
GENERAL VALUE DISTRIBUTION THEORY*

LEO SARIO

We shall introduce the main theorems of value distribution theory in the

most general case of complex dimension one: analytic mappings of arbitrary

Riemann surfaces into arbitrary Riemann surfaces. The case of mappings of

arbitrary Riemann surfaces into closed Riemann surfaces was discussed in [41].

Earlier literature on analytic mappings is listed in the Bibliography.

An implicit form of the second main theorem was reported in the research

announcement [38]. The essence of the present paper is that the second main

theorem can be given an explicit expression, even in the most general case.

This will enable us to establish the affininity relation (10),

Σαrίβ)

As special cases, this relation contains the generalized defect relation, the

generalized ramification relation, and a relation pertaining to the coverage of

the zeros of the metric.

1. Program. The basic tool in value distribution theory is the proximity

function, that is, a function that describes the nearness of a generic point C

on the range surface to a given point a. This function is required to have

two properties: it must tend logarithmically to infinity as C tends to a, and

it must remain positive or at least uniformly bounded below no matter how

C and a roam on the surface. In the classical case of the plane such functions
+

are immediately available, e.g., log|C — a\~ι and logfC, a]"1. In contrast, on an

abstract Riemann surface the construction of a proximity function turns into

an essential part of the theory.

The basic idea of our approach is as follows. On an arbitrary Riemann

surface S take two points Co and Ci. Let U = ί(C, Co, Ci) be a harmonic function
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214 LEO SARIO

with positive and negative singularities at Co and Ci respectively, and, in a sense

to be specified, constant values on the ideal boundary. The function so =

log(l-h£'0) continues to have a positive logarithmic pole at Co but it is bounded

below by zero on S. It qualifies as a proximity function to Co. For any other

point a we could proceed in the same manner but we wish the resulting pro-

ximity function to have the same Laplacian as so, so that we may effectively

make use of Stokes' formula. This we accomplish by adding to s0 the harmonic

function f=ί(C, a, Co). The singularities at Co then cancel, and the sum s = s<>

+ t has as singularity only the positive logarithmic pole at a. The problem

is to show that s>O(l) uniformly for all C and a.

It will also be important that s has a symmetry property: s(a, b) = s(b,

a). This will be achieved by so normalizing t at Co that t(ζ) — 21og|C - Col -»

So(ά) as C->Co.

Once the proximity function has been constructed, the main theorems can

be established largely in the same way as for mappings into closed surfaces

[41]. There is one significant difference, however. The conformal metric we

use has only a finite number of zeros on a closed surface and these zeros could

in [41] be conveniently added to the points alt . . . , aq in the second main

theorem. In the general case there are infinitely many zeros of our metric

and they bring a new aspect to the second main theorem and its consequences.

That there actually exist nontrivial mappings into surfaces of infinite genus

is clear. The projection mapping between two suitable covering surfaces is a

simple example.

2. A lemma on harmonic functions. We start with a well known property

of harmonic functions. Let Wo be a Riemann surface. It can be arbitrary, but

for our purposes it suffices to consider a bordered compact surface with border

αo. In the interior Wo of Wo we consider a compact set cti. Again it can be

arbitrary but it suffices to take a finite set of analytic Jordan curves.

LEMMA 1. Let u be a harmonic function on Wo with sgnw|α:i =¥ const.

Then there exists a constant <?e (0, 1), independent of u, such that

The proof is immediate. If the maximum is equal to zero, there is nothing

to prove. In other cases we normalize by a multiplicative constant so as to
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make the maximum equal to one. We claim that |wlki^g<l . If not, there is

a sequence of functions un which at some points ζn of cc\ tend to one. The

family is normal, and a limiting harmonic function has absolute value one at

some accumulation point of the ζn. This violates the maximum principle,

and the lemma is proved.

Consider now a real-valued function f e C on αro. The solution uo of the

Dirichlet problem in Wo is obtained from ψ by a linear operator, uo = Loψi and

obviously the flux \ J*L 0^ = 0. If sgn uo I ai =*= const, then uo satisfies our in-
J «o

equality. We now intersect Wo by another compact surface Wi bordered by

CC1CZWQ and βίf say, with βtCιWo = 0. Given a continuous ψ on cci let U\ be

the harmonic function on Wi with ui\ai = φ and wilj9i = ci (const.) such that

\ d*^ =0. This can happen only if cx is between the minimum and maximum

of φ and we see that u± attains its extrema on ai. Set UL = 'Liψ. If Wi is

bordered with border ai but noncompact, extending to the ideal boundary β of

the open Riemann surface Wo U Wu then we take for ux the directed limit of

corresponding functions constructed on exhausting bordered subregions with

cci fixed and βι tending to β The operator Li is in this fashion defined for a

noncompact Wi. Because of uniform convergence we have Iwil^maxl^l and

We also need a composite operator: given ψ on αr0 we take Loψ on

and follow it with LxLoψ on αr0. We set K-LiLo.

L E M M A 2. // s g n Knφ\cc1* c o n s t for i = l, . . . ,ny then

( 1 ) \Knφ\£q

For ^ = 1 this follows from our inequalities for uQ and uι. At each itera-

tion of K we obtain another factor q on the right.

3. Principal functions. We can now state a general existence theorem for

harmonic functions (cf. [43] K Let W be an open Riemann surface and W\ a border-

ed boundary neighborhood with compact border αri. On Wi let J be a harmonic

function such that <y | α:i = 0 and \ d*a = 0. It is easy to see that these cbndi-

tions do not restrict generality. The problem is to construct on FT a harmonic

function p that imitates the behavior of a on PFi. Let a compact bordered PFo

with border aoc:Wι intersect Wi as above and set M =max«0|<y|.
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216 LEO SARIO

THEOREM 1. There exists on W a harmonic function p, unique up to an

additive constant, such that

(2) p\Wι

(3) l ^ - ^ l ^ - — .

(4) I/H!FFO^=^J—••

The theorem states that we can always find a harmonic function p on all

of W with behavior a on W\ such that p - a is bounded on Wi and " constant

on the ideal boundary ". Moreover, the bounds for p - a and p \ Wo only depend

on the geometric configuration and on M, not on a otherwise. This makes it

possible to give the bounds (3) and (4) simultaneously for uniformly bounded

families of functions a. We can briefly say that if <r|#o = 0(l) , then p-a

= 0(1) and p\ Wo = 0(1), all uniformly.

The function p is called the principal function on PF0. Its existence has

been known for some time (see e.g. [4]) and it has a variety of applications.

For instance, recently my students G. Weill [54-56], B. Rodin [35], and M.

Goldstein [13] looked into various aspects of the K- and L-kernels, studied

thus far on certain plane regions and finite Riemann surfaces. It turned out

that the beautiful theory of Bergman and Schiffer extends in its entirety to

arbitrary Riemann surfaces of finite or infinite genus. This in turn gives

access to constructive, and if need be, even numerical, methods in the theory

of square integrable differentials. Properties (3) and (4) are new and will be

the basis of establishing the uniform boundedness below of our proximity

function s.

4. Proof. To establish Theorem 1 we observe that it suffices to find p on

ao. In fact, then p = Lop on Wo and equation (2) gives it on Wi. On com-

bining these two equations we have on <x0*

(5) p = a + L\ Lop.

Here LtLo is our operator K. It is known that the solution Lop of the Dirichlet

problem can be expressed as an integral involving the Green's function on Wo.

Similarly on Wi the operator Li gives a harmonic function representable as an

integral in terms of a modified Green's function (cf. [43] and No. 5 below).*
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Thus we are dealing with a simple integral equation of the Fredholm type.

It is known that its solution is given by the Neumann series p = Σo° Kna

provided the series converges uniformly. Indeed, in this case the operator K

can be applied term by term and we find Kp-^ΣnKnύ-p-a. This is our

equation (5).

To show the uniform convergence we only have to apply Lemma 2 to

obtain a majorant geometric series. That the condition of the lemma is satisfied

is shown as follows: In Wo Π Wι take the harmonic function h with h \ αu = 0,

h I ceo = const, such that \ d*/z = l, ao and oc\ being oriented so as to leave

Wo Π Wi to the left and right respectively.

LEMMA 3. [ Knσd*h = 0.

For the proof take in Wo Π Wi any harmonic function u with \ d*u = 0. An

application of Green's formula to u and h gives

\ ud*h = \ ud*h.

For the function u we can take a by assumption, Loψ by Green's formula,

Liψ by definition, or Knψ. For n — 0 the lemma is trivial. Suppose now it

is true for n - 1. Then the integral is the same along αro, but here the integrand

can be replaced by Lo acting on it. This integral equals that along au and

here the integrand is the same as Li acting on it. Since LiLo-K we have Kn

and Lemma 3 is established.

Lemma 2 now applies and we obtain \p\\cco^M(l- qV1. By the maximum

principle the same is true of p on Wo and we have established property (4).

In particular the inequality holds on ocu but there p =p-~ a and by the maximum

principle we have property (3). The proof of Theorem 1 is complete.

An analogue of the theorem can be established for higher dimensions.

5. Generalized Green's function. Our first application of Theorem 1 is

to a generalization of the Green's function. Let S be an arbitrary Riemann

surface. Throughout our presentation we denote by D a parametric disk and

by D' and D" increasingly smaller concentric disks. Set S" =* S — D". Denote

on S" by ga the modified Green's function which has a positive logarithmic

pole at a with coefficient 2, vanishes on the curve dD", and has Lx behavior
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on the ideal boundary. The exact construction will be carried out in the course

of the proof of the following auxiliary result. We also set S' = S- D'.

LEMMA 4. Let E be a compact set in S" and O c S'1 an open set containing

E. Then

(6) ga\E=O(l) uniformly for a£ΞS"-O.

For the proof we make use of the symmetry property ga(t) = gt(a),

established in the same fashion as in the classical case. We must show that

gt\S"-O = O(l) uniformly for / ε £

Cover E with a finite set of disks Ki in O such that slightly smaller con-

centric disks Ki already cover E. We decompose E into compact subsets Ei

contained in Ki. Obviously it suffices to show the uniform boundedness for

t^Ei. In applying Theorem 1 we take W = S"-t and let WΊ consist of three

components Ki - t, D-D", and a bordered neighborhood Dβ, with compact

dDp, of the ideal boundary β of S. For Wo choose S'-K\-D^ where D? is

a bordered neighborhood of β with compact 9D£cDp. In ϋf, —£ take a = 2

log( | l -Cί | / |C-f l ) , and in D-D", <;--=21og r. Here and later r stands for the

distance of the generic point C from the center of the parametric disk in

question. In D? we set <; = 0. The conditions <;|3TFo = O and \ d*a = 0 are

obviously satisfied, σ\dWo-0(l) uniformly, and consequently p-a and p\Wo

are 0(1) uniformly. We normalize on 3D". Since p on it is c, a constant, we

take gt^p-c and have gt\S"-O = 0(1). In fact, this is true on (D - D") U Dp,

and the rest of the set S" - O is a subset of FFo.

6. Proximity function. We are now ready to carry out the construction

of the proximity function according to our program in No. 1. To form to take

W=S-Co-Ci and W\ = (Do — Co) U (D\ - Ci), where the parametric disks Do,

D\ are centered at Co, Ci. In Do — Co choose a = — 2 log r, in A - Ci, <; = 2 log r.

We tacitly have also a neighborhood of the ideal boundary β, but since we can

choose a = 0 there we no longer write it down here or in later applications of

the theorem. For Wo take S - Dί - D[. Since <j|aFF0 = 0(1) and the flux vanishes,

we infer that p - a = 0(1) and p\Wo = 0(l). The principal function p is taken

as to. Then U1 Do = ~ 2 log r •+• O( 1) and it follows that s01 A) = log (1 + r" V(1>)

= -21ogr-hlog(r2 +
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LEMMA 5. soiDo = - 2 log r +0(1) and so^O on S.

The construction of s will depend on the location of a. Let D and D be

disks disjoint from each other and from D". Consider three cases: (I) # e D " ,

(II) a<ΞΞS-DΌf-D, (III) a^S-D[' - D. The union of the three sets is

obviously S, and it suffices to establish a uniform lower bound for s separately

in each of the three cases. The third case can be dispensed with since it is

the same as the second case.

Case I. a£ΞD'o
f. Take PF = S-C0-tf, FΓi = Do - Co - β, and Wo = S-D'o.

Set<; = 21og(Hl-Cfl|/|C-<i|). Then σ\dWo is 0(1) and so arep - σ andp\WQ.

The normalization is at Co where p-2log r-> -2log \α\ + c(α) with c(α) = O(l)

uniformly for α e D". By Lemma 5 this limit is sQ(α) -f d{α) where again

d(α) = 0(1). The function t=p-c] has the required normalization. Moreover,

since 11 - Cβ|/|C- α\ >1, we haveί|D 0>2log r +0(1) and f | S - D 0 = O(l). On

combining this with Lemma 5 we obtain s | D o > 0 ( l ) , s\S— DQ>O(1), hence

5 > 0 ( l ) uniformly for α^D".

Case II. α^S-D'Q'-D. On S" = S - D " we have - f t β | D 0 = 21og r + O(l),

- f t . | S " - D o = 0 ( l ) . On applying Lemma 4 to J51 = 3D' U Co, 0 = ( D - D " ) UDί'

we obtain gαIS" >0, #* 19Dr = 0(1), ^fl 1 Co = 0( 1). Consequently the restriction

of gα-gζ* to Do is >21ogr + O(l); to S"-D o , > 0 ( l ) ; to 3D', 0(1); and at

Co we have gα — g;D-~2\ogr-*c(α) = 0 ( 1 ) as C-*Co, uniformly in α.

As the last application of Theorem 1 we take W=S-ζo~α, Wi = S"-ζ0

-α, Wo = D\ and σ = gα- gζ0 in Wi. Then ^ ] aPFO = 0(1). The normalization

is at Co where p-2logr-*c1{α) = 0{l). Take t =p-\-sQ(α) - Ci(α). Since sQ(α)

- C I ( Λ ) > 0 ( 1 ) , we conclude that f |D o >2 log r+ 0(1), ί| S " - D o > 0(1), and ί|D"

= 0(1). Adding t to 50 gives s |D 0 >O(l), s | S - D 0 > O ( l ) .

This completes the construction of the proximity function s{C, ά) that is

uniformly bounded below for all C, o e S .

7. First main theorem. Having thus formed the proximity function we

introduce a conformal metric with area element dω = λ2dS, where λ2 = Δs = Js0

and dS is the Euclidean area element in the parametric disk. A direct compu-

tation gives
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We see that our metric has zeros, namely those of grad to. These zeros,

however, turn out to be helpful and in fact constitute an essential part of the

theory.

For the Gaussian curvature of our metric we obtain

A - p — - 1.

In fact, the logarithm of the numerator in (7) is harmonic while the denomi-

nator gives Jlog(l + eto), hence again - λ\ As a by-product we have, on an

arbitrary Riemann surface, a conformal metric of finite total area (which can

be seen to be 4 π) and constant Gaussian curvature.

We are now ready to give the first main theorem. Consider an analytic

mapping / of an arbitrary Riemann surface R into another arbitrary Riemann

surface S. Remove from R a parametric disk RQ with border βo and consider

an adjacent regular region Ω with border β0 Π βQ. On Ω let u be the harmonic

function with u\ βo = 0, u\ J9Ω = k(Ω) = const, such that \ du* = 1. For h e [0, k}

consider the level line βh = u~1(h) and the region Ωh = u~ι((0, h)) between β0

and βh.

For a given a <= S let v(h, a) be the number of inverse images of a in £/,.

We choose the counting function

A(h, a) = 4 π \ v( h, a)dh.

It reflects the frequency of ^-points of /. In particular, it vanishes identically

for a Picard point a.

For the proximity function we take

B(h, β) = ̂  s(f(z), a)du*.

Here the integrand is the proximity of the image of z e βh to a, and B is

the mean proximity of the image fiβh) of βh to a.

The characteristic is chosen to be

= ) (h-u(z))dω(f(z)).

In contrast with the classical theory the integrand depends on the region Ω.

This, however, causes no difficulty. The characteristic is obviously independent
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of «, and a simple application of Stokes' formula to the differential ds* shows

that it retains its Shimizu-Ahlfors nature: the derivative

C'U) = \ ώn(/(z))

is the total area of the multi-sheeted image under / of Ωh over S.

We apply the Green's formula to the functions s(/(z), a) and h-u{z) over

Ωh less small disks about the f'Ha) which we then let shrink to their centers.

For h we take its maximum k and obtain the first main theorem:

THEOREM 2. Under an analytic mapping of an arbitrary Riemann surface

R into an arbitrary Riemann surface S, and for any regular region Ω c R,

A(k, a) + B{k, a) = C(k) + D(k, a).

Here D is the integral along β0 and is seen to be B(0, a)+kB'(0, a). We

observe that it is Oik). For functions of any interest it turns out that the

characteristic C grows more rapidly than k. Thus D is an insignificant

remainder and we conclude that the beautiful classical balance prevails in the

present most general situation: the (A4-B)-affinity, so to speak, of the map-

ping / is the same for all points a. In particular, for a Picard point we have

a strong proximity B of the image curve f(βh).

8. Estimation of B. The main question is: how many Picard points can

there exist. The answer is given by estimating 'ΣiBik, ad for any aly . . . ,aQ.

This estimate is known as the second main theorem. But even in the classical

case of the plane no estimate is known for the remainder in the second main

theorem that would be valid for all values of the variable r. It is the integral

of the integral of the remainder that can be given a universally valid bounding

function. The remainder itself can behave arbitrarily wildly in certain excep-

tional intervals whose length can be estimated but which must be omitted in

stating the second main theorem. When one then takes the defect relation

from the second main theorem these exceptional intervals prevent the use of

directed limits. But ordinary limits cannot be used on arbitrary Riemann

surfaces for there is no one single parameter that would give an exhaustion

of the entire surface. Thus these exceptional intervals block every attempt at

extending the classical form of the value distribution theory to the general

case.
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This difficulty can be overcome by the following simple device. We replace

the mean proximity to a of the image curve by what is just as natural if not

more so, by the mean proximity to a of the entire image region and then

integrate this. Analytically this means that, in a sense, we bring all quantities

involved to the same level of integration. The remainder in the second main

theorem can then be given an estimate valid for all regions, directed limits

can be used, and the theory established on arbitrary Riemann surfaces.

To carry out this program we introduce, for any function defined in [0, &],

ch
ψΛh) = \ φ(h)dh,

JQ

<p2(h) =

We choose q points #i, . . . , aq in S and set, for any function ψ(h, a),

hy at).

When these two operations are applied to the terms in the first main theorem

one obtains

(8) A2(h)+B2(h) = qC2(h)+D2(h).

It remains to estimate B2.

To this end we set

a(z) =exp Σs(/(z) , ad
1

plus a negligible normalizing term we shall disregard in this paper (for details

see [41]). We then introduce the mass distribution drn- σ(z)dω on S. Its

density on S is at, which in the u + «**-plane induces the density aμ. Here

μ(z) = λ(z)\f'(z)\\gmά u(z)\-\

In terms of μ we set

F(h) = [ logσμ*du*>

and

G(ft)= - ί log μ*du*.

Then
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The effect of this decomposition is that the components can be separately

estimated.

9. Estimation of F2. We start with F. Let

H(h) = ( aμ%du*.

By the convexity of the logarithm we have

hence

Fi(h) <h log HΛh) + O(h log h).

Another integration gives similarly

F2(h) < h2 log ffi(Λ) + O(h2 log h).

To estimate H% we note that

Hi(h) = [ v(h,a)dm(a).

In fact, on the left the density aμt is first integrated along the level line βh,

then this integral from 0 to h> and we obtain the total mass on f{Ωh) On

the right each mass element is multiplied by the number of times it is covered,

and the integral again gives the total mass on the multi-sheeted image of Ωh

over S. The integrand is the same as in A{h, a), and we conclude that H2 is

obtained by integrating the first main theorem with respect to dm(a) over S.

On the right C gives mC, where m is the total mass of the distribution on S.

D is O(h) and, by virtue of the symmetry of s, remains so after the integration

over the finite mass. We have shown in Nos. 1-6 that the integrand s in B is

uniformly bounded below. When B is transposed to the right we thus obtain

<O(1) which is subsumed under O(h) and we have

4,πH2(h)<mC(h) + O(h).

The substitution into F2 gives

F2(h)<h2 log Γ(CU) + 0{h)l
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where the last term contains the original h2 log ft-term.

10. Evaluation of G2. We first consider G1 = — 2 \ d * log μ. We apply

Stokes' formula to the differential d* log μ over the region Ωh from which we

first remove small disks about the zeros of μ and then let the disks shrink to

their centers. Each zero of μ gives a flux 2 π and we obtain 4 π times the

negative of the number v(h, /') of the zeros of / ' minus the number p(h, λ)

of the zeros of our metric λ\dζ\ plus the number of the zeros of grad u. By

the Lefschetz fixed point theorem the sum of the indices of the singularities

of the differentiable vector field grad u, that is, the number of zeros of

grad u in Ωh, is the Euler characteristic e(h) of Ωh. The integral along βQ gives

a constant 0(1). In the area integral the integrand is A log μ- A log λ, for

log|/'(grad u)~1\ is harmonic. We divide A log λ by λ2 to get -K- - 1 , and

multiply the area element by λ2 to obtain the integral \ dω(fiz)) which we

know to be C'(h). The result is

G'(h) = 4πl-v(h, /') - v{h, λ) + e(h)l + 2 C'(h) + Oil).

From a differential geometric view point, what we have done is to apply

Stokes' formula or, what is the same thing, the Gauss-Bonnet formula, to a

cross-section of the tangent bundle on S, namely that extracted by the differ-

entiable vector field /'U)/grad u(z).

11. Second main theorem. For consistency of notations we set

ch
E(h) =4τr\ e(h)dh,

integrate Gf thrice, substitute G2 and F2 into B2, this into (8), and arrive at

our main result, the second main theorem in its most general setting:

THEOREM 3. For an analytic mapping f of an arbitrary open Riemann

surface R into an arbitrary open or closed Riemann surface S, and for any

regular subregion Ω of Ry

(9) (q -2)C2(k) < Σ A2(&, aι) - AΛk, /') - A2(k, λ) + E2(k) + O(k* + k2 log C(k)).
1

Here k? came from 0(1) in G\ and all earlier remainders are accounted for.

Significant consequences from the theorem can be drawn only for functions

for whih 0( )/C2->0 as Ω exhausts R- R*. This condition was given the foi-
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lowing elegant formulation by my student K. V. R. Rao: there must exist a

constant c ε (0, 1) such that log C(*)/C(cfc)->0. In view of the slow growth

of the logarithm this condition is natural and obviously satisfied already by

such slowly growing functions as km and enk. We shall only consider non-

degenerate functions so defined.

12. Affinity relation. We now introduce what we shall call the lower

defect of a,

, \ -. ,— A2(k, a)a\a) = 1 - lim —^ .,.—,C2(/z)

where, as in the sequel, the limit is a directed limit as the regular region Ω

exhausts R—Ro. Similarly we take the upper defect

, a)- i lim - ^

For a Picard point both upper and lower defects are 1. For other points they

may differ (see below).

Our ramification index is defined by

where the numerator counts the orders of branch-points above a. Since f(Ωh)

only has a finite number of branch-points it is meaningful to take the total

ramification

where the sum is extended over all points a of S. The sole motivation of

using lower rather than upper limits in the ramification index is that of

expediency.

For the zeros of λ we set

where the numerator counts the points of f(Ωh) covering a zero of λ at a.

Again, only a finite number of zeros is covered by fKΩh) and we can consider

the sum
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extended over all a on S.

Finally we introduce the Euler index

On dividing (9) by C2 and on taking suitable limits we obtain the following

comprehensive defect, ramification, and covering relations for mappings between

arbitrary Riemann surfaces.

AFFINITY RELATION.

(10) Σ α ( β ) + Σ j 3 ( α ) + Σ r ( β ) ^ 2 + τ?.

All terms are obviously positive, and for -η < °° we obtain directly estimates

for each of the three terms. First, the lower defect sum and consequently the

number of Picard values is dominated by 2-\--η. The same bound is valid for

the total ramification in particular, there can be at most 4 + 2τ? totally ramified

points, i.e., points covered exclusively with branch points. Finally, the sum of

the r-indices is bounded by 2+ q.

This latter property gains in meaning if we choose for en the zeros of our

metric: λ(cn) = 0. Then for i-> °°, r(tf/)-*0, hence «(«/)-> 1, while α:(#/)->0.

Thus the zeros of our metric are covered in an interesting manner: the

coverage ratio A2/C2 for any zero sufficiently far in the sequence oscillates

between nearly 1 and nearly 0 even if R is exhausted sequentially.

13. Closed range surfaces. As a special case we consider a closed image

surface S. Since grad ί0 forms a vector field on S-C0-C1, the number of

its zeros, i.e., zeros of λ, is the Euler characteristic e8 + 2. We now add to

our arbitrarily chosen points ah « - . , aΊ these 2g zeros, g the genus, replace

Q in (9) by q + es + 2, and obtain

In particular, the number of Picard values is at most the excess of the

Euler index γ over the Euler characteristic of the image surface S. For mero-

morphic functions on an arbitrary Riemann surface or for Gaussian mappings

of arbitary minimal surfaces the bound for the defect sum is 2 -f- η. The bound
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was shown to be sharp by an interesting example of my student B. Rodin.

In the most special case of meromorphic functions in the plane, y = 0 and

we are back in the classical bound 2 for the defect sum and the total

ramification.
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