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FOR MATRICES"*
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ILet A bean m X n matrix of complex numbers. Let AT
and A* denote the transpose and conjugate transpose, respectively,
of A. We say A is diagonalif A contains only zeros in all
positions (i, j) with i # j. In a recently published paper [4], M.H.
Pearl established the following fact: There exist real orthogonal
matrices O1 and O2 (O'1 m-square, O2 n-square) such that

O'lAOZ is diagonal, if and only if both AA* and A*A are real. It

is the purpose of this paper to show that a theorem substantially
stronger than this result of Pearl's is included in the real case of a
theorem of N. A. Wiegmann [2]. (For other papers related to
Wiegmann's, see [1;3].)

THEOREM. Let Ai,...,Ak be a set of m x n matrices of

complex numbers. Then real orthogonal matrices O1 and O2

n-square) exist such that simultaneously all

(O1 m-square, OZ.

matrices O1Ai0 are diagonal, 1 < i < k, if and only if the

2

matrices
(1) AA*, AA T A*A,ATA, 1<i,j<k
1] 1] 1 J 1] - -

are all symmetric.
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Here a (real or complex) matrix M is said to be symmetric if
M =M T, Itis easy to see that A1A1* and A1*A1 are real if and
only if they are symmetric. Thus the case k =1 of the Theorem
yields Pearl's result.

Proof. Let Aj :Bj+ /=1 C. where Bj and Cj are real.
J

Upon separating the four equations

>
[
n

(AAHT, AAT=(AA"HT
1) 1) 1)

(2)

AFA =(A*A)T, ATA =(ATA)T
1] RN | 1 J

into real and imaginary parts, we obtain eight equations:

BBT+cc®™=8B"+cc’, BB -cc"=BB."-cc.,

i i3 J 1 ij i ji ji
.BcT+cBT=BCc"-cB', BCcT+cBT =8BC"+CcB.T,

i ij i j1 1] 1 ji i

(3) T T T T T
™ +c'c. =8B +c'c, B.'B,-C.'c, =B,'B.-C.C,,

i7j i) j i j i i) i 7j joi j i

BTc. -c.™ =8B8"c +c ™., Bc.+c."B, = B.,'c.+C"B

i 1 i) i) j 1 j 1

By addition and subtraction we see that the equations (3) are
equivalent to:

BB "=BB.",cc'=cc.',Bc'=cB ' cB."=B.C.T,
1 J J 1 1 J _] 1

B.'™B.=B,"B, c.c.=c.c,B.c.=c."B,, ¢."B. =B."C..
1O I T S S T A S S R T S S I
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However, by the real analogue of Wiegmann's first theorem in [2],
the validity of the equations (4) for all i, j, 1 < i, j < k, is
exactly the necessary and sufficient condition for the existence of

real orthogonal O'1 and O2 such that the matrices OiBiOZ’

oicioz, 1 < i <k, are all diagonal. This completes the proof

of the Theorem. For completeness, we now sketch a proof of
Wiegmann's theorem in the real case. Our proof is somewhat shorter
than Wiegmann's.

LEMMA. Let M1,. .. ,Mr be a set of m X n real matrices.

Then real orthogonal matrices O, and O, exist such that all of

1 2
are diagonal, 1 <i<r, if and only if all matrices

M
O1 iO

2

MiMjT and M, "M, are symmetric.
— Ty ==

Proof of Lemma. The necessity is trivial since then all MiMjT
and all MiTMj are orthogonally similar to real diagonal matrices.
Let p, q, r, s be integers. Using the properties MiMJ,Fr = MjMiT
and M."M, = M. "M, weseethat (MM "M M ") =M M ™M M 7
1 J J 1 P q r s p r q s

=M M ™M M T=(M M T)(M M T) . Hence the symmetric matrices
r p s ¢q r s P q

M,M,T, 1 <i, j < k are commutative. Therefore we may find an
i’ - -

orthogonal matrix O1 such that O1M_M,TO T
1]

1
Without loss of generality we may assume that O

are all diagonal.

M,M O T has

1 1 1

2
(oz1 , 0,...,0) as its top row, with a1 > 0. Thus the top row of 01M1
has norm a,. We may find orthogonal OZ mapping this top row of
O1M'1 to (ai, 0, 0, ..., 0). Changing notation and replacing oiMiOZ

throughout with Mi’ we now see that

with @, > 0, x, = 0. The diagonal form of MiMiT forces Y, = 0;

the diagonal form of MiMiT forces y, = 0 (i > 1), and then the

normality of Mi TM1 forces x, = 0 (i > 1). Thus Mi = (ai) i (Mi'),
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1 <i< k. By an obvious induction on the size of the matrices, we

may now diagonalize Mi' se ey Mk' by an orthogonal equivalence,

and hence complete the diagonalization of Mi’ e Mk.

For use elsewhere, observe that if all MiMjT are positive
semidefinite then we may find O1 and O2 such that OiMiOZ are

all diagonal with nonnegative diagonal entries. This follows by
using the fact that aia, > 0 (i > 1) denies the possibility that
i =

a, < 0.
i
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