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This chapter provides an introduction to basic graph algorithms and structured
graph classes. It presents how they have developed into classical topics of study,
necessary for advanced computing applications, and lead to new mathematical
research along the way.

1. Introduction

Algorithms lie at the heart of solving graph problems constructively. One of the
earliest examples is searching a graph. What we know today as depth-first search was
introduced to search labyrinths in the early 1880s by Trémaux (see [52]) and Tarry
[66], and by Fleury in his 1883 algorithm to produce Eulerian chains [17]. Another
example is the minimum spanning tree problem for optimally connecting facilities,
whose first algorithm was given by Borůvka in 1926 (see [41] and [61]).

As researchers increasingly modelled real-world problems in terms of graphs, the
need for provably correct new algorithms grew, involving a wide range of applications.
Optimally colouring the vertices of a 100-vertex graph was a mathematical challenge,
limited by pencil, paper and human brainpower. Until the 1950s no one needed to
colour a graph with thousands of vertices, and nor could they expect to do so. And
then came the computer.

In this chapter, we review some basic graph algorithms that have given rise to
new research areas in discrete mathematics and computer science. Often driven by
applications of structured graph classes, they have developed into classical topics of
study – the theme of this book.
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What is algorithmic graph theory?

Ask two people and you will get three answers. Here is one on which they will both
agree. The main research theme of algorithmic graph theory is the investigation,
discovery and exploitation of structural properties of graphs to help in efficiently
solving computational problems. Some problems may be intrinsically hard, like
graph colouring, while others may be easily tractable, like minimum spanning tree.
Whether the problem arises in computer science, optimization, biology, neuroscience,
engineering or another application area, or is raised in the abstract imagination
of a theoretical researcher, revealing the mathematical properties satisfied a priori
by its structure often enables finding an algorithm and reducing the time or space
complexity required to solve it.

Conversely, the algorithmic approach frequently leads to startling graph-theoretical
results, as is evident in every chapter in this book. We might call this ‘from algorithms
to structure’. For instance, a greedy algorithm gives rise to an underlying matroid
associated with the graph, which itself may have special combinatorial properties.
Problems from psychology to biology generated new notions in graph theory, like
boxicity, phylogenetic trees and indifference graphs (see [62], [63]). Something
similar happened when relational database schemes spawned a new hierarchy of
acyclic hypergraphs.

This symbiotic relationship was recognized a half-century ago with the establish-
ment of the annual events mentioned earlier in the foreword. The fertile interaction
between applications and discrete mathematics kick-started a worldwide throng of
dozens of new journals, hundreds of conferences and workshops and thousands of
research papers. This is the beauty of algorithmic graph theory and its importance as
a discipline.

Efficient algorithms

Complexity analysis deals with the quantitative aspects of problem-solving. It
addresses the issue of what can be computed within a practical or reasonable amount
of time and space by measuring the resource requirements – exactly, or by obtaining
upper and lower bounds for them. Complexity is actually determined at three levels:
the problem, the algorithm and the implementation. Naturally, we want the best
algorithm that solves our problem, and we want to choose the best implementation
of that algorithm.

The computational complexity of the search tree algorithm depends on how the
graph is represented and on what data structure is used to maintain the candidates
according to their priority. Testing whether a graph is connected can be done in linear-
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time in the size of the graph – that is, O(n + m), using adjacency lists, where n is
the number of vertices and m is the number of edges. This is considered the best
that one could expect for any non-trivial graph problem since every vertex and every
edge would probably have to be examined at least once. A typical implementation
of Prim’s algorithm for finding a maximum spanning tree could be O(m log n) or
O(m+ n log n), depending on the data structure (see Section 2).

Computing the chromatic number of a graph is a hard problem – in fact, deter-
mining whether a graph is 3-colourable is NP-complete. In contrast to this, although
computing the clique number of a graph is also NP-complete, determining whether
ω(G)≤ k for a fixed value of k has computational complexity O(nk). So there is
something intrinsically different between these two problems. It places maxclique in
the complexity class known as XP . A further difference led researchers to develop a
new branch of complexity theory, known as fixed parameter tractability (FPT), which
contains problems solvable in O(f (k)nO(1))-time, where f is an arbitrary function
depending only on k. vertex cover and many other NP-complete problems have
FPT algorithms, whereas others do not, like colouring. Recent books in this area
are [11] and [18].

Besides time-complexity, we may be interested in space-complexity. A polynomial-
time algorithm clearly consumes only polynomial space, but NP-hard problems also
consume only polynomial space. More than that, polynomial space problems can
be solved in exponential time. A fundamental open question in theoretical computer
science is whether each of the following inclusions is strict:

P ⊆ FPT ⊆ XP ⊆ NP ⊆ P-space ⊆ EXP-time

2. Graph search algorithms

Consider the problem of determining whether a graph G is connected. A mathemati-
cally elegant solution is the following: G is connected if and only if I +M +M2 +
M3 + · · · +Mn−1 has no zero entries, where M is the adjacency matrix of G, I is the
identity matrix and n is the order of G. However, using this method as an algorithm
would require much more work (matrix multiplication and addition) than is actually
needed to test connectivity. A better way would be to traverse the edges of the graph.

Searching and spanning trees

How to traverse and search a graph is fundamental to many graph algorithms. The
following generic search algorithm, searchst, tests connectivity and finds a spanning
tree efficiently.
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Algorithm searchst: Search Spanning Tree
step i: Start with a tree T consisting of one arbitrary vertex.
step ii: if T contains all the vertices of G, then stop;

comment T is a spanning tree.
else do step iii.

step iii: Add to T an edge vw which joins a vertex w not yet in T
with a vertex v already in T .

if no such edge exists, then stop;
comment There is no spanning tree; G is not connected.

else go-to step ii.

In step iii of the searchst algorithm, there may be several edges vw eligible
for adding to T . We call such an edge a candidate edge. Various priorities can be
established to guide the choice of candidates, and each priority yields a slightly
different algorithm. For example, if candidates are stored in a queue (first-in, first-
out), then searchst is a breadth-first search (BFS) of G, and the set T of chosen
edges vw is a breadth-first search tree of G. Breadth-first search appears in many
shortest path applications.

If candidates are stored in a stack (last-in, first-out), then searchst is a depth-first
search (DFS), and T is a depth-first search tree of G. Depth-first search is used in many
algorithms, including topological sorting and finding strongly connected components.

If the edges have weights associated with them, and if the candidate with minimum
weight is always chosen, then searchst produces a minimum spanning tree (minst).
This is the algorithm originally developed in 1930 by V. Jarník and later rediscovered
by R. C. Prim 25 years later.

Other specializations of searchst, with suitable priorities for choosing candidates,
are found throughout algorithmic graph theory. In Chapters 6 and 7, for exam-
ple, maximum cardinality search, lexicographic breadth-first search and maximum
neighbourhood search are used for solving problems on chordal graphs and strongly
chordal graphs. Similarly, shortest path algorithms, critical path algorithms, the
heuristic search algorithm A∗ in artificial intelligence and others can all be viewed
as adaptations of searchst.

Expanding spanning forests

Searching a graph with the searchst algorithm is analogous to a ‘boots-on-the-
ground’ approach, like Prim’s army pushing forward the frontier of a minimum
spanning tree until the entire graph is captured. In contrast to this, as we will see
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next, a ‘drones-in-the-sky’ approach by Kruskal’s air force combines smaller trees
into larger ones until the entire graph is spanned. The following algorithm, expandst,
illustrates the expanding forest method for finding a spanning tree of a graph.

Algorithm expandst: Expanding Spanning Tree
step i: Start with a forest T consisting of the n vertices and no edges.
step ii: if T contains n− 1 edges of G, then stop;

comment T is a spanning tree.
else do step iii.

step iii: Add to T an edge vw which joins a vertex w in one subtree
of T with a vertex v in a different subtree of T .

if no such edge exists, then stop;
comment There is no spanning tree; G is not connected.

else go-to step ii.

In step iii of the expandst algorithm, as in the searchst algorithm, there may
be several candidate edges vw eligible for adding to T , according to the priority
established for that instance of the algorithm.

If the edges have weights and the candidate with minimum weight is always
chosen, then expandst is precisely Kruskal’s minimum spanning tree algorithm. It
has complexity O(m log m), since the edges must be sorted by their weight. This may
be greater than Prim’s algorithm, depending on the graphs and the data structures used.
Faster algorithms have been designed, but the best possible complexity of minst is
not known.

Algorithms, like expandst, that join smaller trees into larger trees occur in other
contexts as well – for example, in merging heaps in heapsort, balancing search trees
and in a variety of clustering algorithms.

Shortest path problems

The starting vertex in step i of algorithm searchst is the root of the spanning tree T .
For unweighted graphs, breadth-first search provides a shortest path from the root to
each of the other vertices in the graph. For graphs with edge weights, where the length
of a path is the sum of the weights of its edges, a more sophisticated algorithm must
be employed. One of these is Dijkstra’s algorithm spt, shown below. It can be viewed
as a variation of searchst, using a type of best-first search as new vertices join the
spanning tree.
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Algorithm spt: Shortest Path Tree
step i: Let Q be a data structure containing V(G);

for each vertex v do
parent(v) := undefined; [its ‘tentative’ parent in the rooted tree T]
dist(v) :=∞; [its ‘tentative’ shortest distance from the root]

end-for
step ii: Start with a tree T consisting of one arbitrary vertex r [the root];

dist(r) := 0; remove r from Q;
for each neighbour v of r do

parent(v) := r;
dist(v) := weight(v,r);

end-for
step iii: while Q is not empty do

w := the vertex in Q with minimum dist(w);
if dist(w) :=∞ then stop;

comment There is no spanning tree; G is not connected.
else remove w from Q and add the edge {w,parent(w)} to T;
for each neighbour v of w that is still in Q do

if change := weight(v,w) + dist(w) < dist(v) then do
parent(v) := w;
dist(v) := change;
comment Changing the parent shortens the ‘tentative’

path from v to r.
end-if

end-for
end-while

Depending on the data structure maintaining the priority queue Q, the complexity
of implementing Dijkstra’s algorithm can be as low as O(m+ n log n).

Another algorithm that computes shortest paths from a single source vertex to
all of the other vertices is the Bellman–Ford algorithm. It is slower than Dijkstra’s
algorithm for the same problem, but it is capable of handling graphs in which some
of the edge weights are negative numbers and can detect negative cycles in the graph.
Faster shortest paths in dense distance graphs can be found in [59].

All pairs shortest path and the diameter of a graph

To calculate the shortest distance between all pairs of vertices, one could run
Dijkstra’s algorithm or the Bellman–Ford algorithm n times – by making each vertex
the root. However, an algorithm due to Floyd and Warshall with O(n3)-complexity
would generally be better for non-sparse graphs. It can be found in numerous books
on algorithms. No truly sub-cubic algorithm is known for the all pairs shortest distance
problem – that is, in O(n3−ε)-time, for any fixed ε > 0.

The Floyd–Warshall algorithm is often used to compute the transitive closure and
in various matrix applications. A novel use in temporal reasoning is found in the

https://doi.org/10.1017/9781108592376.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108592376.004


1 Graph algorithms 23

survey [23]. The diameter of a graph (directed or weighted) is the largest distance
between a pair of vertices. For general graphs, the current fastest way to compute the
diameter of a graph is by computing all pairs of shortest paths between its vertices
and taking the largest.

For planar graphs, in a breakthrough result, Cabello [7] presented the first sub-
quadratic algorithm for computing the diameter of a directed planar graph. It was a
randomized algorithm running in Õ(n11/6)-time. The soft-O notation Õ(f (n)) means
O(f (n) logk n), for some k, a convenient shorthand that ignores logarithmic factors
just as big-O ignores constant factors. Shortly after, in [21], the algorithm was made
deterministic and the running time was improved to Õ(n5/3). The improvement was by
designing an efficient construction of Voronoi diagrams. Computing the diameter is a
fundamental problem in graph algorithms, with numerous applications and research
papers studying its complexity.

Further reading on shortest path and other connectivity problems, such as biconnec-
tivity, 2-edge connectivity, strong connectivity of digraphs and others, can be found in
the many standard books on algorithms – for example, [10], [14], [15], [24] and [64].

3. Greedy graph colouring

Graph colouring is a computationally hard problem, yet thousands of applications
rely on solving such problems, from scheduling and resource allocation, to circuit
and software design. We have two ways of coping with this potential intractability:

(1) exploiting a priori knowledge about the expected structure of the graphs we must
colour, in order to design efficient special purpose algorithms, and
(2) empirically testing a variety of heuristic algorithms to see what works best most
of the time.

Heuristics offer no guarantees, but sometimes structure and heuristics can work
together.

Greedy colouring is the simplest and most common type of algorithm, where
the vertices are coloured successively, according to some priority ordering, with
each being assigned a colour different from any colour already assigned to one
of its neighbours. It is called a first-fit greedy colouring if the colours are num-
bered and the colour to be assigned is the smallest among those unused for its
neighbours.

We often distinguish between two cases. Static greedy colouring chooses a fixed
ordering for colouring the vertices in advance. Dynamic greedy colouring maintains
a data structure for the uncoloured vertices, and uses a priority or heuristic to choose
the next vertex to be coloured.

The problem of colouring interval graphs, the intersection graphs of intervals on a
line, provides an example where applying static first-fit greedy colouring is optimal,
by colouring them according to the order of the left endpoints of the intervals.
The same is true for many other classes of perfect graphs. A chordal graph can be
optimally coloured by applying greedy colouring to the vertices in the reverse of
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a perfect elimination ordering, and a comparability graph by a topological sorting
of a transitive orientation (see [24]). Similar specialized methods apply to tolerance
graphs [39] and others.

For unstructured graphs, a popular greedy colouring heuristic is postponing the
vertex of smallest degree. Delete a vertex of smallest degree, thus reducing the degree
of each neighbour by 1. Continue in this fashion, until all vertices are deleted. Then
greedily colour the vertices in the reverse order of their deletion. This method was
demonstrated to be effective and efficient for register allocation in compilers (see
Chapter 6, Section 7).

A better heuristic for general graphs is the well-known dsatur algorithm by
Daniel Brélaz [4]. It successively chooses the vertex adjacent to the largest number
of different colours, its saturation degree.

Algorithm dsatur: Degree of Saturation
step i: Colour a vertex of maximal degree with colour 1.
step ii: Choose a vertex with a maximal saturation degree,

breaking ties by maximal degree in the uncoloured subgraph.
step iii: Colour the chosen vertex using first-fit;

repeat step ii until all vertices are coloured.

The literature overflows with other dynamic colouring algorithms, some greedy
and others employing various levels of backtracking strategies to obtain better
solutions, at the cost of higher complexity. For further reading, see Dechter [13] on
constraint-based heuristics, Fomin and Kratsch [19] on exact exponential algorithms,
Husfeldt [46] on graph colouring algorithms and Lewis [51] on practical applications.

In Chapter 2 of this book, Alain Hertz and Bernard Ries discuss three graph colour-
ing variations – selective colouring, online colouring and mixed graph colouring –
each motivated by applications. Chapter 3, by Celina de Figueiredo, is a survey of
total colouring – assigning a colour to each vertex and edge of a graph, so that there are
no incidence colour conflicts. Both theoretical and algorithmic results are considered
for this alternative colouring problem.

4. The structured graph approach

Exploiting graph structure is one of the fundamental approaches to designing efficient
algorithms. To solve important practical problems, algorithmic graph theory strives to
understand and use the underlying properties and form of the specific graphs expected
as input. This is especially true for special classes that naturally arise in applications.
In this section, we discuss several of these classes.

Planar graphs

Planar graphs illustrate well the idea of exploiting structure to help solve problems
efficiently. We saw an example of this for computing the diameter of a planar graph
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in sub-quadratic time at the end of Section 2. A further result is an approximation
algorithm for the diameter of planar graphs in near-linear time [68].

In recent years the frontier of research on algorithms for optimization problems
in planar graphs has been pushed forward (see [50]). An example of this is an
O(n log log n)-time algorithm for computing the minimum cut (or equivalently, the
shortest cycle) of a weighted directed planar graph [58]. Another result on mini-
mum cut, for general graphs, is an O(m log2 n)-time algorithm in [22]. Improving
algorithms on planar graphs automatically leads to progress on applications to basic
problems in computer vision, navigation on road networks and circuit design.

A distance oracle is a data structure maintaining a preprocessed compact repre-
sentation of a graph from which the distance or a shortest path between any pair
of vertices can be retrieved efficiently. Distance oracles are useful in applications
ranging from geographic information systems, databases, packet routing and logistics,
to computer games, web search, computational biology and social networks. There
are natural trade-offs between space and query-time for exact distance oracles which
are studied for directed weighted planar graphs by Charalampopoulos et al. [8].
Their results are almost optimal in the sense that they are within polylogarithmic,
subpolynomial or arbitrarily small polynomial factors from the naïve linear-space
constant query-time lower bound. These trade-offs include an oracle with space
O(n1+ε) and query-time Õ(1) for any constant ε > 0, an oracle with space Õ(n) and
query-time O(nε) for any constant ε > 0 and an oracle with space n1+o(1) and query-
time no(1). These bounds were achieved by designing an elegant and efficient point
location data structure for Voronoi diagrams on planar graphs.

Intersection graphs

LetS ={S1,S2, . . . ,Sn} be a collection of subsets of a set S. Recall that the intersection
graph of S is the graph G obtained by assigning a distinct vertex vi of G for each set Si

in S and joining two vertices by an edge precisely when their corresponding sets have
a non-empty intersection – that is, vivj ∈ E(G) if and only if i �= j and Si ∩ Sj �= ∅.
The collection S is called a representation of G on the host S.

Interval graphs are the oldest and best-known family of intersection graphs. They
are the intersection graphs of intervals on a line, and arise in scheduling problems,
bioinformatics, temporal reasoning and many other applications. Interval graphs have
been characterized mathematically and algorithmically in many settings, and general-
ized to larger families such as tolerance graphs and trapezoid graphs, all of which have
efficient polynomial-time algorithms for recognition, colouring, maximum clique and
many other optimization problems (see [12], [16] and [39]). So much has been written
about intersection graphs in other books (for example, [3], [24], [53], [54] and [65])
that we refrain from repeating it here. Rather, we cover just a few recent results.

5. Specialized classes of intersection graphs

There are two important aspects to consider when defining a class of intersection
graphs. The first aspect is the type of subsets and their host. For example, proper
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interval graphs restrict the collection S to be intervals that are pairwise
incomparable – that is, no interval properly contains another. Similarly, unit disc
graphs are the intersection graphs of solid circles of radius 1 in the plane. The
recognition, 3-colouring, Hamiltonian and maximum independent set problems have
linear-time solutions on proper interval graphs, but they are all NP-hard for unit disc
graphs. Only the maximum clique problem is tractable for unit disc graphs given a
unit disc representation for the graph.

The second aspect is the type of intersection which may vary from the usual set
intersection or some other form of ‘interference’, such as measured intersection. For
example, for fixed k ≥ 1, k-edge-intersection graphs of paths in a tree (k-EPT graphs)
have a representation as paths Si in a tree T , where two vertices vi and vj are adjacent
if Si and Sj share at least k edges in T (see [30]). Recognition and 3-colouring of
k-EPT graphs are NP-complete for any fixed k≥ 1, although maximum clique is
polynomial. A further generalization is the 〈h,s,t〉 graphs which are discussed below.
Edge-intersection graphs are used in network applications, such as scheduling calls in
a tree network or assigning wavelengths to virtual connections in an optical network,
problems that are equivalent to colouring an EPT graph.

These two aspects, type of subsets and type of intersection, may be combined as
well, for example, in the class of unit neighbourhood subtree tolerance graphs (unit
NeST graphs; see [2] and [42]).

Tolerance graphs

Tolerance graphs were introduced in 1982 as a natural extension of interval graphs
(see [35] and [36]). Each vertex is associated with an interval on the real line and a
positive number called its tolerance. A tolerance is considered unbounded if it exceeds
the length of the interval. Two vertices are adjacent if and only if the length of the
intersection of their associated intervals is not less than the tolerance of one of them.
We can think of two meetings that are set to overlap in time, yet are assigned to the
same meeting room. In the interval graph model they conflict; in the tolerance model,
if both are sufficiently tolerant, they do not.

This tolerance–conflict model set the stage for decades of further research on
multiple themes – special families of tolerance graphs and their properties, directed
graph versions, generalizations beyond intervals and restricted models. All of these
involve some notion of measured intersection, known as tolerance. We have bounded,
proper and unit tolerance graphs, several types of tree tolerance graphs, rank tolerance
graphs [28], Archimedean φ-tolerance graphs [29] and others (see [25] and [39]).

The computational complexity of recognizing tolerance graphs and bounded toler-
ance graphs had remained open for 28 years. Hayward and Shamir [43] showed that
the problem is in NP, and Mertzios, Sau and Zaks [56], [57] proved that it is NP-hard.
Thus we have the following result.

Theorem 5.1 Recognizing tolerance graphs and bounded tolerance graphs are
NP-complete problems.

The following result answers the complexity question for bipartite graphs [6].
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Theorem 5.2 Recognizing bipartite tolerance graphs has linear-time complexity.

Narasimhan and Manber [60] presented a polynomial-time algorithm to find a
maximum weighted stable set of a tolerance graph, given a tolerance representation
for the graph.

Theorem 5.3 A maximum weighted stable set of a tolerance representation can be
found in time O(n2 log n).

Colouring bounded tolerance graphs in polynomial time is an immediate con-
sequence of their being cocomparability graphs. Golumbic and Siani [38] gave an
algorithm to find a colouring of a tolerance graph, whose complexity depends on the
number of unbounded tolerances in a given tolerance representation for it.

Theorem 5.4 A minimum colouring of a tolerance representation with at most q
intervals having unbounded tolerance can be found in O(qn+ n log n)-time.

Tolerance graphs on trees

Let T be a tree and let {Ti} be a collection of subtrees (connected subgraphs) of T. We
may think of the host tree T as either

(1) a continuous model of a tree embedded in the plane, thus generalizing the real line
from the 1-dimensional case, or
(2) a finite discrete model of a tree, a connected graph of vertices and edges having
no cycles, thus generalizing the graph Pk from the 1-dimensional case.

The distinction between these two models becomes important when measuring the
size of the intersection of two subtrees. For example, in the continuous model (1), we
might take the size of the intersection to be the length of a longest common path of the
two subtrees measured along the host tree (see [2]). In the discrete model (2), we might
count the number of common vertices or common edges (see [26], [27], [48] and [49]).
Typically, one uses the expressions ‘non-empty intersection’ or ‘vertex-intersection’
to mean sharing a vertex of T (or a point, in the continuous model), and ‘non-trivial
intersection’ or ‘edge-intersection’ to mean sharing an edge or otherwise measurable
segment of T. In this way, edge-intersection is more tolerant than vertex-intersection.
Using this terminology, we have the following classical result of Buneman [5], Gavril
[20] and Walter [67].

Theorem 5.5 A graph is the vertex-intersection graph of a set of subtrees of a tree if
and only if it is a chordal graph.

McMorris and Shier [55] gave an analogous version for split graphs.

Theorem 5.6 A graph G is the vertex-intersection graph of distinct induced subtrees
of a star K1,n if and only if G is a split graph.
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In contrast to these results, it was observed in [26] that the family of edge-
intersection graphs of subtrees of a tree yield all possible graphs. In fact, the following
variation on Marczewski’s theorem holds.

Theorem 5.7 Every graph can be represented as the edge-intersection graph of
substars of a star.

Two different classes of intersection graphs also arise when considering simple
paths (instead of subtrees) of an arbitrary host tree T . The class of path graphs, which
are the vertex-intersection graphs of paths on a tree (also known as VPT graphs),
are a subfamily of chordal graphs and inherit all their nice algorithmic properties.
However, the graphs obtained as the edge-intersection graphs of paths in a tree (called
EPT graphs) are not necessarily chordal. EPT graphs are not perfect graphs, and the
recognition problem for them is NP-complete, whereas the VPT graphs are perfect
and can be recognized efficiently. The same dichotomy between EPT and VPT holds
for colouring. Thus, EPT graphs are a more tolerant model than VPT graphs, but they
have a high algorithmic cost.

In 1985 Golumbic and Jamison [27] showed that, in the special case where the host
tree T has maximum vertex-degree 3 (binary trees), the VPT and EPT classes are the
same. This led to a broader study of degree-constrained subtree representations, which
we now describe.

Jamison and Mulder [48], [49] introduced a constant tolerance model for subtrees
of a tree where degree restrictions are placed on the trees, further generalizing VPT
and EPT graphs. An 〈h,s,t〉-representation of a graph G consists of a collection of
subtrees {Sv : v ∈ V(G)} of a tree T , such that

(i) the maximum degree of T is at most h,
(ii) every subtree has maximum degree at most s,

(iii) there is an edge between two vertices in G if and only if the corresponding
subtrees in T have at least t vertices in common.

Using this notation, where∞ denotes that no restriction is imposed, we immediately
see the equivalence of many familiar graph classes within this model:

• 〈2,2,1〉 ≡ interval graphs;
• 〈∞,2,1〉 ≡ VPT graphs or path graphs;
• 〈∞,2,2〉 ≡ EPT graphs;
• 〈∞,2,k − 1〉 ≡ k-EPT graphs;
• 〈∞,∞,1〉 ≡ 〈3,3,1〉 ≡ 〈3,3,2〉 ≡ chordal graphs;
• 〈3,2,1〉 ≡ 〈3,2,2〉 ≡ VPT ∩ chordal ≡ EPT ∩ chordal;
• 〈4,2,2〉 ≡ EPT ∩ weakly chordal.

In a series of papers, Cohen, Golumbic, Lipshteyn and Stern also characterized the
classes 〈4,4,2〉 and 〈4,3,2〉 and gave polynomial-time recognition algorithms for them
(see [9], [30], [31], [32] and [33]). The class 〈3,3,3〉 is studied in [48]. For further
results in this area, see [25], [49] and [39].
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Intersection graphs of paths on a grid

We conclude this section with another pair of graph classes that contrast the difference
between vertex-intersection and edge-intersection, this time with paths on a grid. They
were motivated by applications in circuit layout and chip manufacturing, but could be
equally applied to traffic routing, scheduling and other natural problems.

A vertex-intersection graph of paths on a grid (or VPG graph) is a graph for which
there exists a family of paths on a grid in one-one correspondence with its vertex-set
for which two vertices are adjacent if and only if the corresponding paths share at
least one grid-point. An edge-intersection graph of paths on a grid (or EPG graph),
is defined similarly, with the exception that two vertices are adjacent if and only if
the corresponding paths share at least one grid-edge. A recent survey on EPG graphs
appears in [37].

It was shown in [1] that VPG graphs are equivalent to the class of string graphs.
This class is NP-complete to recognize and NP-hard to colour. On the other hand,
for edge-intersection, it was shown in [34] that every graph is an EPG graph. In both
cases, to make these models relevant to real-world applications, it is natural to restrict
each path to a limited number of bends – that is, 90-degree turns at a grid-point. A
representation is called Bk if each path has at most k bends. We consider the classes
Bk-VPG and Bk-EPG graphs, for various values of k ≥ 0 – that is, those which admit
a Bk representation in the VPG model and the EPG model, respectively. They are
very different classes. The B0-EPG graphs are equivalent to interval graphs, which
have efficient algorithms for most computational problems. The B0-VPG graphs are
equivalent to the intersection graphs of horizontal and vertical segments in the plane,
which are NP-complete to recognize and NP-hard to colour.

Another difference is in determining the minimum number of bends required to
represent all graphs in some given class. For example, every planar graph has a
B1-VPG representation and there are planar graphs that require at least one bend [40].
However, for EPG representations, every planar graph has a B4-EPG representation,
and there are planar graphs that are not B2-EPG (see [44] and [45]). So whether the
EPG bend-number of a planar graph is 3 or 4 remains an open question.

This has been a taste of some of the many computational results and challenges
involving graph parameters and special graph classes. A database that is worth
consulting for further references is ISGCI: Information system on graph classes and
their inclusions [47].
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