ON THE ABSENCE OF ZEROS IN INFINITE ARITHMETIC PROGRESSION FOR CERTAIN ZETA FUNCTIONS

TEERAPAT SRICHAN

(Received 27 April 2018; accepted 8 June 2018; first published online 15 August 2018)

Abstract

Putnam ['On the non-periodicity of the zeros of the Riemann zeta-function', Amer. J. Math. 76 (1954), 97-99] proved that the sequence of consecutive positive zeros of $\zeta\left(\frac{1}{2}+i t\right)$ does not contain any infinite arithmetic progression. We extend this result to a certain class of zeta functions.

2010 Mathematics subject classification: primary 11M26; secondary 11M06.
Keywords and phrases: arithmetic progression, Riemann zeta function, zeros of zeta functions.

1. Introduction and statement of results

In 1954 Putnam [3] proved that the set of positive zeros of $\zeta\left(\frac{1}{2}+i t\right)$ does not contain any infinite arithmetic progression of the form $\{d, 2 d, 3 d, \ldots\}$ with $d>0$. Later, Lapidus and van Frankenhuijsen [1] extended Putnam's theorem to a large class of zeta functions and L-series by using a different proof. Recently, Li and Radziwiłł [2] showed that at least one-third of the points in a vertical arithmetic progression are not zeros of the Riemann zeta function. Li and Radziwiłł proved this for 'inhomogeneous' arithmetic progressions of the form $\left\{\frac{1}{2}+i(a+n d)\right\}$ by investigating moments of $\zeta(s)$. Putnam's approach does not depend on such detailed information about $\zeta(s)$, but does not seem to extend to more general arithmetic progressions asymmetrically distributed about the real axis.

Since we wish to cover a variety of examples of zeta functions, we introduce an axiomatic setting. Let C be the set of meromorphic functions f in the half-plane $\sigma>0$ of the complex plane ($z=\sigma+i t$) satisfying the following conditions:
(i) $\quad f$ is a meromorphic function in the half-plane $\sigma>0$ with at most one pole at $z=1$ of order $m>0$;
(ii) there exist a complex-valued function $A(z)$ and a real-valued function $B(x)$ such that

$$
\begin{equation*}
f(z)=z A(z)-z \int_{0}^{\infty} B(x) e^{-(\sigma+i t) x} d x, \quad 0<\sigma<1 \tag{1.1}
\end{equation*}
$$

[^0](c) 2018 Australian Mathematical Publishing Association Inc.
and also, for $n=1,2, \ldots$ and $d>0$,
\[

$$
\begin{gather*}
\operatorname{Re}\left(A\left(\frac{1}{2}+i d n\right)\right)=O\left(n^{-\delta}\right) \quad \text { for some } \delta>1, \tag{1.2}\\
B(x)=O(1) \quad \text { for } \log n \leq x<\log (n+1) \tag{1.3}
\end{gather*}
$$
\]

and such that the one-sided limits $\lim _{h \rightarrow 0^{+}} B(\log n \pm h)$ exist and

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} B(\log n+h)-\lim _{h \rightarrow 0^{-}} B(\log n+h)<0 . \tag{1.4}
\end{equation*}
$$

We extend Putnam's theorem to the class C.
Theorem 1.1. Let $f \in C$. Then f cannot vanish on any infinite arithmetic progression $\left\{\frac{1}{2}+i d n: n \in \mathbb{N}\right\}$, where d is a positive real number.

To recover the original case, we note that the Riemann zeta function $\zeta(s)$ belongs to the class C. Write

$$
\zeta(s)=\frac{s}{s-1}-s \int_{0}^{\infty}\left(e^{x}-\left\lfloor e^{x}\right\rfloor\right) e^{-x s} d x, \quad 0<\operatorname{Re}(s)<1
$$

For $n=1,2, \ldots$, it is clear that $A(z)=1 /(z-1)$ satisfies $\operatorname{Re}\left(A\left(\frac{1}{2}+i d n\right)\right)=O\left(n^{-2}\right)$ and that $B(x)=e^{x}-\left\lfloor e^{x}\right\rfloor=O(1)$ for $\log n \leq x<\log (n+1)$. Moreover,

$$
\lim _{h \rightarrow 0^{+}}\left(e^{(\log n+h)}-\left\lfloor e^{(\log n+h)}\right\rfloor\right)-\lim _{h \rightarrow 0^{-}}\left(e^{(\log n+h)}-\left\lfloor e^{(\log n+h)}\right\rfloor\right)<0
$$

Therefore, Putnam's theorem follows from our Theorem 1.1.
We show that the Hurwitz zeta function, $\zeta(s, \alpha)$, is another example which belongs to the class C.

Corollary 1.2. Let $0<\alpha \leq 1$. Then the set of zeros of $\zeta(s, \alpha)$ does not contain any infinite arithmetic progression $\left\{\frac{1}{2}+i d n: n \in \mathbb{N}\right\}$, where d is a positive real number.

The technique used to prove Putnam's theorem requires a pole of the function under consideration. The Dirichlet L-function $L(s, \chi)$ has no pole if the Dirichlet character χ is a nonprincipal character. Thus, in this case, we cannot apply Theorem 1.1 directly. However, in Section 3, we show that the product $\zeta(s) L(s, \chi)$ satisfies the axioms of class C, from which we may deduce the following theorem.

Theorem 1.3. For any Dirichlet character χ, the set of zeros of $L(s, \chi)$ does not contain any infinite arithmetic progression $\left\{\frac{1}{2}+i d n: n \in \mathbb{N}\right\}$, where d is a positive real number.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let $f \in C$. By hypothesis (1.1), $f(z)$ is given by the expression

$$
f(z)=z A(z)-z \int_{0}^{\infty} B(x) e^{-(\sigma+i t) x} d x
$$

for $0<\sigma<1$. If $z=\sigma+i t$ is a zero of $f(z)$, it follows that

$$
A(z)=\int_{0}^{\infty} B(x) e^{-(\sigma+i t) x} d x
$$

and hence

$$
\begin{equation*}
\int_{0}^{\infty} B(x) e^{-\sigma x} \cos (t x) d x=\operatorname{Re}(A(z)) \tag{2.1}
\end{equation*}
$$

Now we assume that there exists some number $d>0$ such that, for $n=1,2, \ldots$, the numbers $z=\frac{1}{2}+i d n$ are zeros of $f(z)$.

We extend the domain of $B(x)$ to all real numbers, by putting $B(-x)=B(x) e^{-x}$, $0 \leq x<\infty$, and define $\mathcal{D}(x)$ on $-\infty<x<\infty$ by

$$
\begin{equation*}
\mathcal{D}(x)=\sum_{k=-\infty}^{\infty} B\left(x+\frac{2 \pi k}{d}\right) e^{-(x+2 \pi k / d) / 2} \tag{2.2}
\end{equation*}
$$

In view of (1.3), for $-\infty<x<\infty$,

$$
\left|B\left(x+\frac{2 \pi k}{d}\right) e^{-(x+2 \pi k / d) / 2}\right| \leq e^{-|x| / 2}
$$

and so the series $\mathcal{D}(x)$ is uniformly convergent on any finite interval. By (2.2), $\mathcal{D}(x)$ is periodic with period $2 \pi / d$, that is, $\mathcal{D}(x+2 \pi / d)=\mathcal{D}(x)$ and

$$
\int_{0}^{2 \pi / d} \mathcal{D}(x) e^{i d n x} d x=\int_{-\infty}^{\infty} B(x) e^{-(x / 2)+i d n x} d x
$$

In view of (2.1),

$$
\int_{0}^{2 \pi / d} \mathcal{D}(x) \cos (d n x) d x=\operatorname{Re}\left(A\left(\frac{1}{2}+i d n\right)\right)
$$

and

$$
\int_{0}^{2 \pi / d} \mathcal{D}(x) \sin (d n x) d x=0
$$

From (1.2), the Fourier coefficients of $\mathcal{D}(x)$ are $O\left(n^{-\delta}\right)$ with $\delta>1$. Thus, the series for $\mathcal{D}(x)$ is uniformly convergent and the function $\mathcal{D}(x)$ is a continuous function. Let $h>0$. From (1.4), the one-sided limits $\lim _{h \rightarrow 0^{+}} B(\log n \pm h)$ exist for all n. Again, by the uniform convergence, the one-sided limits $\lim _{h \rightarrow 0^{+}} \mathcal{D}(\log n \pm h)$ exist. In order to reach a contradiction of the assertion, we will show that

$$
\lim _{h \rightarrow 0^{+}} \mathcal{D}(x+h)-\lim _{h \rightarrow 0^{-}} \mathcal{D}(x+h)<0
$$

for at least one value of x, contrary to the continuity of $\mathcal{D}(x)$.

To see this, let $x=\log m$, where $m \geq 2$ is an integer to be determined later. Then

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} & \mathcal{D}(\log m+h)-\lim _{h \rightarrow 0^{-}} \mathcal{D}(\log m+h) \\
= & \lim _{h \rightarrow 0^{+}} B(\log m+h) e^{-(\log m+h) / 2}-\lim _{h \rightarrow 0^{-}} B(\log m+h) e^{-(\log m+h) / 2} \\
& +\sum_{k \neq 0}\left(\lim _{h \rightarrow 0^{+}} B\left(x+\frac{2 \pi k}{d}+h\right) e^{-(x+(2 \pi k / d)+h) / 2}\right. \\
& \left.-\lim _{h \rightarrow 0^{-}} B\left(x+\frac{2 \pi k}{d}+h\right) e^{-(x+(2 \pi k / d)+h) / 2}\right) .
\end{aligned}
$$

In view of (1.4),

$$
\lim _{h \rightarrow 0^{+}} B(\log m+h) e^{-(\log m+h) / 2}-\lim _{h \rightarrow 0^{-}} B(\log m+h) e^{-(\log m+h) / 2}<0
$$

and, for $n=2,3, \ldots$,

$$
\lim _{h \rightarrow 0^{+}} B(x+h) e^{-(x+h) / 2}-\lim _{h \rightarrow 0^{-}} B(x+h) e^{-(x+h) / 2} \begin{cases}>0 & \text { if } x=-\log n \\ <0 & \text { if } x=\log n .\end{cases}
$$

Thus, it is sufficient to show that m can be chosen so that

$$
\log m+\frac{2 \pi k}{d} \neq-\log n \quad \text { for } k= \pm 1, \pm 2, \ldots \text { and } n=2,3, \ldots
$$

That is, we wish to prove that, for some integer $m \geq 2$,

$$
\begin{equation*}
\frac{2 \pi k}{d} \neq \log m n \quad \text { holds for } k=1,2, \ldots \text { and } n=2,3, \ldots \tag{2.3}
\end{equation*}
$$

Suppose that for every integer $m \geq 2$, (2.3) is not true. Then, if $m=m_{j} \geq 2(j=1,2)$ denote arbitrary integers, there exist integers $k=k_{j} \geq 1$ and $n=n_{j} \geq 2$ such that $2 \pi k_{j} / d=\log m_{j} n_{j}$, that is, $\left(m_{2} n_{2}\right)^{k_{1}}=\left(m_{1} n_{1}\right)^{k_{2}}$. If we choose m_{2} relatively prime to both m_{1} and n_{1}, then the last equality is not true.

Hence, (2.3) is true for some integer $m=m^{\prime} \geq 2$ and therefore

$$
\lim _{h \rightarrow 0^{+}} \mathcal{D}\left(x \log m^{\prime}+h\right)-\lim _{h \rightarrow 0^{-}} \mathcal{D}\left(\log m^{\prime}+h\right)<0
$$

The contradiction follows from this and the proof of the theorem is complete.
Proof of Corollary 1.2. The Hurwitz zeta function $\zeta(s, \alpha)$ has a simple pole at $s=1$ and analytical continuation to $0<\operatorname{Re}(s)<1$. It can be represented as

$$
\zeta(s, \alpha)=\alpha^{-s}+\frac{s}{s-1}-\lfloor 1-\alpha\rfloor+s \int_{1}^{\infty}(\lfloor x-\alpha\rfloor-x) x^{-s-1} d x .
$$

Here,

$$
A(s)=\frac{\alpha^{-s}-\lfloor 1-\alpha\rfloor}{s}+\frac{1}{s-1}
$$

and $B(x)=\left\lfloor e^{x}-\alpha\right\rfloor-e^{x}$ for $\log n \leq x<\log (n+1)$ and $n=1,2, \ldots$ For $\operatorname{Re}(s)=\frac{1}{2}$, the Hurwitz zeta function $\zeta(s, \alpha)$ satisfies the conditions (1.2)-(1.4). Thus, $\zeta(s, \alpha) \in C$.

3. Nonperiodicity of the zeros of Dirichlet \boldsymbol{L}-functions

In this section we study the nonperiodicity of the zeros of zeta functions which do not satisfy Condition (i) of the class C. For example, the Dirichlet L-function $L(s, \chi)$ has no pole if the Dirichlet character χ is a nonprincipal character. Thus, in this case, we cannot apply Theorem 1.1 directly.

We consider the product of the Riemann zeta function and the Dirichlet L-function, say, $F(s)=\zeta(s) L(s, \chi)$, where χ is a Dirichlet character modulo q. For $\operatorname{Re}(s)>1$,

$$
F(s)=\zeta(s) L(s, \chi)=\sum_{n=1}^{\infty} f(n) n^{-s}
$$

where $f(n)=\sum_{d \mid n} \chi(d)$. In order to show that the zeros of Dirichlet L-functions do not contain any arithmetic progression, we will show that the zeros of $F(s)$ also do not contain any arithmetic progression. We will do this by showing that $F(s)$ belongs to the class C.

Lemma 3.1 [4, Theorem 12.2]. Suppose that $x>1$ and χ is a Dirichlet character modulo $q>1$. Then

$$
\sum_{n \leq x} f(n)=L(1, \chi) x+O\left(x^{1 / 3+\epsilon}\right)
$$

Proof of Theorem 1.3. We show first that $F(s)=\zeta(s) L(s, \chi)$ has an analytical continuation to $\frac{1}{3}<\operatorname{Re}(s)<1$. By partial summation,

$$
\begin{aligned}
\sum_{n \leq M} f(n) n^{-s} & =\sum_{n \leq M} f(n) M^{-s}+s \int_{1}^{M}\left(\sum_{n \leq u} f(n)\right) u^{-s-1} d u \\
& =L(1, \chi) M^{1-s}+O\left(M^{1 / 3-s+\epsilon}\right)+s \int_{1}^{M}\left(L(1, \chi) u+O\left(u^{1 / 3+\epsilon}\right)\right) u^{-s-1} d u \\
& =\frac{L(1, \chi)}{1-s} M^{1-s}+\frac{s L(1, \chi)}{s-1}+O\left(M^{1 / 3-s+\epsilon}\right)+s \int_{1}^{M} O\left(u^{1 / 3+\epsilon}\right) u^{-s-1} d u
\end{aligned}
$$

Let $M \rightarrow \infty$. For $\operatorname{Re}(s)>1$,

$$
F(s)=\frac{s L(1, \chi)}{s-1}+s \int_{1}^{\infty} O\left(u^{1 / 3+\epsilon}\right) u^{-s-1} d u
$$

Hence, $F(s)$ has an analytical continuation for $\operatorname{Re}(s)>\frac{1}{3}$ except for $s=1$.
Now let $R(u):=\sum_{n \leq u} f(n)-L(1, \chi) u$. For $\frac{1}{3}<\sigma<1$, we can write

$$
F(s)=\frac{s L(1, \chi)}{s-1}+s \int_{0}^{\infty} R\left(e^{x}\right) e^{-\sigma x} e^{-i t x} d x
$$

This representation shows that $F(s)$ belongs to the class C provided that we can prove (1.4), that is, we must show that there is no positive integer n such that

$$
\lim _{h \rightarrow 0^{+}} R\left(n e^{h}\right) e^{-(\log n+h) / 2}-\lim _{h \rightarrow 0^{-}} R\left(n e^{h}\right) e^{-(\log n+h) / 2}<0
$$

To see this, substitute the definition of $R\left(n e^{h}\right)$ and cancel the terms involving $L(1, \chi)$, giving

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} & R\left(n e^{h}\right) e^{-(\log n+h) / 2}-\lim _{h \rightarrow 0^{-}} R\left(n e^{h}\right) e^{-(\log n+h) / 2} \\
& =\lim _{h \rightarrow 0^{+}} \sum_{k \leq n e^{h}} f(k) e^{-(\log n+h) / 2}-\lim _{h \rightarrow 0^{-}} \sum_{k \leq n e^{h}} f(k) e^{-(\log n+h) / 2} \\
& =\frac{1}{\sqrt{n}} f(n)=\frac{1}{\sqrt{n}} \sum_{d \mid n} \chi(d) \geq 0
\end{aligned}
$$

for all integers n. Then, for $\operatorname{Re}(s)>\frac{1}{3}, L(s, \chi) \zeta(s)$ belongs to the class C. Since every zero $s=\frac{1}{2}+$ it of $L(s, \chi)$ is also a zero of $L(s, \chi) \zeta(s)$, it follows that the zeros of $L\left(\frac{1}{2}+i t, \chi\right)$ cannot contain an infinite arithmetic progression.

Now we extend this to other Dirichlet series. Let \mathcal{L} be the class of the Dirichlet series $L(s)=\sum_{n=1}^{\infty} l(n) / n^{s}$, convergent for $\operatorname{Re}(s)>1$, such that the following conditions hold:
(1) $L(s)$ has no pole in $0<\operatorname{Re}(s)<1$;
(2) $\sum_{n \leq M} l(n)=L(1) M+O\left(x^{\alpha}\right)$ as $M \rightarrow \infty$ with $\alpha<\frac{1}{2}$;
(3) there is no positive integer n such that $\sum_{d \mid n} l(d)<0$.

Analogously to Theorem 1.3, we obtain the following result.
Theorem 3.2. If $f \in \mathcal{L}$, then the set of zeros of $f(s, \chi)$ does not contain any infinite arithmetic progression $\left\{\frac{1}{2}+i d n: n \in \mathbb{N}\right\}$, where d is a positive real number.

Example 3.3. Let K be a quadratic field with discriminant d and let χ_{d} be the Kronecker symbol of d. We can write the Dedekind zeta function as

$$
\zeta_{K}(s)=\zeta(s) L\left(s, \chi_{d}\right),
$$

where $L\left(s, \chi_{d}\right)$ is the Dirichlet L-function associated to χ_{d}. Since $\zeta_{K}(s) \in \mathcal{L}$, Theorem 3.2 show that the set of zeros of $\zeta_{K}\left(\frac{1}{2}+i t\right)$ does not contain an infinite arithmetic progression. This remark also shows that the set of zeros of $L\left(\frac{1}{2}+i t, \chi_{d}\right)$ does not contain an infinite arithmetic progression.

Example 3.4. Let $r=f * g$ with f, g both periodic with period q, q^{\prime}, respectively, and consider the associated L-series

$$
Z(s)=L(s, f) L(s, g)=\sum_{n=1}^{\infty} \frac{r(n)}{n^{s}}, \quad \operatorname{Re}(s)>1
$$

If f, g are both even, then $Z(s)$ belongs to the class \mathcal{L}. This follows by the same method as in Example 3.3. Thus, the set of zeros of $L\left(\frac{1}{2}+i t, f\right)$ of the Dirichlet series associated to the arithmetic function f with period $q \geq 1$ does not contain an infinite arithmetic progression.

Acknowledgement

The author is grateful to the referee for helpful and detailed comments.

References

[1] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions (Springer, New York, 2006).
[2] X. Li and M. Radziwiłł, 'The Riemann zeta function on vertical arithmetic progressions', Int. Math. Res. Not. 2015(2) (2015), 325-354.
[3] C. R. Putnam, 'On the non-periodicity of the zeros of the Riemann zeta-function', Amer. J. Math. 76 (1954), 97-99.
[4] E. C. Titchmarch, The Riemann Zeta-Function, 2nd edn (Oxford University Press, Oxford, 1986).

TEERAPAT SRICHAN, Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand e-mail: fscitrp@ku.ac.th

[^0]: This work was supported by the Thailand Research Fund (MRG6080210).

