð xjSCj�jSCj
sjSCj

.

When we divide the numerator (4.8) by the Vandermonde V(xSC), we get the Schur
function s(k�t�cc,0,0,...,0)(xSC) or, equivalently, the homogeneous symmetric function
hk�t�cc(xSC), and so

X
L̂2L(P̂)

∆(k)(L̂) ≥ F(�1)cc�1
jDCjX
t≥0

(�1)tet(xDC)hk�t�cc(xSC),

and the proof is completed.

Special cases. The homogeneous symmetric function satisfies hm(xSC) ≥ 0 unless
m Ù 0, so if k ½ 1, then hk�t�cc(xSC) ≥ 0, unless cc � k. In particular, when k ≥ 1, the
poset P must be connected (cc ≥ 1), and

(4. 9)
jDCjX
t≥0

(�1)tet(xDC)hk�t�cc(xSC) ≥ e0(xDC)h0(xSC) ≥ 1
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and

(4. 10)
X

L̂2L(P̂)

∆(1)(L̂) ≥ ∆(1)(P)
� Y

s2SC
xs

�� Y
d2DC

x�1
d

�
,

which agrees with (4.5).
Shapes and standard tableaux. Theorem 4.6 reduces the problem of computingP

L̂2L(P̂) ∆(k)(L̂) to computing ∆(k)(P). In the case where P is the poset of a (skew) shape,
the product ∆(k)(P) is readily computed and has been done so for q ≥ 1 by Greene [Gre]
and for generic q in [HR]. The result uses the natural extension of the theory of shapes
and tableaux to the theory of partially ordered sets. (For a full treatment of this subject,
see [Sta], whose notation we use here).

If ï is a shape (possibly skew), then we construct a corresponding poset Pï whose
Hasse diagram is given by placing a node in each box of ï and then drawing edges
connecting nodes in adjacent boxes. The order relation in this poset is so that the smallest
nodes are in the upper left corners. For example,

$ and $

Figure 4.11

Note that posets corresponding to shapes are always planar and that the sharp and dull
corners that we defined for partitions and shapes (see Figure 2.19) are exactly the sharp
and dull corners of the corresponding poset.

THEOREM 4.12. ([Gre], Theorem 3.3; [HR], Theorem 5.8) Let Pï be the poset of any
shape (or skew shape) ï, let fxbg be a set of commutative variables indexed by fb 2 Pïg,
and let q be an indeterminate. Define

(4. 13) wt(a, b) ≥
1 � xax�1

b

q � q�1
for all a, b 2 Pï

and

∆(Pï) ≥
Y

a,b2Pï
a Â≥b

wt(a, b)ñPï
(a,b).

Then

∆(Pï) ≥
 Y

D

1 � xbx�1
a

q � q�1

! Y
R

q � q�1

1 � xbx�1
a

! Y
C

q � q�1

1 � xbx�1
a

!

where
D is the set of pairs (a, b) of boxes in ï adjacent (northwest to southeast) in a diag-

onal,
R is the set of pairs (a, b) of boxes in ï adjacent (west to east) in a row, and
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C is the set of pairs (a, b) of boxes in ï adjacent (north to south) in a column.

Letï be a shape (or a skew shape) and let L(ï) be the set of standard tableaux of shape
ï. Linear extensions of the poset Pï are in one-to-one correspondence with standard
tableaux having skew shape ï as follows: Given a standard tableau T of shape ï let T(k)
denote the box containing k in T. Then the standard tableau T corresponds to the linear
extension L of the poset Pï which has underlying set Pï and order relations given by
T(k) �L T(l) if k � l. We can identify the standard tableau T with the chain L.

Let P̂ï be the poset Pï [ fug where the adjoined element u satisfies u � a for all
a 2 Pï. The linear extensions of the poset P̂ï are in one-to-one correspondence with the
linear extensions of the poset Pï. Thus, we can identify a standard tableau T of shape ï
with a linear extension L̂ of the poset P̂ï.

Let ñ be the Möbius function of the linear extension L̂ of P̂ï that corresponds to the
standard tableau T of shape ï. Then, since L̂ is a chain, ñ satisfies

ñ(a, b) ≥
(
�1, if a Ú b and a is adjacent to b in L̂, and
0, if a Ú b and a is not adjacent to b in L̂.

It follows that

∆(k)(T) ≥ ∆(k)(L̂) ≥
Y

aÚb2L̂

wt(k)(a, b)ñ(a,b) ≥ (xT(1))k
nY

i≥2

(q � q�1)
1 � xT(i�1)x�1

T(i)

.

COROLLARY 4.14. Let ï be any shape (or skew shape) with n boxes. Let fxbg be a set of
commutative variables indexed by the boxes b 2 ï, and let q be an indeterminate. Then

X
T2L(ï)

∆(0)(T) ≥ (q � q�1)cc�1
 Y

D

1 � xbx�1
a

q � q�1

! Y
R

q � q�1

1 � xbx�1
a

! Y
C

q � q�1

1 � xbx�1
a

!
,

and, for 1 � k � r � 1,

X
T2L(ï)

∆(k)(T) ≥ (�q+q�1)cc�1
� Y

s2SC
xs

�� Y
d2DC

x�1
d

�

ð
jDCjX
t≥0

(�1)tet(xDC)hk�t�cc(xSC)

ð

0
B@Y

D

1 � xbx�1
a

q� q�1

1
CA
0
B@Y

R

q � q�1

1 � xbx�1
a

1
CA
0
B@Y

C

q � q�1

1 � xbx�1
a

1
CA,

where
cc is the number of connected components of ï,

SC is the set of sharp corners of ï,
DC is the set of dull corners of ï,

R is the set of pairs (a, b) of boxes in ï adjacent (west to east) in a row,
C is the set of pairs (a, b) of boxes in ï adjacent (north to south) in a column, and
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D is the set of pairs (a, b) of boxes in ï adjacent (northwest to southeast) in a diag-
onal.

PROOF. Let Pï be the poset of the shapeï, and let P̂ï be the poset Pï[fug, where the
adjoined element u satisfies u � a for all a 2 Pï. Then P̂ï is a planar poset with unique
minimal element, so we apply Theorem 4.6 to compute

P
T2L(ï)∆(k)(T) ≥

P
L̂2L(P̂ï)∆

(k)(L̂).
This reduces the problem to computing ∆(k)(Pï). Inside of Pï, the weights (4.2) are all
independent of k and of the form (4.13), so we use Theorem 4.12 to compute ∆(k)(Pï).
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