ⓟ-parametrization in O-minimal Structures

Beata Kocel-Cynk, Wiesław Pawłucki, and Anna Valette

Abstract. We give a geometric and elementary proof of the uniform \mathcal{C}^{p}-parametrization theorem of Yomdin and Gromov in arbitrary o-minimal structures.

1 Introduction

Fix any o-minimal expansion of a real closed field R (see [14] or [4] for fundamental definitions and results concerning o-minimal structures). Let p be any positive integer. We will be discussing definable subsets and mappings referring to this o-minimal structure. The aim of this note is to give a geometric and elementary proof of the following uniform \complement^{p}-parametrization theorem.

Uniform \complement^{p}-Parametrization Theorem Let X be a definable subset of $R^{m} \times R^{n}$. Let $X_{t}:=\left\{x \in R^{n}:(t, x) \in X\right\}$ for any $t \in R^{m}$ and put $T:=\left\{t \in R^{m}: X_{t} \neq \varnothing\right\}$. Let k and p be positive integers. Assume that all $X_{t}(t \in T)$ are closed, of pure dimension k, and commonly bounded; i.e., there exists $r>0$ such that $|x| \leqslant r$, for each $t \in T$ and $x \in X_{t}$.

Then there exists a finite decomposition $T=T_{1} \cup \cdots \cup T_{s}$ of T into definable \mathcal{C}^{p}-cells in R^{m} and for each $i \in\{1, \ldots, s\}$ a finite family of definable \mathcal{C}^{p}-mappings

$$
\varphi_{i \varkappa}: T_{i} \times[0,1]^{k} \ni(t, \xi) \longmapsto \varphi_{i \varkappa}(t, \xi) \in X\left(\varkappa \in K_{i}\right)
$$

such that
(i) $\left(\pi \circ \varphi_{i x}\right)(t, \xi)=t$, where $(t, \xi) \in T_{i} \times[0,1]^{k}$ and $\pi: R^{m} \times R^{n} \rightarrow R^{m}$ is the natural projection;
(ii) $X_{t}=\bigcup_{\varkappa \in K_{i}} \varphi_{i x}\left(\{t\} \times[0,1]^{k}\right)$ for each $t \in T_{i}$;
(iii) $\varphi_{\text {ix }} \mid T_{i} \times(0,1)^{k}$ is a \mathcal{C}^{p}-diffeomorphism onto a definable \mathcal{C}^{p}-submanifold of $R^{m} \times$ R^{n} open in $X \cap\left(T_{i} \times R^{n}\right)$;
(iv) $\varphi_{i \varkappa}\left(T_{i} \times(0,1)^{k}\right) \cap \varphi_{i \lambda}\left(T_{i} \times(0,1)^{k}\right)=\varnothing$, whenever $\varkappa, \lambda \in K_{i}, \varkappa \neq \lambda$;
(v) all the partial derivatives $\partial^{|\alpha|} \varphi_{i x} / \partial \xi^{\alpha}(t, \xi)$, where $t \in T_{i}, \xi \in[0,1]^{k}, \alpha \in \mathbb{N}^{k}$, $0<|\alpha| \leqslant p$, are bounded by a constant independent of t.

The above theorem in the semialgebraic case originated in the papers of Yomdin $[15,16]$ and Gromov [5] (with some estimates on the number of mappings $\varphi_{i x}$, which are important from the point of view of applications). Now there are quite a lot of papers connected with it (see [1-3,12,17,18]), where applications in dynamics, analysis, diophantine, and computational geometry are given. Of course this theorem brings to mind (and perhaps can be even considered as a generalization of) the classical

[^0]Hironaka rectilinearization theorem [6, Theorem 7.1] and, from the point of view of the proof (see below), the Puiseux desingularization (cf. [10]). A proof of the Uniform \complement^{p}-Parametrization Theorem for arbitrary o-minimal structures was given by Pila and Wilkie [12, Corollary 5.2]. Nevertheless, in view of differences between our approach and that of [12], we think that our paper may still be of interest.

Remark 1.1 If the o-minimal structure is that of semialgebraic sets, the number of needed mappings $\varphi_{i x}$ can be estimated from above by an integer that depends on p, on the degrees of polynomials describing X, the radius r, the dimension n, and the number of parameters m ($c f$. [5, Section 4.5] and Remark 2.6).

For fundamental definitions and results concerning o-minimal geometry, we refer the reader to [14] or [4]. We limit ourselves here to reviewing the notions of a cell and that of a cell decomposition, because they will play particularly important roles in our approach.

A subset C of R^{n} is called a cell (a \mathcal{C}^{p}-cell) in R^{n} if $C=\{a\}$, where $a \in R$ or $C=(a, b)$, where $a, b \in \bar{R}, a<b$, in the case $n=1$, and, in the case $n>1$, if either $C=\left\{\left(x^{\prime}, f\left(x^{\prime}\right)\right): x^{\prime} \in C^{\prime}\right\}$, where $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right), C^{\prime}$ is a cell (a C^{p}-cell) in R^{n-1} and $f: C^{\prime} \rightarrow R$ is a definable continuous (a definable C^{p} - $)$ function or $C=\left\{\left(x^{\prime}, x_{n}\right)\right.$: $\left.x^{\prime} \in C^{\prime}, f_{1}\left(x^{\prime}\right)<x_{n}<f_{2}\left(x^{\prime}\right)\right\}$, where C^{\prime} is a cell (a \mathcal{C}^{p}-cell) in R^{n-1} and each of the functions $f_{i}: C^{\prime} \rightarrow \bar{R}(i \in\{1,2\})$ is either a definable continuous (a definable $\mathcal{C}^{p_{-}}$) function $f_{i}: C^{\prime} \rightarrow R$ or $f_{i} \equiv-\infty$, or $f_{i} \equiv+\infty$ and $f_{1}\left(x^{\prime}\right)<f_{2}\left(x^{\prime}\right)$ for each $x^{\prime} \in C^{\prime}$. It is clear that any \mathcal{C}^{p}-cell in R^{n} is a \mathcal{C}^{p}-submanifold of R^{n}.

Let X be any definable subset of R^{n}. By a cell decomposition (a C^{p}-cell decomposition) of X, we mean any finite decomposition \mathcal{C} of X into cells in the case $n=1$ and, in the case $n>1$, any finite decomposition \mathcal{C} of X into cells (\mathcal{C}^{p}-cells) such that $\{\pi(C): C \in \mathcal{C}\}$ is a cell decomposition (a \mathcal{C}^{p}-cell decomposition) of $\pi(X)$, where $\pi: R^{n}=R^{n-1} \times R \ni\left(x^{\prime}, x_{n}\right) \mapsto x^{\prime} \in R^{n-1}$ is the natural projection.

2 Preparatory Assertions

A key role is played by the following lemma (cf. [8, Lemmata 1 and 2]) mimicking an idea of Yomdin and Gromov (cf. [5, Section 4.1]).

Lemma 2.1 Let $\lambda:(a, b) \rightarrow R$ be a definable \mathcal{C}^{p+1}-function, where $p \in \mathbb{N}, p \geqslant 1$, defined on an open interval $(a, b) \subset R$ such that, for each $v \in\{2, \ldots, p+1\}, \lambda^{(v)} \geqslant 0$ on (a, b) or $\lambda^{(v)} \leqslant 0$ on (a, b). Then for any closed interval $[t-r, t+r] \subset(a, b)$, where $r \in R$ and $r>0$,

$$
\left|\lambda^{(p)}(t)\right| \leqslant 2^{\left(\frac{p+2}{2}\right)-2} \sup _{[t-r, t+r]}|\lambda| \frac{1}{r^{p}}
$$

Proof First consider the case $p=1$. Without any loss of generality, we can assume that $\lambda^{\prime \prime} \leqslant 0$; i.e., λ is concave. Hence,

$$
\frac{\lambda(t)-\lambda(s)}{t-s} \leqslant \frac{\lambda(t)-\lambda(t-r)}{r} \leqslant 2 \sup _{[t-r, t+r]} \frac{|\lambda|}{r},
$$

when $t-r<s<t$. It follows that

$$
\lambda^{\prime}(t) \leqslant 2 \sup _{[t-r, t+r]} \frac{|\lambda|}{r}
$$

Applying this to $\lambda(-t)$, we obtain

$$
-\lambda^{\prime}(t) \leqslant 2 \sup _{[t-r, t+r]} \frac{|\lambda|}{r} ; \quad \text { consequently, } \quad\left|\lambda^{\prime}(t)\right| \leqslant 2 \sup _{[t-r, t+r]} \frac{|\lambda|}{r} .
$$

Now the lemma follows by induction on p.
Applying Lemma 2.1 to λ^{\prime} in the place of λ and $\mu-1$ in the place of p, we have the following corollary.

Corollary 2.2 Under the assumptions of Lemma 2.1,

$$
\left|\lambda^{(\mu)}(t)\right| \leqslant C_{p} \sup _{(a, b)}\left|\lambda^{\prime}\right| \frac{1}{|t-a|^{\mu-1}},
$$

for each $t \in\left(a, \frac{a+b}{2}\right)$ and $\mu \in\{2, \ldots, p\}$, where $C_{p}:=2^{\binom{p+1}{2}-2}$. In particular, if λ^{\prime} is bounded; i.e., $\left|\lambda^{\prime}\right| \leqslant M$, where $M \in R$ and $M>0$, then

$$
\left|\lambda^{(\mu)}(t)\right| \leqslant C_{p} M \frac{1}{|t-a|^{\mu-1}} \quad \text { for each } t \in\left(a, \frac{a+b}{2}\right), \mu \in\{2, \ldots, p\}
$$

Lemma 2.3 Let $\lambda:(0,1] \rightarrow R$ be a definable \mathcal{C}^{p}-function such that

$$
\begin{equation*}
\left|\lambda^{(\mu)}(t)\right| \leqslant C \frac{1}{t^{\mu-1}} \quad \text { for each } t \in(0,1], \mu \in\{1, \ldots, p\} \tag{2.1}
\end{equation*}
$$

where $C \in R$ is a positive constant. Fix $m \in \mathbb{N}, m \geqslant p+1$. Put $\varphi(\tau):=\lambda\left(\tau^{m}\right)$ for each $\tau \in(0,1]$.

Then there exists a positive constant L depending only on C and m such that $\left|\varphi^{(\mu)}(\tau)\right| \leqslant L$, for each $\tau \in(0,1]$ and $\mu \in\{1, \ldots, p\}$.

Proof For each $\mu \in\{1, \ldots, p\}$,

$$
\begin{aligned}
\varphi^{(\mu)}(\tau)=a_{1 \mu} \tau^{m-\mu} \lambda^{\prime}\left(\tau^{m}\right)+a_{2 \mu} & \tau^{2 m-\mu} \lambda^{\prime \prime}\left(\tau^{m}\right) \\
& +a_{3 \mu} \tau^{3 m-\mu} \lambda^{(3)}\left(\tau^{m}\right)+\cdots+a_{\mu \mu} \tau^{\mu m-\mu} \lambda^{(\mu)}\left(\tau^{m}\right)
\end{aligned}
$$

where $a_{i \mu}$ are positive integers defined inductively by the following formulae:

$$
a_{1 \mu}=\frac{m!}{(m-\mu)!}, \quad a_{i \mu}=m a_{(i-1)(\mu-1)}+(i m-\mu+1) a_{i(\mu-1)}, \quad a_{\mu \mu}=m^{\mu}
$$

By (2.1), it follows that

$$
\begin{aligned}
\left|\varphi^{(\mu)}(\tau)\right| \leqslant & a_{1 \mu} \tau^{m-\mu} C+a_{2 \mu} \tau^{2 m-\mu} \frac{C}{\tau^{m}} \\
& +a_{3 \mu} \tau^{3 m-\mu} \frac{C}{\tau^{2 m}}+\cdots+a_{\mu \mu} \tau^{\mu m-\mu} \frac{C}{\tau^{(\mu-1) m}} \\
= & C\left(a_{1 \mu}+\cdots+a_{\mu \mu}\right) \tau^{m-\mu} \leqslant C\left(a_{1 \mu}+\cdots+a_{\mu \mu}\right)
\end{aligned}
$$

Lemma 2.4 (cf. [7, Lemma 1] or [13, Proposition 5.5]) Let Ω be an open definable subset of R^{n} and let

$$
f: \Omega \times(0,1)^{m} \ni(x, y) \longmapsto f(x, y) \in R
$$

be a definable \mathcal{C}^{1}-function, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$. Assume that all the partial derivatives

$$
\frac{\partial f}{\partial y_{i}} \quad(i=1, \ldots, m)
$$

are bounded on $\Omega \times(0,1)^{m}$.
Then there exists a closed nowhere dense definable subset Σ of Ω such that, for each $x \in \Omega \backslash \Sigma$, the function

$$
(0,1)^{m} \ni y \longmapsto \frac{\partial f}{\partial x_{n}}(x, y) \in \mathbb{R}
$$

is bounded.
Proof First consider the case $m=1$. In this special case we have the following claim.
Claim (\mathcal{C}^{1}-Extension Theorem, cf. [11, Proposition 10]) There exists a closed nowhere dense definable subset Σ of Ω such that f extends to a \mathcal{C}^{1}-function

$$
f: \Omega \times[0,1) \backslash \Sigma \times\{0\} \ni(x, y) \longmapsto f(x, y) \in R
$$

Indeed, by a dimension argument $\frac{\partial f}{\partial y}$ extends to a continuous function defined on $\Omega \times[0,1) \backslash \Sigma \times\{0\}$ with Σ as above. By the Mean Value Theorem there exists a finite limit $\lim _{y \rightarrow 0} f(x, y) \in R$, for each $x \in \Omega$; hence, again by a dimension argument, one can assume that f extends to a continuous function defined on $\Omega \times[0,1) \backslash \Sigma \times\{0\}$. Of course, one can assume that $\Sigma=\varnothing$. Again by removing a small subset of Ω, one can assume that the function $g: \Omega \ni x \mapsto f(x, 0) \in R$ is of class \mathcal{C}^{1}. Now we check that

$$
\lim _{\substack{x \rightarrow a \\ y \rightarrow 0}} \frac{\partial f}{\partial x_{n}}(x, y)=\frac{\partial g}{\partial x_{n}}(a, 0)
$$

for all $a \in \Omega$, except perhaps for a from a small subset. Of course, one can assume that $g \equiv 0$. Now it suffices to show that for each $a=\left(a_{1}, \ldots, a_{n}\right) \in \Omega$, there exists a definable curve $\lambda:(0,1) \rightarrow \Omega \times(0,1)$ such that

$$
\lim _{t \rightarrow 0} \lambda(t)=(a, 0) \quad \text { and } \quad \lim _{t \rightarrow 0} \frac{\partial f}{\partial x_{n}}(\lambda(t))=0
$$

Choose any $\varepsilon, \delta>0$. There exists $x \in \Omega$ such that $x=\left(a_{1}, \ldots, a_{n-1}, x_{n}\right)$, $0<\left|x_{n}-a_{n}\right|<\delta$, and $y \in(0, \delta)$ such that $|f(x, y)|<\varepsilon|x-a|$ and $|f(a, y)|<\varepsilon|x-a|$. Then by the Mean Value Theorem, there exists $\theta \in(0,1)$ such that

$$
\left|\frac{\partial f}{\partial x_{n}}\left(a_{1}, \ldots, a_{n-1}, \theta a_{n}+(1-\theta) x_{n}, y\right)\right|=\frac{|f(x, y)-f(a, y)|}{|x-a|}<2 \varepsilon
$$

and by the Curve Selection Lemma, the proof of the claim is complete.

Now consider the case $m>1$. Suppose that Lemma 2.4 is not true; i.e., there is an open nonempty subset W of Ω such that for each $x \in W$, there exists $h(x) \in[0,1]^{m}$ such that

$$
\limsup _{y \rightarrow h(x)}\left|\frac{\partial f}{\partial x_{n}}(x, y)\right|=\infty .
$$

By definable choice and shrinking perhaps W, we can make h definable of class \mathcal{C}^{1}. By a version with a parameter of the Curve Selection Lemma (or the Whitney Wing Lemma), there exists a definable mapping $\alpha:(0,1) \times W \rightarrow(0,1)^{m}$ such that for each $x \in W, \lim _{t \rightarrow 0} \alpha(x, t)=h(x)$ and

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\partial f}{\partial x_{n}}(x, \alpha(x, t))= \pm \infty \tag{2.2}
\end{equation*}
$$

Perhaps shrinking W and replacing the parameter t by $t^{\prime}=\rho t$, with ρ small positive, we can assume that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is of class \mathcal{C}^{1} on $W \times(0,1)$ and there is $j \in$ $\{1, \ldots, m\}$ such that

$$
\left|\frac{\partial \alpha_{j}}{\partial t}(x, t)\right| \geqslant\left|\frac{\partial \alpha_{i}}{\partial t}(x, t)\right| \quad \text { for each } \quad(x, t) \in W \times(0,1), i \in\{1, \ldots, m\}
$$

Introducing a new variable $\tau:=\alpha_{j}(x, t)$ in the place of t, we can assume that $\left|\frac{\partial \alpha_{i}}{\partial t}(x, t)\right| \leqslant 1$, for $i \in\{1, \ldots, m\}$. By the \mathcal{C}^{1}-Extension Theorem, shrinking perhaps W, we can assume that α is \mathcal{C}^{1} on $W \times[0,1)$. The same is true for the function $g(x, t):=f(x, \alpha(x, t))$ and in view of \mathcal{C}^{1}-Extension Theorem, we get a contradiction with (2.2).

Proposition 2.5 Let $f_{1}, \ldots, f_{k}: \Omega \rightarrow R$ be any definable bounded functions defined on a definable open bounded subset Ω of R^{n}. Let $\pi: R^{n-1} \times R \ni\left(x^{\prime}, x_{n}\right) \mapsto x^{\prime} \in R^{n-1}$ be the natural projection. Let p be a fixed positive integer.

Then there exists a cell decomposition $\left\{C_{\varkappa}\right\}$ of Ω such that for each open cell C_{\varkappa}, there exists a definable \complement^{p}-diffeomorphism $\varphi_{\varkappa}: \pi\left(C_{\varkappa}\right) \times(0,1) \rightarrow C_{\varkappa}$ of the form

$$
\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right)=\left(x^{\prime}, \varphi_{\varkappa n}\left(x^{\prime}, \xi_{n}\right)\right)
$$

where $x^{\prime} \in \pi\left(C_{\varkappa}\right), \xi_{n} \in(0,1)$ and
(i) $\left|\frac{\partial^{\mu} \varphi_{x n}}{\partial \xi_{n}^{n}}\right| \leqslant L_{p}$ for each $\mu \in\{1, \ldots, p\}$, with a positive constant $L_{p} \in \mathbb{N}$ depending only on p;
(ii) each of the functions $f_{i} \circ \varphi_{\varkappa}(i=1, \ldots, k)$ is of class \mathcal{C}^{p} on $\pi\left(C_{\varkappa}\right) \times(0,1)$ and

$$
\left|\frac{\partial^{\mu}\left(f_{i} \circ \varphi_{\varkappa}\right)}{\partial \xi_{n}^{\mu}}\right| \leqslant L_{p} \quad \text { for each } \quad \mu \in\{1, \ldots, p\}
$$

Proof By the Cell Decomposition Theorem (see [14, Chapter 3 and Chapter 7, §3]), we reduce the general case to the one where

$$
\Omega=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in D, a\left(x^{\prime}\right)<x_{n}<b\left(x^{\prime}\right)\right\}
$$

is an open bounded \mathcal{C}^{p}-cell in R^{n}, D is an open bounded cell in $R^{n-1}, a, b: D \rightarrow R$ are definable $\mathcal{C}^{\text {p }}$-functions, $a<b$ on D, each of the functions f_{i} is of class \mathcal{C}^{p+1} on Ω,
and, for each $i \in\{1, \ldots, k\}$

$$
\text { either } \quad\left|\frac{\partial f_{i}}{\partial x_{n}}\right| \leqslant 1 \text { on } \Omega \quad \text { or } \quad\left|\frac{\partial f_{i}}{\partial x_{n}}\right| \geqslant 1 \text { on } \Omega .
$$

Now the proof splits into two cases.
Case I: $\left|\frac{\partial f_{i}}{\partial x_{n}}\right| \leqslant 1$ on Ω, for each $i \in\{1, \ldots, k\}$.
Passing perhaps to a finer cell decomposition of Ω, one can assume that
(2.3) $\operatorname{sgn}\left(\frac{\partial^{v} f_{i}}{\partial x_{n}^{v}}\right)=$ const on Ω, for each $i \in\{1, \ldots, k\}$ and $v \in\{2, \ldots, p+1\}$.

Moreover, one can assume that $b\left(x^{\prime}\right)-a\left(x^{\prime}\right) \leqslant 2$, for $x^{\prime} \in D$. Put $c\left(x^{\prime}\right):=\frac{1}{2}\left(a\left(x^{\prime}\right)+\right.$ $\left.b\left(x^{\prime}\right)\right)$, for $x^{\prime} \in D$. Fix an integer $m \geqslant p+1$. Define

$$
\begin{aligned}
& \varphi_{1}\left(x^{\prime}, \xi_{n}\right):=\left(x^{\prime}, a\left(x^{\prime}\right)+\xi_{n}^{m}\left(c\left(x^{\prime}\right)-a\left(x^{\prime}\right)\right)\right) \\
& \varphi_{2}\left(x^{\prime}, \xi_{n}\right):=\left(x^{\prime}, b\left(x^{\prime}\right)+\xi_{n}^{m}\left(c\left(x^{\prime}\right)-b\left(x^{\prime}\right)\right)\right)
\end{aligned}
$$

for each $x^{\prime} \in D$ and $\xi_{n} \in(0,1)$. It follows immediately from the assumption of Case I, from (2.3), and from Lemma 2.3 that conditions (i) and (ii) are satisfied in this case.
Case II: there exists $j \in\{1, \ldots, k\}$ such that $\left|\frac{\partial f_{j}}{\partial x_{n}}\right| \geqslant 1$ on Ω.
Passing perhaps to a finer cell decomposition of Ω, one can assume that

$$
\begin{equation*}
\left|\frac{\partial f_{i}}{\partial x_{n}}\right| \leqslant\left|\frac{\partial f_{j}}{\partial x_{n}}\right| \quad \text { for each } i \in\{1, \ldots, k\} \tag{2.4}
\end{equation*}
$$

and $\operatorname{sgn}\left(\frac{\partial f_{j}}{\partial x_{n}}\right)=$ const; one can assume without loss of generality that $\frac{\partial f_{j}}{\partial x_{n}} \geqslant 1$.
Removing perhaps from D a definable closed nowhere dense subset, one can assume that f_{j} has a continuous extension defined on

$$
\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in D, a\left(x^{\prime}\right) \leqslant x_{n} \leqslant b\left(x^{\prime}\right)\right\} .
$$

Now, the main idea is to introduce the following new variable $z_{n}:=f_{j}\left(x^{\prime}, y_{n}\right)$ in the place of y_{n}. Then $y_{n}=\psi\left(x^{\prime}, z_{n}\right)$, for $\left(x^{\prime}, z_{n}\right) \in \widetilde{\Omega}$, where

$$
\widetilde{\Omega}:=\left\{\left(x^{\prime}, z_{n}\right): x^{\prime} \in D, \widetilde{a}\left(x^{\prime}\right)<z_{n}<\widetilde{b}\left(x^{\prime}\right)\right\}
$$

$\widetilde{a}\left(x^{\prime}\right):=f_{j}\left(x^{\prime}, a\left(x^{\prime}\right)\right)$, and $\widetilde{b}\left(x^{\prime}\right):=f_{j}\left(x^{\prime}, b\left(x^{\prime}\right)\right)$. Put

$$
\widetilde{f}_{i}\left(x^{\prime}, z_{n}\right):=f_{i}\left(x^{\prime}, y_{n}\right)=f_{i}\left(x^{\prime}, \psi\left(x^{\prime}, z_{n}\right)\right) \quad \text { for each } \quad\left(x^{\prime}, z_{n}\right) \in \widetilde{\Omega}, i \in\{1, \ldots, k\} .
$$

Then by the assumption of Case II and by (2.4),

$$
\left|\frac{\partial \psi}{\partial z_{n}}\right|=\frac{1}{\left|\frac{\partial f_{j}}{\partial y_{n}}\right|} \leqslant 1 \quad \text { and } \quad\left|\frac{\partial \widetilde{f}_{i}}{\partial z_{n}}\right|=\frac{\left|\frac{\partial f_{i}}{\partial y_{n}}\right|}{\left|\frac{\partial f_{j}}{\partial y_{n}}\right|} \leqslant 1 \quad \text { for each } i \in\{1, \ldots, k\} .
$$

Now it suffices to apply Case I to the functions $\widetilde{f}_{i}(i=1, \ldots, k)$ and ψ to complete the proof.

Remark 2.6 In the semialgebraic case, the number of cells in a cell decomposition in the proof of Proposition 2.5 can be estimated from above by degrees of initial polynomials defining $\Omega, f_{1}, \ldots, f_{k}$, by p and by n (cf. [9, Section 20]).

Proposition 2.7 Let $F_{i}: \Omega \times(0,1)^{m} \ni(x, y) \mapsto F_{i}(x, y) \in R(i=1, \ldots, k)$ be a finite number of definable bounded \complement^{p}-functions, where Ω is an open definable bounded subset of $R^{n}, x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right), p \in \mathbb{N}, p>0$. Let $q \in\{0, \ldots, p-1\}$. Let $\pi: R^{n-1} \times R \ni\left(x^{\prime}, x_{n}\right) \mapsto x^{\prime} \in R^{n-1}$ be the natural projection. Assume that all the partial derivatives

$$
\frac{\partial^{\mu+|\alpha|} F_{i}}{\partial x_{n}^{\mu} \partial y^{\alpha}} \quad \text { with } \quad \mu \in\{0, \ldots, q\}, \quad 0<\mu+|\alpha| \leqslant p
$$

are bounded.
Then there exists a cell decomposition $\left\{C_{\varkappa}\right\}$ of Ω such that for each open cell C_{\varkappa}, there exists a definable \complement^{p}-diffeomorphism $\varphi_{\varkappa}: \pi\left(C_{\varkappa}\right) \times(0,1) \rightarrow C_{\varkappa}$ of the form

$$
\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right)=\left(x^{\prime}, \varphi_{\varkappa n}\left(x^{\prime}, \xi_{n}\right)\right), \quad \text { where } \quad x^{\prime} \in \pi\left(C_{\varkappa}\right), \xi_{n} \in(0,1)
$$

and
(i) $\left|\frac{\partial^{\mu} \varphi_{x n}}{\partial \xi_{n}^{\mu}}\right| \leqslant L_{p}$ for each $\mu \in\{1, \ldots, p\}$, with a positive constant $L_{p} \in \mathbb{N}$ depending only on p;
(ii) for each $i \in\{1, \ldots, k\}$, all the partial derivatives

$$
\frac{\partial^{\mu+|\alpha|}}{\partial \xi_{n}^{\mu} \partial y^{\alpha}} F_{i}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right), y\right) \quad \text { with } \quad \mu \in\{0, \ldots, q+1\}, \quad \mu+|\alpha| \leqslant p
$$

are bounded.
Proof Take any $\alpha \in \mathbb{N}^{m}$ such that $q+1+|\alpha| \leqslant p$. Then, for each $r \in\{1, \ldots, m\}$,

$$
\frac{\partial}{\partial y_{r}}\left(\frac{\partial^{q+|\alpha|} F_{i}}{\partial x_{n}^{q} \partial y^{\alpha}}\right)=\frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q} \partial y^{\alpha+(r)}}
$$

is bounded; hence, in view of Lemma 2.4, there exists a closed definable nowhere dense subset Σ of Ω such that for each $x \in \Omega \backslash \Sigma$, the function

$$
(0,1)^{m} \ni y \longmapsto \frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q+1} \partial y^{\alpha}}(x, y) \in R
$$

is bounded. By the Definable Choice Theorem (cf. [14, Chapter 6, (1.2)]), there exist definable mappings $\delta_{i \alpha}: \Omega \backslash \Sigma \rightarrow(0,1)^{m}$ such that

$$
\begin{equation*}
\left|\frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q+1} \partial y^{\alpha}}\left(x, \delta_{i \alpha}(x)\right)\right| \geqslant \frac{1}{2} \sup _{y \in(0,1)^{m}}\left|\frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q+1} \partial y^{\alpha}}(x, y)\right| \quad \text { for any } x \in \Omega \backslash \Sigma \tag{2.5}
\end{equation*}
$$

Now we apply Proposition 2.5 to all the functions

$$
\Omega \backslash \Sigma \ni x \longmapsto \frac{\partial^{|\alpha|} F_{i}}{\partial y^{\alpha}}\left(x, \delta_{i \alpha}(x)\right) \in R
$$

as well as to $\Omega \backslash \Sigma \ni x \mapsto \delta_{i \alpha}(x) \in(0,1)^{m}$. Thus, there exists a cell decomposition $\left\{C_{\varkappa}\right\}$ of Ω such that for each open cell C_{\varkappa} there exists a definable \mathcal{C}^{p}-diffeomorphism

$$
\varphi_{\varkappa}: \pi\left(C_{\varkappa}\right) \times(0,1) \longrightarrow C_{\varkappa}
$$

of the form as above, satisfying condition (i) and such that all the functions

$$
\delta_{i \alpha}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right)\right) \quad \text { and } \quad \frac{\partial^{|\alpha|} F_{i}}{\partial y^{\alpha}}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right),\left(\delta_{i \alpha} \circ \varphi_{\varkappa}\right)\left(x^{\prime}, \xi_{n}\right)\right)
$$

are \mathcal{C}^{p} and have all partial derivatives with respect to ξ_{n} up to order p bounded. Put

$$
\widetilde{F}_{i \varkappa}\left(x^{\prime}, \xi_{n}, y\right):=F_{i}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right), y\right)
$$

Now we have

$$
\begin{align*}
& \frac{\partial^{q+1}}{\partial \xi_{n}^{q+1}}\left(\frac{\partial^{|\alpha|} \widetilde{F}_{i x}}{\partial y^{\alpha}}\right)=\left(\frac{\partial \varphi_{\varkappa n}}{\partial \xi_{n}}\right)^{q+1} \frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q+1} \partial y^{\alpha}}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right), y\right)+ \tag{2.6}\\
& \quad \text { a polynomial with integral coefficients in }\left\{\frac{\partial^{v} \varphi_{\varkappa n}}{\partial \xi_{n}^{v}}\left(x^{\prime}, \xi_{n}\right)\right\}_{v \leqslant p}
\end{align*}
$$

and

$$
\begin{aligned}
&\left\{\frac{\partial^{\mu+|\alpha|} F_{i}}{\partial x_{n}^{\mu} \partial y^{\alpha}}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right), y\right)\right\}_{\mu+|\alpha| \leqslant p, \mu \leqslant q}= \\
&\left(\frac{\partial \varphi_{\varkappa n}}{\partial \xi_{n}}\right)^{q+1} \frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q+1} \partial y^{\alpha}}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right), y\right)+\text { a bounded function. }
\end{aligned}
$$

A calculation similar to (2.6) shows that

$$
\begin{align*}
& \frac{\partial^{q+1}}{\partial \xi_{n}^{q+1}}\left(\frac{\partial^{|\alpha|} F_{i}}{\partial y^{\alpha}}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right),\left(\delta_{i \alpha} \circ \varphi_{\varkappa}\right)\left(x^{\prime}, \xi_{n}\right)\right)\right)= \tag{2.7}\\
& \left(\frac{\partial \varphi_{\varkappa n}}{\partial \xi_{n}}\right)^{q+1} \frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q+1} \partial y^{\alpha}}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right),\left(\delta_{i \alpha} \circ \varphi_{\varkappa}\right)\left(x^{\prime}, \xi_{n}\right)\right)+\text { a bounded function. }
\end{align*}
$$

Since (2.7) is a bounded function,

$$
\left(\frac{\partial \varphi_{\varkappa n}}{\partial \xi_{n}}\right)^{q+1} \frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q+1} \partial y^{\alpha}}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right),\left(\delta_{i \alpha} \circ \varphi_{\varkappa}\right)\left(x^{\prime}, \xi_{n}\right)\right)
$$

is bounded too. Hence, by (2.5),

$$
\left(\frac{\partial \varphi_{\varkappa n}}{\partial \xi_{n}}\right)^{q+1} \frac{\partial^{q+1+|\alpha|} F_{i}}{\partial x_{n}^{q+1} \partial y^{\alpha}}\left(\varphi_{\varkappa}\left(x^{\prime}, \xi_{n}\right), y\right)
$$

is bounded, and finally by (2.6),

$$
\frac{\partial^{q+1}}{\partial \xi_{n}^{q+1}}\left(\frac{\partial^{|\alpha|} \widetilde{F}_{i x}}{\partial y^{\alpha}}\right)
$$

is bounded, which ends the proof.
Proposition 2.8 Let $f_{1}, \ldots, f_{k}: \Omega \rightarrow R$ be any definable bounded functions defined on an open definable bounded subset Ω of R^{n}. Let p be any positive integer and let $m \in\{1, \ldots, n\}$. Let $\pi: R^{n} \ni\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-m}\right) \in R^{n-m}$ denote the natural projection.

Then there exists a cell decomposition $\left\{C_{\varkappa}\right\}$ of Ω such that for each open cell C_{\varkappa}, there exists a definable \mathcal{C}^{p}-diffeomorphism $\varphi_{\varkappa}: \pi\left(C_{\varkappa}\right) \times(0,1)^{m} \rightarrow C_{\varkappa}$ of the form

$$
\varphi_{\varkappa}\left(x^{\prime}, \xi\right)=\left(x^{\prime}, \varphi_{\varkappa 1}\left(x^{\prime}, \xi_{1}\right), \varphi_{\varkappa 2}\left(x^{\prime}, \xi_{1}, \xi_{2}\right), \ldots, \varphi_{\varkappa m}\left(x^{\prime}, \xi_{1}, \ldots, \xi_{m}\right)\right)
$$

where $x^{\prime}=\left(x_{1}, \ldots, x_{n-m}\right) \in \pi\left(C_{\varkappa}\right), \xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in(0,1)^{m}$, all the restrictions $f_{i} \mid C_{\varkappa}$ are of class ${ }^{p}$, and all the partial derivatives

$$
\begin{equation*}
\frac{\partial^{|\alpha|} \varphi_{\varkappa}}{\partial \xi^{\alpha}} \quad \text { and } \quad \frac{\partial^{|\alpha|}\left(f_{i} \circ \varphi_{\varkappa}\right)}{\partial \xi^{\alpha}} \quad\left(i \in\{1, \ldots, k\}, \alpha \in \mathbb{N}^{m}, 0<|\alpha| \leqslant p\right) \tag{2.8}
\end{equation*}
$$

are bounded.
Proof This is immediate by Propositions 2.5 and 2.7 used repeatedly.
Remark 2.9 It follows from the proof of Proposition 2.7 that there exist bounds on the partial derivatives (2.8) depending only on p and m.

3 Proof of Uniform \mathcal{C}^{p}-Parametrization Theorem

We will argue by induction on $d=\operatorname{dim} T$. By the Cell Decomposition Theorem (see [14, Chapter 3 and Chapter $7, \$ 3]$), without any loss of generality, one can assume that T is a \mathcal{C}^{p}-cell of dimension d and, by using an appropriate \mathcal{C}^{p}-diffeomorphism, that T is an open bounded cell in R^{d}.

By the Good Direction Theorem (cf. [14, Chapter 9, (1.4)]), after a linear change of coordinates in R^{n} and perhaps removing from T a definable subset of dimension $<d$, one can assume that, for any $y \in T,\left(\{y\} \times R^{n-k}\right) \cap X$ is a finite set.

Now by using a cell decomposition of X, we reduce the general case to one such that X is the closure in $T \times R^{n}$ of the graph of a definable bounded mapping $f=$ $\left(f_{k+1}, \ldots, f_{n}\right): \Omega \rightarrow R^{n-k}$ defined on an open definable bounded subset Ω of $R^{d} \times R^{k}$. To finish the proof, it suffices to apply Proposition 2.8 with $p+1$ in the place of p.

Acknowledgment The authors thank the anonymous referee for valuable comments that improved the original text.

References

[1] D. Burguet, A proof of Yomdin-Gromov's algebraic lemma. Israel J. Math. 168(2008), 291-316. http://dx.doi.org/10.1007/s11856-008-1069-z
[2] R. Cluckers, G. Comte, and F. Loeser, Non-archimedean Yomdin-Gromov parametrization and points of bounded height. 2014. arxiv:1404.1952
[3] R. Cluckers, J. Pila, and A. Wilkie, Uniform parametrization of subanalytic sets and diophantine applications. 2018. arxiv:1605.05916
[4] M. Coste, An introduction to O-minimal geometry Dottorato di Ricerca in Matematica, Edizioni ETS, Pisa, 2000.
[5] M. Gromov, Entropy, homology and semialgebraic geometry. Séminaire Bourbaki, 1985/86, Astérisque 145-146(1987), 5, 225-240.
[6] H. Hironaka, Introduction to real analytic sets and real analytic maps. Dottorato di Ricerca in Matematica, Edizioni ETS, Pisa, 2009.
[7] B. Kocel-Cynk, W. Pawłucki, and A. Valette, Short geometric proof that Hausdorff limits are definable in any o-minimal structure. Adv. Geom. 14(2014), no. 1, 49-58. http://dx.doi.org/10.1515/advgeom-2013-0028
[8] K. Kurdyka and W. Pawłucki, Subanalytic version of Whitney's extension theorem. Studia Math. 124(1997) no. 3, 269-280.
[9] S. Łojasiewicz, Ensembles semi-analytiques. Institut des Hautes Études Scientifiques, Bures-sur-Yvette, 1965.
[10] W. Pawłucki, Le théorème de Puiseux pour une application sous-analytique. Bull. Polish Acad. Sci. Math. 32(1984) no. 9-10, 555-560.
[11] , Lipschitz cell decomposition in o-minimal structures. I. Illinois J. Math. 52(2008), 1045-1063.
[12] J. Pila and A. J. Wilkie, The rational points of a definable set. Duke Math. J. 133(2006), no. 3, 591-616. http://dx.doi.org/10.1215/S0012-7094-06-13336-7
[13] G. Valette, Lipschitz triangulations. Illinois J. Math. 49(2005), no. 3, 953-979.
[14] L. van den Dries, Tame topology and o-minimal structures. London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998. http://dx.doi.org/10.1017/CBO9780511525919
[15] Y. Yomdin, Volume growth and entropy. Israel J. Math. 57(1987), 285-300. http://dx.doi.org/10.1007/BF02766215
$[16] \longrightarrow C^{k}$-resolution of semialgebraic mappings. Addendum to: "Volume growth and entropy". Israel J. Math. 57(1987), 301-317. http://dx.doi.org/10.1007/BF02766216
[17] , Analytic reparametrization of semialgebraic sets. J. Complexity 24(2008), no. 1, 54-76. http://dx.doi.org/10.1016/j.jco.2007.03.009
[18] —_Smooth parametrizations in dynamics, analysis, diophantine and computational geometry. Jpn. J. Ind. Appl. Math. 32(2015), no. 2, 411-435. http://dx.doi.org/10.1007/s13160-015-0176-6
Institute of Mathematics, Cracow University of Technology, ul. Warszawska 24, PL31-155 Cracow, Poland Email: bkocel@usk.pk.edu.pl
Institute of Mathematics, Jagiellonian University, ul. St. Łojasiewicza 6, PL30-348 Cracow, Poland Email: wieslaw.pawlucki@im.uj.edu.pl anna.valette@im.uj.edu.pl

[^0]: Received by the editors October 30, 2017; revised June 26, 2018.
 Published electronically December 1, 2018.
 AMS subject classification: 03C64, 14P15, 32B20.
 Keywords: o-minimal structure, C^{p}-parametrization.

