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Let G be a polycyclic-by-finite group and let K[G] denote its group algebra over the
field K. In this paper we discuss localization in K[G] and in particular we prove that every
faithful completely prime ideal is localizable. Furthermore, using a sequence of localiza-
tions, we show that, for G polyinfinite cyclic, the classical right quotient ring 2,(K"[G]) is in
fact a universal field of fractions for K[G]. Finally we offer an example of a domain K[G]
which does not have a universal field of fractions.

The author would like to thank A. I. Lichtman for suggesting this problem and both
A. I. Lichtman and P. F. Smith for interesting conversations on it.

1. Location. In this section we develop some localization techniques in group rings
analogous to Roseblade's trick [3] for lifting the AR-property. In particular we show that
if G is a polycyclic-by-finite group and if P is a faithful completely prime ideal of the
group algebra K[G], then P is localizable.

In the following, R will always denote a right Noetherian ring and we will use basic
Noetherian ring notation (see for example [6]). Thus let I be an ideal of R and let 9?(i) be
the set of elements of R which are regular modulo I. Then I is localizable if 'S(I) is a right
divisor set, that is if it satisfies the right Ore condition in R. Next the ideal I is said to be
completely prime if R/I is a (not necessarily commutative) domain or equivalently if
CS(I) = R\I. Finally, / has the AR-property (weak Artin-Rees property) if for all right
ideals Ec R we have EnIn s E l for some integer n > l depending upon E.

If T is a right divisor set of regular elements of R, then we can form the right ring of
fractions RT~X which is also Noetherian. Furthermore, we have the following basic
properties.

LEMMA 1.1. Let T be a right divisor set of regular elements of R and let I be an ideal of
R with Tc<g(/). Then

(i) TT"1 is an ideal of RT~l and FT'1 OR = I,
(ii) if I is prime, semiprime or completely prime respectively, then so is TT~X,
(iii) if I has the AR-property, then so does IT'1.

Now assume in addition that either IT~X is semiprime or that (RT'^KIT'1) is right Artinian.
Then we have

(iv) <€{TT-X) = <€{I)T-X and ^(/T"1) n R = «(2),
(v) if IT~X is localizable, then I is localizable.

Proof. Parts (i) and (ii) are simple computations. For part (iii), observe that any right
ideal of RT~' is of the form ET~X for some right ideal E s R . Since / has the
AR-property, we then have E f l f c E J for some n>l, and since FT'1 is an ideal it
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follows easily that (IT'1)" =lnT~\ Thus

ET'1 n (TT"1)" = ET~' Pi I T " 1 = (E n DT-1 c EFT'1 =

and hence / T - 1 has the AR-property. Finally assume that either /T"1 is semiprime or that
(RT~1)/(/T"1) is right Artinian. Then it follows that any right regular element of
(RT'^KFT'1) is in fact regular. With this observation, parts (iv) and (v), in turn, are easily
proved.

Most of the next result can be read off from [6, Proposition 2.1] but we will include a
full proof.

LEMMA 1.2. Let I be an ideal of R with the AR-property. Then any of the following
implies that I is localizable.

(i) ///" is localizable in R/In for all n > 1.
(ii) R\Ic<g(In) forall n>l.
(iii) R/I is a division ring.

Proof, (i) Let reR and «e <#(/). Then for each n > l , since IjP is localizable and
oo

<£(///") = <#(!) + /", there exists rneR and tne<g(I) with en = rtn-trneln. Let E = Y.enR
I

and apply the AR-property to this right ideal. Then there exists m s 1 with E n Im s El.
k

In particular, since em e E D Im we have em e El and hence em = £ e,s, for suitable s; E /.
i

k

Replacing et by rtj-fr, in this formula, we deduce that rt' = tr' where t' = tm-Zt i s
J
 anc*

k !

r' = rm-£r,-s,-. Since t' = tm mod/ we have t'£<<?(/) and hence / is localizable.
i

(ii) Fix xeR\I. We show first that if y e / " " 1 then xa = ybmodIn for some a e
/?, fe e /?\ / . To this end, we work in R = R/I". If y = 0 take a = 0, b = 1. Now let y ̂  0 so
that yRj^O. By assumption, x is regular and hence xR is essential in R. This yields
x ^ n y R ^ O ; so there exist a,beR with xa = yb^O. Since y e / " " 1 and yb^O, we have
b e R\I.

Now we show that ///" is localizable by induction on n s l . The case n = l follows
immediately from the above. Again fix xeR\I = <<?(/) and let reR and observe by
induction that there exist aeR,beR\I with y = rb-xaeln~1. Now the above implies
that there exist ceR,deR\I with xc = ydmod/". Thus x(c + ad) = r(bd) mod /" and
since b, deR\I = *<?(/) we have bdeR\I. Therefore ///" is localizable and hence, by (i),
so is /.

(iii) Here we show that R\I£<#(/") by induction on n > l . The case n = 1 is clear
since Rll is a division ring. Now suppose xr e /" with x e R\I. Then, by induction, r e Z""1

and, by assumption, there exists y e R with yx = 1 mod /. Then clearly r = yxr = O mod /".
Similarly rx e /" yields re I"; so part (ii) yields the result.
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POLYCYCLIC GROUP ALGEBRAS 105

In the following, R*G will denote a crossed product of the multiplicative group G
over R. Observe that, if G is polycyclic-by-finite, then R*G is also right Noetherian.
Furthermore, if / is a G-invariant ideal of R, then I*G is an ideal of R*G. The next
lemma is well known.

LEMMA 1.3. Let R*G be a crossed product and let T be a G-invariant right divisor set
of regular elements of R. Then T is a right divisor set of regular elements of R*G and
(R*G)T~l = (RT"1)*G, where the latter is a suitable crossed product of G over the ring
RT~\

Recall that an ideal / of R is said to be polycentral if I is generated by elements
xo = 0, * i , . . . , Xn such that for all i> l ,x f is central modulo the ideal generated by
x0, xx,.. •, Xj-p Part (i) of the following lemma is due to P. F. Smith [6, Theorem 2.2,
Corollary 1] while part (ii) is the result of Roseblade [3, §5] previously alluded to. One of
our goals in this and the next section is essentially to show that ideals of the form I*G as
given below are also localizable.

LEMMA 1.4. Let I be a polycentral ideal of R.
(i) If I is prime, then I is localizable.
(ii) If R*G is a crossed product with G polycyclic-by-finite and if I is G-invariant,

then I*G has the AR-property.

We now begin our work.

LEMMA 1.5. Let R*G be a crossed product with G finite and with R a domain. Let P
be a completely prime ideal of R*G having the AR-property. If Q = POR is localizable in
R, then P is localizable in R*G.

Proof. Since P is completely prime, Q is a completely prime ideal of R and thus
T = ^(Q) = R\Q. By assumption, Q is localizable and R is a domain; so T is certainly a
right divisor set of regular elements of R. Furthermore, P is G-invariant, so is Q and
hence also T. In view of Lemma 1.4 we can now form the ring of fractions (R*G)T~^ =
(RT"')*G. Observe that QT*1 is now the unique maximal ideal of RT'1 and that
{RT'')l{QT~l) is a division ring.

Since P is completely prime we have T c (R * G)\P = ̂ (P) and hence Lemma 1.1
applies. In particular we know that PT"1 is completely prime and satisfies the AR-
property. Furthermore it is easy to verify that PT"1 ni?T"1 = (PDR)T~1 = QT"1. Thus
since G is finite, we see that the domain (R*G)T~1I(PT'~1) is a finite module over the
division ring (RT~l)l(QT-1). Hence we conclude that (R*G)T-1I(PT~1) is also a division
ring; so PT~^ is localizable by Lemma 1.2 (iii). Lemma 1.1 (v) now yields the result.

LEMMA 1.6. Let R*G be a crossed product with G polyinfinite cyclic and with R a
domain. Let I be a G-invariant ideal of R which is polycentral and completely prime. Then
P = I*G is a completely prime localizable ideal of R*G.

Proof. Since I is completely prime and G is polyinfinite cyclic, it is clear that P = I*G
is also completely prime.
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Set T = <#(!) = R\I so that T is a G-invariant right divisor set in R by Lemma 1.4 (i).
Thus, by Lemma 1.5, we can form the ring of fractions (R*G)T~l = (RT~i)*G. Clearly,
every element of (i?T~1)\(/T~1) is a unit and IT"1 is a polycentral ideal of the domain
RT~\ Furthermore, since T£(R*G) \P = <<?(P), Lemma 1.1 applies. In particular PT~* =
(IT~l) * G is an ideal and, by Lemma 1.1 (v), it suffices to prove that PT'1 is localizable.

In view of the above, we may now assume in addition that every element of R\I is a
unit in R. Now, by Lemma 1.4 (ii), P-I*G has the AR-property. Thus, by Lemma 1.2
(ii), it suffices to show that every element of (R*G)\P is regular modulo P" = In*G. To
this end, let ae(R*G)\P. We show by induction on n > 0 that a/3eP" (or |3aeP")
implies that /3eP". The case n = 0 is trivial; so let n > l . If a/3ePn, then a|3eP""' ; so
(3eP"~' by induction.

Write a =ao + ax, where a,GP = I*G and all coefficients of a0 are in R\I, and write
/3 = /3o + /31; where piePn = In*G and all coefficients of /30 are in /"~'\/". Then
a o ^ 0 , arfeP" and ao/3,eP". Thus a/3ePn yields ao/3o€Pn = / " *G. We now use the
fact that G is right ordered and hence a unique product group. Thus if j30 ̂  0 we would
clearly obtain aobo £ J"> where a0 is some coefficient of a0 (with group elements written on
the left) and b0 is some coefficient of /30 (with group elements written on the right). Since
aoeR\I, a0

Kis a unit in R. Thus a0b0el" yields boel", contradicting the definition of j30.
We conclude therefore that /30 = 0; so /3eP". Lemma 1.2 (ii) now yields the result.

In the next section we will extend the localization aspect of the above result to all
polycyclic-by-finite groups.

Let K[G] denote the group algebra of G over the field K. If / is an ideal of this ring,
then / t = {jceG \x-lel} is easily seen to be a normal subgroup of G. When / t = (l),
then I is said to be a faithful ideal. If P is finite, then I is almost faithful. Let A(G) denote
the f.c. center of G.

The following lemma is an immediate consequence of the methods of Roseblade in
[4]; so we will just briefly indicate a proof.

LEMMA 1.7. Let K[G] be the group algebra of a polycyclic-by-finite group G and let P
be an almost faithful completely prime ideal of this ring. Then P is controlled by A(G), that
isP = (PnK[A(G)])K[G].

Proof. If A =3(G) is the Zalesskii subgroup of G then, since P is almost faithful and
completely prime, we know that PC\K[A] is an almost faithful completely prime ideal of
K[A]. With this observation, the orbitally sound assumption of [4, Theorem Cl] is no
longer needed and we deduce the controlling formula P = (P D K[A(G)])K[G].

Let p > 0 be a prime. If G is a finite group, we say that G is p-nilpotent if G is the
extension of a normal p'-group by a p-group. More generally, when G is polycyclic-by-
finite, we say that G is p-nilpotent if all the finite homomorphic images of G are
p-nilpotent. Since polycyclic-by-finite groups are residually finite, this is a reasonably
restrictive condition. It is easy to see that this p-nilpotent property is inherited by quotient
groups and normal subgroups.

https://doi.org/10.1017/S0017089500004869 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004869


POLYCYCLIC GROUP ALGEBRAS 107

Again let G be polycyclic-by-finite. Then K[G] is said to be a polycentral ring if all its
ideals are polycentral. According to [2, Corollary 11.3.12] this occurs if either char K = 0
and G is finite-by-nilpotent or charK = p > 0 and G is finite p'-by-(nilpotent-by-finite p).
We now come to the main result of this section.

THEOREM 1.8. Let K[G] be the group algebra of the polycyclic-by-finite group G and
let P be a completely prime ideal of this ring. Then any of the following implies that P is
localizable.

(i) P is faithful.
(ii) P is almost faithful and char K = 0.
(iii) P is almost faithful, char/C = p > 0 and A(G) is p-nilpotent.

Proof. We first consider the structure of A = A(G) and its group algebra K{A]. Since
G is polycyclic-by-finite we always have A center-by-finite and also finite-by-abelian. If
char K = 0, then the latter is of course sufficient to guarantee that K[A] is a polycentral
ring. Now suppose that char K = p > 0. If P is faithful, then U, the finite torsion subgroup
of A, is isomorphic to a multiplicative subgroup of the finite dimensional characteristic p
domain K[U]I(PC\K[U]). Thus U is a cyclic p'-group and A is finite p'-by-abelian.
Finally assume that A is p-nilpotent and let V be a torsion-free central subgroup of A of
finite index. Then the finite quotient group A/V is p'-by-p and from this it follows easily
that A is finite p'-by-(abelian-by-finite p). Thus we conclude that in all cases (i), (ii) and
(iii), K[A] is a polycentral ring.

Next, by Lemma 1.7, we have P = (P D K[A])K[G] and by the above, PDK[A] is a
polycentral ideal of K[A]. Thus since K[G] = iC[A]*(G/A), a suitable crossed product of
G/A over K[A], we conclude from Lemma 1.4 (ii) that P has the AR-property.

Finally let Z be a characteristic torsion-free central subgroup of A of finite index and
choose H<G of finite index with H/Z polyinfinite cyclic. If Q = PC\K[H], then Q is a
completely prime almost faithful ideal of K[H]. Thus, by Lemma 1.7, since clearly
Z = A(H), we have Q = (QnK[Z])K[H]. Note that R = K[Z~\ is a commutative domain
and that I = Q n K[Z] is an H-invariant polycentral ideal of R. Thus since K[H] =
R*(H/Z) and Q = I*(H/Z), we conclude from Lemma 1.6 that Q is localizable.
Moreover, K[G] = K[H]*(G/H) and P is a completely prime ideal with the AR-property.
Thus since PPlK[H] = Q is localizable, Lemma 1.5 implies that P is localizable and the
theorem is proved.

2. Specialization. In this section we prove that the group algebra K[G] of a
polyinfinite cyclic group G has a universal field of fractions. The local subrings of 2.(K[G])
which are needed for this are obtained via a sequence of localizations and the transitivity
lemma given below.

Let R and S be rings, no longer assumed to be Noetherian. A specialization
a:R-^>S is a homomorphism a from a subring Ro of R onto S such that ker a £ JR0,
the Jacobson radical of Ro. We call Ro the domain of a and write R0 = S)(a).

LEMMA 2.1. Let R and S be rings and let T be a subring of R.
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(i) Suppose S is Artinian and a:R —> S is a specialization with domain Ro. Then every
element of <<?(ker a) is invertible in Ro and, in particular, ker a is localizable.

(ii) Let <T:T —» S be an epimorphism which extends to a specialization a:R-+S. Then
there is a unique minimum specialization a' :R —» S extending a.

(iii) Suppose S is a division ring and a: T —» S is a homomorphism with S generated, as
a division ring, by a(T). If a extends to a specialization a:R —> S, then there is a unique
minimum specialization cr' :R —> S extending a.

Proof, (i) If re<#(ker a), then a(r) is regular in the Artinian ring S and hence
invertible. Since ker a £/R0, every element in 1 + kera is invertible in Ro and hence
clearly so is r.

For (ii) and (iii) let A denote the set of specializations extending a and define

R0=\re fl 3 (a ) | a ( r ) = 0(r) for all a , /3eA| .

Then certainly Ro is a subring containing T and the common value of all these
specializations defines a homomorphism cr': Ro —* S extending cr. It suffices to show that
a' is a specialization.

(ii) If rekercr', then re ker a for all a so (l + r )" ' e9(a) . Furthermore, since
a((l + r)~1) = l is the same for all a, we have (l + r)~1eR0. Thus ker a-'cJR0 and since
o-(T) = S we see that a' is a specialization onto S.

(iii) If rei?0\ker CT', then re3l(a)\ker a for all a so r ' e S ( a ) by (i). Furthermore,
since a(r~1) = a(r)~1 = a'(r)~1 is the same for all a, we have r~*eR0. Thus kercr 'c/R0

and o-'(R0)~R0/ker a' is a division ring. Finally, since S2o-'(R0)2a(T), we conclude
that o-'(Ro) = S.

The following transitivity lemma is crucial.

LEMMA 2.2. Let a:R —» S and /3 :S - » T be specializations. Then the composite map
/3a defined on a-1(2!(j3)) determines a specialization /3a :R —» T.

Proof. If R, = a~1(S(/3)), then since both a and j3 are onto we see that /3a maps Ri
onto T. Now let /0 = kera and I1 = ker(5a so that R 0 2 R i 2 Ix 2/0- Since a is a
specialization, I0^JR0; so every element of l + /0 is invertible in Ro and in fact
(1 + Jo)1 = l + ̂ o- Thus since Io is also an ideal of Rx and (l + I0)~

l = l + I0^Rl, we see
that J 0 £ /Ri . Furthermore, RJI0 — 2)((5) = S0 and, since j3 is a specialization,

Thus since / 0 £ / i? i we have / iS/Rx and 0a is indeed a specialization onto T.

If R has a classical right ring of quotients, then we denote this extension ring by
2.(R). In particular, by Goldie's theorem, 2.(R) exists and is Artinian if R is a semiprime
right Noetherian ring. We require the following well known observation.

LEMMA 2.3. Let R*G be a crossed product with R a right Noetherian domain and with
G polycyclic-by-finite. Then 2.(R*G) exists and is right Artinian. Furthermore, if H is a
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normal subgroup of G of finite index and if {gr, g 2 , . . . , gn} is a transversal for H in G, then

a(R*G) = ©£&&(#*#).
1

Proof. Suppose that H is a normal subgroup of G of finite index such that a(R*H)
exists and is right Artinian. Then T = <#(0), the set of regular elements of R*H, is a right
divisor set in R*H which is clearly G-invariant. Thus, by Lemma 1.3, since R*G =
(R*H)*(G/H), we can form the ring of fractions

(R * o r 1 = © I a(j? *H)T-X = © t &a(R *H).
1 1

Note that (R*G)T~l is a finitely generated right module over the right Artinian ring
a(R *H) so (R *G)T~1 is also right Artinian. In particular, by Lemma 1.1 (iv), the regular
elements of R*G remain regular in the Artinian ring {R*G)T~1 and hence are invertible
in (R*G)T~\ This shows that (R*G)T~' is indeed the classical right quotient ring of
R*G.

Finally if G is an arbitrary polycyclic-by-finite group, choose H to be a normal
polyinfinite cyclic subgroup of finite index. Then R*H is a Noetherian domain; so
2.(R*H) exists and is a division ring by Goldie's theorem. Thus the above argument
implies that 2.(R * G) exists and is right Artinian.

We now come to the promised extension of Lemma 1.6.

PROPOSITION 2.4. Let R*G be a crossed product with G polycyclic-by-finite and with R
a right Noetherian domain. Let I be a G-invariant ideal of R which is polycentral and
completely prime. Then I*G is a localizable ideal of R*G. Furthermore, the epimorphism
R*G —» R *G/I*G extends to a specialization

a(R*G)-*a(R*G//*G).
Proof. Let H be a normal polyinfinite cyclic subgroup of G of finite index. Since

R * G/I* G = (R/I) * G, the previous lemma implies that both a(R * G) and a(R * G/I*G)
exist and that a(R*G/Z*G) = a(R*H//*H)G. By Lemma 1.6, I*H is a completely
prime localizable ideal of R*H and we set T = '%(I*H) = (R*H)\(I*H). Then T is a
G-invariant right divisor set of regular elements of the domain R*H; so Lemma 1.3
implies that the ring of fractions L0 = (R*G)T~X exists and is a subring of a(R*G). Now
the natural homomorphism a':R*G —*• R*G/I*G maps the set T onto the nonzero
elements of the domain R*H/I*H. Thus since a(R *G/J* G) = SL(R*H/I*H)G, the map
a' clearly extends to an epimorphism a:{R*G)T~l-^2L(R*GH*G) with kera =
(I*G)T~\ Moreover, observe that LO = LX*(GIH), where Li = (R*H)T~\ and hence,
by [2, Theorem 7.2.5], we have JLX<=,JLO. But JLX = {I*H)T~X; so we conclude that

ker a = (I*G)T~X = (JLJ * (GIH) c JL0

and thus a :a(R*G) -»a(R*G/J*G) is a specialization.
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Finally it is clear that Ts<<?(/*G) and we note that (J?*G)T"1/(J*G)T~1 =
a(R*G//*G) is right Artinian. Thus, by Lemma 2.1 (i), (7*G)T~1 is localizable in
(R*G)T~1 and then, by Lemma 1.1 (v), we conclude that I*G is localizable in R*G.

LEMMA 2.5. Let G be a polyinfinite cyclic group. Then G has a characteristic series
(1) = G o £ GT £ • • • £ Gn = G with Gj/Gj-j torsion free abelian.

Proof. If G^<1>, then GIG' is infinite. Hence if G 2 H 2 G ' , where H/G' is the
torsion subgroup of GIG', then H is a characteristic subgroup of G with G/H infinite and
torsion free abelian. Since H is also polyinfinite cyclic, induction on the Hirsch number
yields the result.

We now come to the key result of this section. It is proved via a sequence of
localizations and an application of the transitivity lemma. In the course of the proof we
show that the classical ring of quotients indicated below does indeed exist.

LEMMA 2.6. Let G be a polycyclic-by-finite group and let H<G with H polyinfinite
cyclic. Furthermore let Q be a G-invariant completely prime ideal of the group algebra K[H~\
and set I = QK[G]. Suppose that H/Qf is finite -by-nilpotent if char if = 0 or finite
p'-by-nilpotent if char K = p > 0. Then the natural homomorphism K[G] —» K[G]/I extends
to a specialization a :2L(K[G])

Proof. Since H is polyinfinite cyclic, it follows from the preceding lemma that H has a
characteristic series (l) = f f o s H 1 s - • QHn =H with each HJHi-x torsion free abelian.
Thus Hj < G and we set Qj = Q D K[Ht] and

/f = Q • K[G] = (Of1 K[H,D • K[G].

Hence we have 0 = Io £ Iy £ • • • £ /„ = I. Our goal is to show that for each i with 1 < i < n
the natural epimorphism KIG]/^ -» K"[G]/ij extends to a specialization

To this end, we fix subscript i with 1 < i < n and we start by studying the ring
R = K[Hi]/Qj_iK[Hj]. First, R is clearly Noetherian, being a homomorphic image of
K[Ht]. Second, observe that

R = K[Hl-\/Ql.1K[Hi]

) * (HJH^) = R'*A

is a suitable crossed product of the torsion free abelian group A = H^H^ over the ring
R' = K[Hi_1]/Qi_1. Furthermore, R' is a domain since R'^K[H]IQ and Q is a com-
pletely prime ideal. Thus we deduce that R is also a domain. Finally, if N= Qf then the
augmentation ideal wK[N] satisfies a>K[JV]£Q; so a>K(jVn.Hi_1]£Qi_1K[H;]. This
shows that R is a homomorphic image of the group ring K[HJ(N n Hj_x)]. Observe that

HJ(N n H£_,) s HJ(N PI Ht) x H/Hj-! c (fl/N) x A

https://doi.org/10.1017/S0017089500004869 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004869


POLYCYCLIC GROUP ALGEBRAS 111

and, by assumption, H/N=H/Q+ is finite-by-nilpotent if chari£ = 0 or finite p'-by-
nilpotent if char K = p>0 . Thus the same is true of (H/N)x A and then of HJiNnHi-j).
We conclude from this and the remarks preceding Theorem 1.8 that KlHjKNDHj)] is a
polycentral ring and hence so is its homomorphic image R. Thus R is a Noetherian
domain and a polycentral ring.

Now observe that /;_, = Qj^KtHj] • K[G]; so

K[G]II^ = (KCHj/Q^KCHilWG/H,) = K *(G/Hj)

is a suitable crossed product of G/Hj over the ring R. Furthermore, since It = QtK[G], we
have I i / I n C l f G ] ^ . , with

ItUi-x = (Qi/Qi-^CHj^tG/Hl) = Q, *(G/H,).

Note that Q = QJQ^xKlHi] is a (G/i-ff)-invariant ideal of R which is polycentral since R
is a polycentral ring. In addition, RIQt — KfHjJ/Q; so Qf is completely prime. We can
now conclude from Proposition 2.4, applied to the crossed product R*(GIHt) =
K[G]Ui-i, the ideal Q *(G/Hj) = IJIi-l and the quotient ring

(I? * (G/H,))/(Q * (G/Hi)) - K[G]//f,

that &(K"[G]/Ji_i) and a(JC[G]/Ij) exist and that the natural homomorphism K[G]/Ij_i -»
K[G]Hj extends to a specialization

Finally, since Io = 0 and /„ = /, we conclude from transitivity, Lemma 2.2, that the
homomorphism K[G]-* K[G]II extends to a specialization a :a(K[G]) -*2L(K[G]/I).
This completes the proof.

Let R be a domain contained in and generating a division ring D. Then D is said to
be a universal field of fractions for R if every homomorphism a': R —> D', where D' is a
division ring generated by the image of R, can be extended to a specialization a : D —» D'.
In view of Lemma 2.1 (i), (iii), this agrees with the usual definition as given in [1, §7.2].
Furthermore, it is clear that if the domain R has a universal field of fractions D, then D is
unique up to R-isomorphism. It is now a simple matter to prove our main result.

THEOREM 2.7. Let G be a polyinfinite cyclic group. Then 2.(K[G]) is the universal field
of fractions of K[G].

Proof. We know that K[G] is an Ore domain and hence that ®L(K[G]) is a division
ring containing K[G] and in fact generated by it.

Let a': K[G] —* D' be a homomorphism of K[G] into a division ring D' such that D'
is generated by a'(K[G]). If P = kera, then P is certainly a completely prime ideal of
K[G] and a'(K[G])~K[G]/P is an Ore domain. In particular, we must have D' =
2.(K[G]/P). Thus it suffices to show that for every completely prime ideal P of K[G], the
homomorphism K[G]-^K[G]IP extends to a specialization 3.(K[G])^SL{K[G]IP).
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To this end, let P be as above and let N = P\ Then P is the pullback in K[G] of a
faithful completely prime ideal of K[G/N]. Thus it follows easily from Lemma 1.7 that if
H/N = A(G/N), then P = (PC\ K[H])K[G]. Certainly Q = P n K[H] is a completely prime
ideal of K[H].

We now consider the structure of H and we note that, since G is polyinfinite cyclic,
so is H. Now H/N is a finitely generated f.c. group and therefore it is finite-by-abelian.
Furthermore, if charK = p > 0 and if U/N is the torsion subgroup of H/N, then U/N is
embedded isomorphically as a multiplicative subgroup of the finite dimensional charac-
teristic p domain K[U]/(Pr\K[U]). Thus U/N is a cyclic p'-group and H/N is finite
p'-by-abelian here. We can now apply Lemma 2.6 to conclude that the specialization
a :&(JC[G] -»a(K[G]/P) does indeed exist. This completes the proof.

It is natural to ask whether the local subrings of &(K[G]) needed above can be
achieved via a single localization. Since the augmentation ideal wK[G] is completely
prime, the first parts of the next two theorems yield a negative answer. All of the first
result and most of the second are due to P. F. Smith.

PROPOSITION 2.8. Let G be a polycyclic-by-finite group and let K be a field of
characteristic 0.

(i) If wK[G] is localizable, then G is finite-by-nilpotent.
(ii) / / G is finite-by-nilpotent, then all prime ideals of K[G] are localizable.

Proof. Part (i) is a special case of [7, Theorem A] and part (ii) is immediate from
Lemma 1.4 (i).

PROPOSITION 2.9. Let G be a polycyclic-by-finite group and let K be a field of
characteristic p>0 .

(i) // (oK[G] is localizable, then G is p-nilpotent.
(ii) If G is p-nilpotent, then all prime ideals of K[G] are localizable.

Proof. For part (i) see [2, Theorem 11.2.15]. Part (ii) follows from [5] and [6,
Corollary 3.3].

The next corollary is an immediate consequence of part (ii) above.

COROLLARY 2.10. Let K be a field of characteristic p > 0 and let G be a p-nilpotent
polycyclic-by-finite group. If K[G] is a domain, then 2.(K[G]) is its universal field of
fractions.

There is of course a similar corollary to Proposition 2.8 but it offers nothing new
since finitely generated torsion free nilpotent groups are polyinfinite cyclic. We close this
paper with an example of a domain K[G], with G polycyclic, having no universal field of
fractions.

Let
G = {x, y | x-1y2x = y~2, y-1x2y = x~2)

be the group studied in [2, Lemma 13.3.3] and set a = x2, b = y2 and c = (xy)2. Then
A = (a, b, c) is a normal free abelian subgroup of G of rank 3 and G/A is a 'fours' group.
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Furthermore, G is torsion free and supersolvable; so a result of Formanek (see [2,
Theorem 13.3.9]) implies that K[G] is a domain. Observe that G is 2-nilpotent so, by the
preceding corollary, if char K = 2 then K[G] has a universal field of fractions.

We assume now that char K± 2. Suppose by way of contradiction that D 2 K[G] is a
universal field of fractions for K[G] and let a : D -» K be a specialization extending the
augmentation map K[G] -»• K If R = 2i(a) is the domain of a, then R 2 K[G] and every
element of K[G~\\u>K[G] is a unit of R.

Let z e G with z2-a. Then in D we have

(a - l)/(z -1 ) = (z2 - l)/(z -1) = z +1 e K[G]\o>K[G];

so

and
a((z-l)(a-l)-1) =

since a(z) = 1. In particular this applies to both z = x and z = xb since

Thus

a((xb - l)(a -1)"1) = 1/2 = a((x - l)(a -1)"1);

so

x(b - l)(a -1)" 1 = (xb - l)(a -1)" 1 - (x - l)(a -1)" 1 e ker a
and we have (b — l)(a -1)" 1 e ker a. By symmetry, (a - l)(b — I)"1 e ker a. Multiplying
these two expressions using ab = ba yields I s ker a, a contradiction. Therefore for
char K^ 2 the domain K[G] does not have a universal field of fractions.
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