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Abstract. Given a finitely generated module over a commutative noetherian ring
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1. Introduction. Throughout this paper, R is a non-zero commutative noetherian
ring with identity and all R-modules are unital.

An R-module A is a semidualizing if the natural homothety map χR
A : R →

HomR(A, A) is an isomorphism and Exti
R(A, A) = 0 for all i � 1. These gadgets,

and their cousins the semidualizing complexes, are useful for studying dualities. For
instance, their applications include Grothendieck’s local duality [14, 15], progress by
Avramov-Foxby [4] and Sather-Wagstaff [16] on the composition question for local
ring homomorphisms of finite G-dimension, and progress by Sather-Wagstaff [17] on
Huneke’s question on the behaviour of Bass numbers of local rings.

The starting point for the current paper is the following straightforward
result, wherein a finitely generated R-module M is totally A-reflexive if the
natural biduality map δM

A : M → HomR(HomR(M, A), A) is an isomorphism and
Exti

R(HomR(M, A), A) = 0 = Exti
R(M, A) for all i � 1:

FACT 1.1. For a finitely generated R-module A, the next conditions are equivalent:

(i) A is a semidualizing R-module,
(ii) R is a totally A-reflexive R-module and

(iii) A is totally A-reflexive and AnnR(A) = 0.

For perspective, we sketch the proof of the implication (iii) =⇒ (i). When A is
totally A-reflexive, we have Exti

R(A, A) = 0 for all i � 1. Thus it remains to assume
that AnnR(A) = 0 and show that the homothety map χR

A : R → HomR(A, A) is an
isomorphism. Since Ker(χR

A ) = AnnR(A) = 0, it remains to show that Coker(χR
A ) = 0.

This is equivalent to showing that Exti
R(Coker(χR

A ), A) = 0 for all i � 0, as we
have SuppR(A) = V (AnnR(A)) = V (0) = Spec(R). Consider the short exact sequence

0 → R
χR

A−→ HomR(A, A) → Coker(χR
A ) → 0. The induced long exact sequence in

Exti
R(−, A), along with the vanishing Exti

R(HomR(A, A), A) = 0 = Exti
R(R, A) for

i � 1, shows that Exti
R(Coker(χR

A ), A) = 0 for all i � 2. Furthermore, this provides
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another exact sequence

0 → Coker(χR
A )∗ → A∗∗ (χR

A )∗−−→ A → Ext1
R(Coker(χR

A ), A) → 0

where (−)∗ = HomR(−, A). The biduality map δA
A : A → HomR(HomR(A, A), A) is an

isomorphism by assumption. Furthermore, the composition (χR
A )∗ ◦ δA

A is the identity
idA, and it follows that (χR

A )∗ is an isomorphism. Thus, the displayed sequence gives
the vanishing Exti

R(Coker(χR
A ), A) = 0 for the remaining values i = 0, 1, completing

the proof.
It is straightforward to show that the annihilator condition in item (iii) of Fact 1.1

is necessary: if A is totally A-reflexive, then A need not be semidualizing. For instance,
if A = 0, then A is totally A-reflexive but is not semidualizing. A slightly less trivial
example is the following:

EXAMPLE 1.2. Let R1, R2 be non-zero commutative noetherian rings with identity,
and set R = R1 × R2. Then the R-module A = R1 × 0 is totally A-reflexive but is
not semidualizing. Moreover, given any semidualizing R1-module A1, the R-module
A = A1 × 0 is totally A-reflexive but is not semidualizing.

The point of this paper is to show that this is the only way for this to occur.
Specifically, we prove the following in 3.8:

THEOREM 1.3. Let A be a non-zero finitely generated R-module that is totally A-
reflexive and not semidualizing. Then there are commutative noetherian rings R1, R2 �= 0
with identity such that R ∼= R1 × R2, and there is a semidualizing R1-module A1 such
that A ∼= A1 × 0. In particular, Spec(R) is disconnected.

If R is local or a domain, then Spec(R) is connected. Hence, if A is non-zero
and totally A-reflexive, then A must be semidualizing. The local version of this is
actually a key point of the proof of Theorem 1.3, which is contained in Theorem 3.1
below. The version for domains is documented in Corollary 3.10. Note that our results
also give other conditions on A that imply that Spec(R) is disconnected or that A is
semidualizing. These conditions are akin to those studied in [5, 12].

2. Background. We begin this section with some background information.

DEFINITION 2.1. We work in the derived category D(R) where each R-complex

X is indexed homologically: X = · · · → Xi
∂X

i−→ Xi−1 → · · · . An R-complex X is
homologically bounded if Hi(X) = 0 for all but finitely many i. The complex X is
homologically finite if it is homologically bounded and Hi(X) is finitely generated for all
i. The ith suspension of X is �iX . Isomorphisms in D(R) are identified with the symbol
	. Two R-complexes X and Y are shift-isomorphic, written X ∼ Y , if there is an integer
i such that X 	 �iY . The large support of X is SuppR(X) := {p ∈ Spec(R) | Xp �	 0}.
Given two R-complexes X and Y , the right derived Hom complex and left derived
tensor product complex of X and Y are denoted RHomR(X, Y ) and X ⊗L

R Y , and
Exti

R(X, Y ) := Hi(RHomR(X, Y )).
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If (R,m, k) is local, then the Bass series and Poincaré series of a homologically
finite R-complex X are the formal Laurent series

IX
R (t) =

∑

i∈�

rankk(Hi(RHomR(k, X)))ti

PR
X (t) =

∑

i∈�

rankk(Hi(k ⊗L
R X))ti.

The following complexes and the classes that they define originate in work of
Auslander-Bridger [2, 3], Avramov-Foxby [4], Christensen [6], Enochs-Jenda-Xu [7],
Foxby [8, 9], Golod [13], Vasconcelos [18], and Yassemi [19].

DEFINITION 2.2. Let A, N be R-complexes.

(a) A is semidualizing if it is homologically finite and the natural homothety morphism
χR

A : R → RHomR(A, A) is an isomorphism in D(R).
(b) A is tilting if it is semidualizing and has finite projective dimension.
(c) N is derived A-reflexive if N and RHomR(N, A) are homologically finite

and the natural biduality morphism δA
N : N → RHomR(RHomR(N, A), A) is an

isomorphism in D(R).
(d) N is in the Bass class BA(R) if N and RHomR(A, N) are homologically

bounded and the natural evaluation morphism ξA
N : A ⊗L

R RHomR(A, N) → N is
an isomorphism in D(R).

(e) N is in the Auslander class AA(R) if N and A ⊗L
R N are homologically bounded and

the natural morphism γ A
N : N → RHomR(A, A ⊗L

R N) is an isomorphism in D(R).

The following facts are straightforward to verify.

FACT 2.3. Let A be a finitely generated R-module, and let N be an R-module.

(a) A is semidualizing as an R-complex if and only if it is semidualizing as an R-module.
(b) A is tilting as an R-complex if and only if it is a rank-1 projective R-module.
(c) An R-module that is totally A-reflexive is derived A-reflexive. If N has a finite

resolution by totally A-reflexive R-modules, then it is derived A-reflexive; the converse
holds when A is semidualizing [19].

(d) If the natural map A ⊗R HomR(A, N) → N is bijective and Exti
R(A, N) = 0 =

TorR
i (A, HomR(A, N)) for all i � 1, then N ∈ BA(R); the converse holds when A is

semidualizing by [6, (4.10) Observation].
(e) If the natural map N → HomR(A, A ⊗R N) is bijective and TorR

i (A, N) = 0 =
Exti

R(A, A ⊗R N) for all i � 1, then N ∈ AA(R); the converse holds when A is
semidualizing by [6, (4.10) Observation].

LEMMA 2.4. Assume that R is local, and let A and B be homologically finite R-
complexes such that A �	 0. Then the following conditions are equivalent:

(i) B 	 0,
(ii) A ⊗L

R B 	 0,
(iii) RHomR(A, B) 	 0, and
(iv) RHomR(B, A) 	 0.

Proof. For n =ii,iii,iv, the implications (i) =⇒ (n) are standard. For the converses,
we suppose that B �	 0, and conclude that A ⊗L

R B �	 0, RHomR(A, B) �	 0, and
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RHomR(B, A) �	 0. For instance, this follows from the Bass series and Poincaré series
computations in [4, Lemma (1.5.3)]. �

LEMMA 2.5. Assume that R is local, and let A, X and Y be homologically finite
R-complexes such that A �	 0. Given a morphism f : X → Y the following conditions are
equivalent:

(i) f is an isomorphism in D(R),
(ii) A ⊗L

R f is an isomorphism in D(R),
(iii) RHomR(A, f ) is an isomorphism in D(R), and
(iv) RHomR(f, A) is an isomorphism in D(R).

Proof. Apply Lemma 2.4 to the mapping cone B := Cone(f ). �
FACT 2.6. Let A a homologically finite R-complex. Then the following conditions are

equivalent:

(i) A is semidualizing over R,
(ii) There is an isomorphism RHomR(A, A) 	 R in D(R),

(iii) For each maximal ideal m ⊂ R, there is an isomorphism RHomRm
(Am, Am) 	 Rm

in D(Rm),
(iv) R is derived A-reflexive,
(v) A is derived A-reflexive and SuppR(A) = Spec(R) and

(vi) U−1A is semidualizing over U−1R for each multiplicatively closed U ⊆ R.
Indeed, in addition to [5, Proposition 3.1], it suffices to note that the implications
(2.6) =⇒ (2.6) =⇒ (2.6) are straightforward.

REMARK 2.7. Assume that R1 and R2 are commutative noetherian rings such
that R ∼= R1 × R2. Using the natural idempotents in R, one checks readily that every
R-complex is isomorphic to one of the form X1 × X2 where Xi is an Ri-complex for
i = 1, 2.

For i = 1, 2, let Xi, Yi and Zi be Ri-complexes. Recall that there are natural
isomorphisms in D(R):

RHomR(X1 × X2, Y1 × Y2) 	 RHomR1 (X1, Y1) × RHomR2 (X2, Y2)

(X1 × X2) ⊗L
R (Y1 × Y2) 	 (X1 ⊗L

R1
Y1) × (X2 ⊗L

R2
Y2).

From this, it follows that

(a) X1 × X2 is semidualizing for R if and only if each Xi is semidualizing for Ri.
(b) RHomR(X1 × X2, Y1 × Y2) is semidualizing for R if and only if RHomR(Xi, Yi) is

semidualizing for Ri for i = 1, 2.
(c) X1 × X2 is derived Y1 × Y2-reflexive if and only if each Xi is derived Yi-reflexive.
(d) RHomR(X1 × X2, Y1 × Y2) is derived Z1 × Z2-reflexive if and only if the complex

RHomR(Xi, Yi) is derived Zi-reflexive for i = 1, 2.
(e) X1 × X2 ∈ BY1×Y2 (R) if and only if Xi ∈ BYi (Ri) for i = 1, 2.
(f) X1 × X2 ∈ AY1×Y2 (R) if and only if Xi ∈ AYi (Ri) for i = 1, 2.

DEFINITION 2.8. The semidualizing locus of a homologically finite R-complex A is

SDR(A) := {p ∈ Spec(R) | Ap is semidualizing for Rp}.
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REMARK 2.9. Let A be a homologically finite R-complex. Then we have

Spec(R) � SuppR(Cone(χR
A )) = SDR(A) ⊆ SuppR(A).

Also, A is semidualizing for R if and only if SDR(A) = Spec(R); see Fact 2.6.

LEMMA 2.10. Let A be a homologically finite R-complex such that RHomR(A, A) is
homologically finite, that is such that Exti

R(A, A) = 0 for i � 0. Then SDR(A) is Zariski
open in Spec(R).

Proof. As RHomR(A, A) is homologically finite, so is the mapping cone Cone(χR
A ).

So, the set SDR(A) = Spec(R) � SuppR(Cone(χR
C )) is open in Spec(R). �

3. Results. We begin this section with the local version of our main results.

THEOREM 3.1. Assume that R is local, and let A be a homologically finite R-complex.
Then the following conditions are equivalent:

(i) A is semidualizing for R,
(ii) RHomR(A, A) is semidualizing for R,

(iii) A is derived A-reflexive and A �	 0,
(iv) RHomR(A, A) is derived A-reflexive and A �	 0,
(v) A ∈ BA(R) and A �	 0 and

(vi) R ∈ AA(R).

Proof. Note that if A is semidualizing for R, then A �	 0 since 0 	 RHomR(0, 0) �	
R. Similarly, if RHomR(A, A) is semidualizing for R, then A �	 0. Thus, for n =ii,iii,iv,v,
the implications (i) =⇒ (n) are from [12, Theorem 1.3].

(ii) =⇒ (i) Assume that RHomR(A, A) is semidualizing for R, and consider the
following commutative diagram in D(R).

R
χR

RHomR (A,A)

	
��

χR
A

��

RHomR(RHomR(A, A), RHomR(A, A))

	
��

RHomR(A, A)
RHomR(ξA

A ,A) �� RHomR(A ⊗L
R RHomR(A, A), A)

The unspecified isomorphism is Hom-tensor adjointness. From this, it follows that
there is a monomorphism R ↪→ H0(RHomR(A, A)), so H0(RHomR(A, A)) �= 0. From
this, we conclude that a minimal free resolution F 	 RHomR(A, A) has F0 �= 0. Thus,
there is a coefficient-wise inequality PR

RHomR(A,A)(t) � 1.
From the above diagram, it follows that the composition RHomR(ξA

A , A) ◦ χR
A is

an isomorphism, hence, so is the induced morphism

RHomR(k, RHomR(ξA
A , A) ◦ χR

A ) = RHomR(k, RHomR(ξA
A , A)) ◦ RHomR(k, χR

A )

where k is the residue field of R. In particular, the induced map on homology

Exti
R(k, R) → Exti

R(k, RHomR(A, A))
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is a monomorphism for each i. This explains the first coefficient-wise inequality in the
next sequence:

IRHomR(A,A)
R (t) � IR

R (t) = PR
RHomR(A,A)(t)I

RHomR(A,A)
R (t) � IRHomR(A,A)

R (t).

The equality follows from the fact that RHomR(A, A) is semidualizing, by [10, 1.5]. The
second coefficient-wise inequality is from the condition PR

RHomR(A,A)(t) � 1 established
above. It follows that we have a coefficient-wise equality

PR
RHomR(A,A)(t)I

RHomR(A,A)
R (t) = IRHomR(A,A)

R (t).

From this, we conclude that PR
RHomR(A,A)(t) = 1, so RHomR(A, A) 	 R and A is

semidualizing by Fact 2.6.
(iii) =⇒ (i) Assume that A is derived A-reflexive and A �	 0. It follows that

RHomR(A, A) is homologically finite. Consider the following commutative diagram in
D(R) where the unspecified isomorphism is Hom-cancellation.

A
δA

A

	
��

=
��

RHomR(RHomR(A, A), A)

RHomR(χR
A ,A)

��
A RHomR(R, A)	

��

It follows that RHomR(χR
A , A) is an isomorphism in D(R), so Lemma 2.5 implies that

χR
A is an isomorphism in D(R), thus A is semidualizing.

(iv) =⇒ (iii) Assume that RHomR(A, A) is derived A-reflexive and A �	 0. In
particular, the biduality morphism

δA
RHomR(A,A) : RHomR(A, A) → RHomR(RHomR(RHomR(A, A), A), A)

is an isomorphism in D(R). From [5, 2.2] we conclude that RHomR(δA
A, A) is an

isomorphism in D(R). Since A and RHomR(RHomR(A, A), A) are both homologically
finite by assumption, Lemma 2.5 implies that δA

A is an isomorphism in D(R). It follows
that A is derived A-reflexive.

(v) =⇒ (i) Assume that A ∈ BA(R), and consider the commutative diagram

A ⊗L
R R

A⊗L
RχA

A ��

	
��

A ⊗L
R RHomR(A, A)

ξA
A

������������������

A

As in the previous paragraphs, Lemma 2.5 implies that A is semidualizing.
(i) ⇐⇒ (vi) This follows readily from the next commutative diagram in D(R).

R
ξA

R ��

χR
A

��

RHomR(A, A ⊗L
R R)

	
����������������

RHomR(A, A)
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See also [6, (4.4) Proposition] for one implication. �
REMARK 3.2. In Theorem 3.1 the implications (vi) =⇒ (i) =⇒ (n) for

n =ii,iii,iv,v,vi do not use the local assumption. The point of much of the remainder of
this paper is that the implications (n) =⇒ (i) fail in general for n =ii,iii,iv,v. Moreover,
we explicitly characterize the failure of these implications.

The proof of the next result is similar to the proof of [11, Theorem 3.2].

THEOREM 3.3. Assume that R is local, and let A be a homologically finite R-complex.
Then 0 �	 A ∈ AA(R) if and only if A ∼ R.

Proof. One implication is straightforward: if A ∼ R, then AA(R) contains all
homologically bounded complexes, so A ∈ AA(R) and 0 �	 R ∼ A.

For the converse, assume that 0 �	 A ∈ AA(R). Shift A if necessary to assume that
inf{n ∈ � | Hn(A) �= 0} = 0. Let P 	 A be a minimal free resolution of A. It follows
that Pi = 0 for all i < 0 and P0 �= 0. The condition P 	 A ∈ AA(R) implies that the
natural map γ P

P : P → HomR(P, P ⊗R P) is a quasiisomorphism, hence it induces the
quasiisomorphism in the top row of the next commutative diagram of chain maps
where the unspecified isomorphism is Hom-tensor adjointness.

HomR(P, P)
HomR(P,γ P

P )

	
��

	 ��������������������� HomR(P, HomR(P, P ⊗R P))

∼=
��

HomR(P ⊗R P, P ⊗R P)

In degree 0, the composition 	 is given by f �→ P ⊗R f . The diagram shows that
	 is a quasiisomorphism.

Given two R-complexes X and Y , let 
X,Y : X ⊗R Y → Y ⊗R X by the natural
commutativity isomorphism x ⊗ y �→ (−1)|x||y|y ⊗ x. This is a chain map, hence the
fact that 	 is a quasiisomorphism implies that there is a chain map f : P → P such
that P ⊗R f : P ⊗R P → P ⊗R P is homotopic to 
P,P.

Let k be the residue field of R, and set (−) = k ⊗R −. The previous
paragraph implies that P ⊗R f : P ⊗R P → P ⊗R P is homotopic to 
P,P. Using the
natural isomorphism − ⊗R − ∼= − ⊗k −, it follows that P ⊗k f : P ⊗k P → P ⊗k P is
homotopic to 
P,P. Since P is minimal, the differentials on P and P ⊗k P are 0, and it
follows that P ⊗k f = 
P,P : P ⊗k P → P ⊗k P.

We first show that P0
∼= k. Since P0 is a non-zero k-vector space, it suffices to show

that rankk(P0) � 1. Suppose that r = rankk(P0) � 2, and let x1, . . . , xr ∈ P0 be a basis.
It follows that P0 ⊗k P0 has rank r2 with basis {xi ⊗ xj | i, j = 1, . . . , r}. The equality
P ⊗k f = 
P,P implies that

x2 ⊗ x1 = x1 ⊗ f (x2) ∈ Spank{x1 ⊗ x1, . . . , x1 ⊗ xr}

contradicting the linear independence of the given basis for P0 ⊗k P0.
We now show that Pi = 0 for all i �= 0. (It then follows that A 	 P ∼= R, as desired.)

Let i � 1 and y ∈ Pi. With x1 as in the previous paragraph, the equality P ⊗k f = 
P,P
implies that

0 = y ⊗ x1 − x1 ⊗ f (y) ∈ (Pi ⊗k P0) ⊕ (P0 ⊗k Pi).
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Since i �= 0, we have (P0 ⊗k Pi) ∩ (Pi ⊗k P0) = 0, so we conclude that y ⊗ x1 = 0 in
Pi ⊗k P0. Since 0 �= x1 in the vector space P0, it follows that y = 0. The element y ∈ Pi

was chosen arbitrarily, so we conclude that Pi = 0, as desired. �
Next, we present our non-local results.

COROLLARY 3.4. Let A be a homologically finite R-complex. Then the following
conditions are equivalent:

(i) A is semidualizing for R,
(ii) RHomR(A, A) is semidualizing for R,

(iii) A is derived A-reflexive and SuppR(A) = Spec(R),
(iv) RHomR(A, A) is derived A-reflexive and SuppR(A) = Spec(R),
(v) A ∈ BA(R) and SuppR(A) = Spec(R) and

(vi) R ∈ AA(R).

Proof. Note that conditions (i), (ii) and (vi) all imply that SuppR(A) = Spec(R)
since A is homologically finite. The implications (vi) ⇐⇒ (i) =⇒ (n) for n =ii,iii,iv,v
follow from Remark 3.2. For the implications (n) =⇒ (i) with n =ii,iii,iv,v, note that
condition (n) localizes; since the semidualizing property is local by Fact 2.6, the desired
conclusion follows from Theorem 3.1. �

The next result is proved like the previous one, via Theorem 3.3.

COROLLARY 3.5. Let A be a homologically finite R-complex. Then A ∈ AA(R) and
SuppR(A) = Spec(R) if and only if A is a tilting R-complex.

As we show in 3.8 below, the next result is the key to proving Theorem 1.3.

THEOREM 3.6. Let A be a homologically finite R-complex. Then the following
conditions are equivalent:

(i) There are non-zero commutative noetherian rings R1, R2 with identity such that
R ∼= R1 × R2, and there is a semidualizing R1-complex A1 such that A ∼= A1 × 0,

(ii) A is derived A-reflexive and not semidualizing such that A �	 0,
(iii) RHomR(A, A) is derived A-reflexive, A is not semidualizing, and A �	 0 and
(iv) 0 �	 A ∈ BA(R) and A is not semidualizing.

In particular, when the above conditions are satisfied, Spec(R) is disconnected.

Proof. (i) =⇒ (ii) Assume that there are non-zero commutative noetherian rings
R1, R2 with identity such that R ∼= R1 × R2, and that there is a semidualizing R1-
complex A1 such that A ∼= A1 × 0. Since R2 �= 0, we conclude that 0 is not semidualizing
for R2, so Remark 2.7(a) implies that A is not semidualizing for R. Since A1 is
semidualizing for R1 �= 0, we conclude that A �	 0, and that A is derived A-reflexive by
Remarks 2.7(c) and 3.2.

(ii) =⇒ (i) Assume that A is derived A-reflexive and not semidualizing such that
A �	 0. In particular, the complex RHomR(A, A) is homologically finite. Lemma 2.10
implies that SDR(A) is an open subset of Spec(R).

We claim that SDR(A) = SuppR(A). One containment is from Remark 2.9. For the
reverse containment, let p ∈ SuppR(A). It follows that Ap �	 0 is totally Ap-reflexive,
so Theorem 3.1 implies that Ap is semidualizing for Rp, that is p ∈ SDR(A).

It follows that SDR(A) = SuppR(A) is both open and closed in Spec(R). Since A
is not semidualizing, Remark 2.9 shows that SDR(A) = SuppR(A) �= Spec(R). On the
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other hand, since A �	 0, we have SDR(A) = SuppR(A) �= ∅. It follows that Spec(R) =
SuppR(A) � (Spec(R) � SuppR(A)) is a disconnection of Spec(R). A standard result
(see, e.g. [1, Exercise 1.22]) implies that there are commutative rings R1 and R2 such
that

(1) R ∼= R1 × R2 and
(2) Under the natural bijection Spec(R) ∼= Spec(R1) � Spec(R2), the set SuppR(A)

corresponds to Spec(R1), and Spec(R) � SuppR(A) corresponds to Spec(R2).
Remark 2.7 implies that for i = 1, 2 there is an Ri-complex Ai such that A 	 A1 × A2.
Under the natural bijection Spec(R) ∼= Spec(R1) � Spec(R2), for each P ∈ Spec(R) and
its corresponding prime pi ∈ Spec(Ri), we have AP 	 (Ai)pi . Using condition (2) above,
it follows that

(3) for each p1 ∈ Spec(R1), corresponding to P ∈ SuppR(A) = SDR(A), since AP is
semidualizing for RP, the complex (A1)p1 is semidualizing for (R1)p1 and

(4) for each p2 ∈ Spec(R2) corresponding to P ∈ Spec(R) � SuppR(A), we have
(A2)p2 	 AP 	 0.

Because of condition (3), Fact 2.6 implies that A1 is semidualizing for R1. And
condition (4) implies that SuppR2

(A2) = ∅, so A2 	 0, as desired.
For n =iii,iv, the equivalence (i) ⇐⇒ (n) is proved similarly. �
THEOREM 3.7. Let A be a homologically finite R-complex. Then the following

conditions are equivalent:

(i) 0 �	 A ∈ AA(R) and A is not semidualizing for R and
(ii) there are non-zero commutative noetherian rings R1, R2 with identity such that

R ∼= R1 × R2, and there is a tilting R1-complex A1 such that A ∼= A1 × 0.

Proof. From [12, Proposition 4.4], we know that A is tilting if and only if Am ∼ Rm

for each maximal ideal m ⊂ R. Thus, the desired implications follow from Theorem 3.3
as in the proof of Theorem 3.6. �

3.8 Proof of Theorem 1.3. Let A be a non-zero totally A-reflexive R-module that
is not semidualizing. Then A is derived A-reflexive and not semidualizing such that
A �	 0, so the desired conclusion follows from Theorem 3.6. This uses the fact that if
A 	 A1 × 0, then A1 is isomorphic in D(R) to a module and A ∼= A1 × 0. �

REMARK 3.9. Other results for modules can be deduced from our results for
complexes. We leave it as an exercise for the interested reader to formulate them.

We end with two consequences for integral domains that parallel our local results.

COROLLARY 3.10. Assume that R is an integral domain, and let A be a homologically
finite R-complex. Then the following conditions are equivalent:

(i) A is a semidualizing R-complex,
(ii) A is derived A-reflexive and A �	 0,

(iii) RHomR(A, A) is derived A-reflexive and A �	 0 and
(iv) 0 �	 A ∈ BA(R).

Proof. (ii) =⇒ (i) Assume that A is derived A-reflexive and A �	 0. If A is not
semidualizing, then Theorem 3.6 provides a non-trivial decomposition R ∼= R1 × R2,
contradicting the assumption that R is a domain.

The remaining implications follow similarly, using Remark 3.2. �
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The next result is proved like the previous one, using Theorem 3.7.

COROLLARY 3.11. Assume that R is an integral domain, and let A be a homologically
finite R-complex. Then 0 �	 A ∈ AA(R) if and only if A is a tilting R-complex.
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