ON PEARL'S PAPER "A DECOMPOSITION THEOREM FOR MATRICES"*

R.C. Thompson

(received April 29, 1969)

Let A be an m x n matrix of complex numbers. Let A^T and A* denote the transpose and conjugate transpose, respectively, of A. We say A is diagonal if A contains only zeros in all positions (i, j) with i # j. In a recently published paper [4], M.H. Pearl established the following fact: There exist real orthogonal matrices O₁ and O₂ (O₁ m-square, O₂ n-square) such that O₁AO₂ is diagonal, if and only if both AA* and A*A are real. It is the purpose of this paper to show that a theorem substantially stronger than this result of Pearl's is included in the real case of a theorem of N.A. Wiegmann [2]. (For other papers related to Wiegmann's, see [1;3].)

THEOREM. Let A_1, \ldots, A_k be a set of $m \times n$ matrices of complex numbers. Then real orthogonal matrices O_1 and O_2 (O_1 m-square, O_2 n-square) exist such that simultaneously all matrices $O_1A_iO_2$ are diagonal, $1 \le i \le k$, if and only if the matrices

(1)
$$A_{i}A_{j}^{*}, A_{i}A_{j}^{T}, A_{i}^{*}A_{j}, A_{i}^{T}A_{j}, 1 \leq i, j \leq k$$

are all symmetric.

Canad. Math. Bull. vol. 12, no. 6, 1969

^{*} The preparation of this paper was supported in part by the Office of Scientific Research of the U.S. Air Force, under Grant 698-67.

Here a (real or complex) matrix M is said to be symmetric if $M = M^{\tau}$. It is easy to see that $A_1 A_1^*$ and $A_1^* A_1^*$ are real if and only if they are symmetric. Thus the case k = 1 of the Theorem yields Pearl's result.

<u>Proof.</u> Let $A_j = B_j + \sqrt{-1} C_j$ where B_j and C_j are real. Upon separating the four equations

$$A_{i}A_{j}^{*} = (A_{i}A_{j}^{*})^{T}, \quad A_{i}A_{j}^{T} = (A_{i}A_{j}^{T})^{T}$$

$$(2)$$

$$A_{i}^{*}A_{j} = (A_{i}^{*}A_{j})^{T}, \quad A_{i}^{T}A_{j} = (A_{i}^{T}A_{j})^{T}$$

into real and imaginary parts, we obtain eight equations:

$$B_{i}B_{j}^{T} + C_{i}C_{j}^{T} = B_{j}B_{i}^{T} + C_{j}C_{i}^{T}, \quad B_{i}B_{j}^{T} - C_{i}C_{j}^{T} = B_{j}B_{i}^{T} - C_{j}C_{i}^{T},$$

$$-B_{i}C_{j}^{T} + C_{i}B_{j}^{T} = B_{j}C_{i}^{T} - C_{j}B_{i}^{T}, \quad B_{i}C_{j}^{T} + C_{i}B_{j}^{T} = B_{j}C_{i}^{T} + C_{j}B_{i}^{T},$$

$$B_{i}^{T}B_{j} + C_{i}^{T}C_{j} = B_{j}^{T}B_{i} + C_{j}^{T}C_{i}, \quad B_{i}^{T}B_{j} - C_{i}^{T}C_{j} = B_{j}^{T}B_{i} - C_{j}^{T}C_{i},$$

$$B_{i}^{T}C_{j} - C_{i}^{T}B_{j} = -B_{j}^{T}C_{i} + C_{j}^{T}B_{i}, \quad B_{i}^{T}C_{j} + C_{i}^{T}B_{j} = B_{j}^{T}C_{i} + C_{j}^{T}B_{i}.$$

By addition and subtraction we see that the equations (3) are equivalent to:

$$B_{i}B_{j}^{T} = B_{j}B_{i}^{T}, C_{i}C_{j}^{T} = C_{j}C_{i}^{T}, B_{i}C_{j}^{T} = C_{j}B_{i}^{T}, C_{i}B_{j}^{T} = B_{j}C_{i}^{T},$$

$$(4)$$

$$B_{i}^{T}B_{j} = B_{j}^{T}B_{i}, C_{i}^{T}C_{j} = C_{j}^{T}C_{i}, B_{i}^{T}C_{j} = C_{j}^{T}B_{i}, C_{i}^{T}B_{j} = B_{j}^{T}C_{i}.$$

However, by the real analogue of Wiegmann's first theorem in [2], the validity of the equations (4) for all i, j, $1 \le i$, $j \le k$, is exactly the necessary and sufficient condition for the existence of real orthogonal O_1 and O_2 such that the matrices $O_1B_iO_2$, $O_1C_iO_2$, $1 \le i \le k$, are all diagonal. This completes the proof of the Theorem. For completeness, we now sketch a proof of Wiegmann's theorem in the real case. Our proof is somewhat shorter than Wiegmann's.

LEMMA. Let M_1, \ldots, M_r be a set of $m \times n$ real matrices. Then real orthogonal matrices O_1 and O_2 exist such that all of $O_1M_iO_2$ are diagonal, $1 \le i \le r$, if and only if all matrices M_iM_j and M_i M_j are symmetric.

Proof of Lemma. The necessity is trivial since then all $M_i M_j^T$ and all $M_i^T M_j$ are orthogonally similar to real diagonal matrices. Let p, q, r, s be integers. Using the properties $M_i M_j^T = M_j M_i^T$ and $M_i^T M_j = M_j^T M_i$, we see that $(M_p M_q^T)(M_r M_s^T) = M_p M_r^T M_q M_s^T = M_r M_p^T M_s M_q^T = (M_r M_s^T)(M_p M_q^T)$. Hence the symmetric matrices $M_i M_j^T$, $1 \le i, j \le k$ are commutative. Therefore we may find an orthogonal matrix O_1 such that $O_1 M_i M_j^T O_1^T$ are all diagonal. Without loss of generality we may assume that $O_1 M_1 M_1^T O_1^T$ has $(\alpha_1, 0, \ldots, 0)$ as its top row, with $\alpha_1 > 0$. Thus the top row of $O_1 M_1$ has norm α_1 . We may find orthogonal O_2 mapping this top row of $O_1 M_1$ to $(\alpha_1, 0, 0, \ldots, 0)$. Changing notation and replacing $O_1 M_i^O_2$ throughout with M_i , we now see that

$$M_{i} = \begin{bmatrix} \alpha_{i} & x_{i} \\ y_{i} & M_{i} \end{bmatrix}, \quad 1 \leq i \leq k,$$

with $\alpha_1 > 0$, $x_1 = 0$. The diagonal form of $M_1 M_1^{\tau}$ forces $y_1 = 0$; the diagonal form of $M_1 M_i^{\tau}$ forces $y_i = 0$ (i > 1), and then the normality of $M_i^{\tau} M_1$ forces $x_i = 0$ (i > 1). Thus $M_i = (\alpha_i) \dotplus (M_i^{\tau})$,

 $1 \le i \le k$. By an obvious induction on the size of the matrices, we may now diagonalize M_1 ,..., M_k by an orthogonal equivalence, and hence complete the diagonalization of M_1, \ldots, M_k .

For use elsewhere, observe that if all $M_i M_j^{\tau}$ are positive semidefinite then we may find O_1 and O_2 such that $O_1 M_i O_2$ are all diagonal with nonnegative diagonal entries. This follows by using the fact that $\alpha_1 \alpha_i \geq 0$ (i > 1) denies the possibility that $\alpha_i < 0$.

REFERENCES

- Carl Eckert and Gale Young, A principal axis transformation for non-hermitian matrices. Bull. Amer. Math. Soc. 45 (1939) 118-121.
- N.A. Wiegmann, Some analogues of the generalized principal axis transformation. Bull. Amer. Math. Soc. 54 (1948) 905-908.
- J. Williamson, Note on a principal axis transformation for non-hermitian matrices. Bull. Amer. Math. Soc. 45 (1939) 920-922.
- 4. Martin H. Pearl, A decomposition theorem for matrices. Canad. J. Math. 19 (1967) 344-349.

The University of California Santa Barbara, California 93106