BULL. AUSTRAL. MATH. SOC. VOL. 2 (1970), 89-93.

The weak closure of the set of singular elements in a Banach algebra

J. D. Gray

In this note it is proved that for a certain class of infinite dimensional Banach algebras the set of singular elements (the non-units) is dense in the weak topology.

It is well known and easily proven (Rickart, [2], p. 12), that in any (complex) Banach algebra B, with identity, the set S of singular elements (the non-units) is closed in the norm topology. In some recent work of the author on a generalization of the operational calculus for Banach algebras it became important to know something of the topological nature of S when B is equipped with the weak topology. This topology has as a basis sets of the form

 $\{\xi \in B : |x^*(x) - x^*(\xi)| < \varepsilon ; x^* \in A\}$

where $x \in B$, $\varepsilon > 0$ and A is a finite set in the dual space B^* of continuous linear functionals on B. If B (as a vector space) has finite dimension, the weak and the norm topology coincide, and so, in this case, S is closed in the weak topology.

For a certain class of algebras we have a partial converse to this result.

THEOREM. Suppose B is an infinite dimensional, semi-simple, commutative Banach algebra with identity, for which the Gelfand map is surjective. Then S is weakly dense in B.

Proof. To see that this is a partial converse to the above statement

Received 15 September 1969. The author would like to thank Mr C.D. Cox for helpful discussions.

we note that S is always a proper subset of B, and so, if it is dense it is not closed. The Gelfand map is that well known homomorphism $B \rightarrow C(X)$ of B into the Banach algebra C(X) of all continuous, complex-valued functions on the compact Hausdorff space X of maximal ideals of B. As B is semi-simple, this homomorphism is injective, and thus, by assumption, bijective. By the open mapping theorem we conclude that it is a homeomorphism. Therefore, by Theorem V.3.15 of Dunford and Schwartz [1], it is a homeomorphism when both B and C(X) have the weak topology. Thus it suffices to prove the theorem for the algebra C(X). Now a function in C(X) is singular if and only if it vanishes at some point of X. The problem is then: given $f \in C(X)$ (which we may assume not to be identically zero), show that every neighbourhood of f in the weak topology contains a function which vanishes somewhere in X. It suffices therefore to exhibit a net $\{f_{\alpha}\}$ of singular elements with $\lim_{\alpha} f_{\alpha} = f$.

f may be written in a unique way as $\phi + i\psi$, where $\phi, \psi : X \to R$ are continuous. Now, as C(X) is infinite dimensional, X is an infinite set, and as it is also compact, we conclude that there is a point $p \in X$ which is not isolated. Let U be a neighbourhood basis for p - indexed by some well-ordered set Γ' , so $U = \{U'_{\alpha} : \alpha \in \Gamma'\}$. Choose an $\alpha_0 \in \Gamma'$ and define $U_{\alpha_0} = U'_{\alpha_0}$. If $\beta \ge \alpha_0$ and U_{β} has been defined, define inductively $U_{\beta^+} = U'_{\beta^+} \cap U_{\beta}$, where β^+ is the least element of the set $\{\gamma \in \Gamma' : \gamma > \beta\}$. Then the family $\{U_{\alpha} : \alpha \ge \alpha_{\alpha}\}$ is also a neighbourhood basis of open sets for p . Furthermore, if $\beta > \alpha \ge \alpha_0$ we have $U_{\beta} \supset U_{\alpha}$, and each U_{α} contains a point other than p (as p is not isolated). Next, because X is Hausdorff, we have $\bigcap_{\alpha \geq \alpha} U_{\alpha} = \{p\}$. For convenience we let Γ be the directed set $\{\alpha \in \Gamma' : \alpha \ge \alpha_{\alpha}\}$. For each $\alpha \in \Gamma$ let $F_{\alpha} = X - U_{\alpha}$, so that F_{α} is closed. Also, let \hat{F}_{α} be the closed set $F_{\alpha} \cup \{p\}$. For $\alpha \in \Gamma$ we may, by construction, choose a point $p_{\alpha} \in U_{\alpha}$ in such a way that $p_{\alpha} \notin U_{\alpha+}$. X , being a compact Hausdorff space, is also normal, and hence, by Urysohn's Lemma, for each $\alpha \in \Gamma$, we may choose a continuous real-valued

90

function g_{α} on X so that $0 \leq g_{\alpha} \leq 1$; $g_{\alpha}(p_{\alpha}) = 1$ and g_{α} vanishes on \hat{F}_{α} . Now define $\phi_{\alpha} : X \neq R$ by

$$\phi_{\alpha}(\lambda) = (1-g_{\alpha}(\lambda))\phi(\lambda) ; \quad \lambda \in X .$$

Then ϕ_{α} is continuous; $-\phi \leq \phi_{\alpha} \leq \phi$; $\phi_{\alpha}(p_{\alpha}) = 0$ and $\phi_{\alpha}|\hat{F}_{\alpha} = \phi|\hat{F}_{\alpha}$. In exactly the same manner we construct a continuous function $\psi_{\alpha} : X \neq R$ with $-\psi \leq \psi_{\alpha} \leq \psi$; $\psi_{\alpha}(p_{\alpha}) = 0$ and $\psi_{\alpha}|\hat{F}_{\alpha} = \psi|\hat{F}_{\alpha}$. Write $f_{\alpha} = \phi_{\alpha} + i\psi_{\alpha}$ so that each f_{α} is a singular element of C(X).

The net $\{f_{\alpha} : \alpha \in \Gamma\}$ will converge to f in the weak topology if for each continuous linear functional x^* on C(X), and for each $\varepsilon > 0$, there is an $\alpha_1 \in \Gamma$ so that $\alpha > \alpha_1$ implies that

$$|x^*(f) - x^*(f_\alpha)| < \varepsilon .$$

The Riesz Representation Theorem ([1], Theorem IV.6.3) asserts the existence of an isometric isomorphism between $C(X)^*$ and the Banach space of regular, countably-additive, complex-valued measures on the Borel sets of X. Further, if μ is such a measure,

$$x^*(g) = \int_X g d\mu$$

for all $g \in C(X)$. Thus

$$|x^*(f)-x^*(f_{\alpha})| \leq \left|\int_{F_{\alpha}} (f-f_{\alpha})d\mu\right| + \left|\int_{U_{\alpha}} (f-f_{\alpha})d\mu\right|.$$

However, for each $\alpha\in\Gamma$, the first factor above is identically zero as f and f_α agree on F_α . As for the second factor, it is

$$\leq \int_{U_{\alpha}} |f - f_{\alpha}| \cdot d \| \mu \|$$

here $\|\mu\|$ represents the total variation of μ , and, by Theorem III.5.12 of [1], $\|\mu\|$ is also a regular (positive) measure on the Borel sets of X. Now suppose that the $\|\mu\|$ -measure of the point p is zero. Then $\inf_{V} \|\mu\|(V) = 0$ - the infimum being taken over all open sets V containing p. Thus we can choose such an open set V with $\|\mu\|(V) < \varepsilon/2\|f\|$. But $\{U_{\alpha}\}$ is a basis for the open sets containing p, and as it is also decreasing, there is an $\alpha_1 \in \Gamma$ such that, if $\alpha > \alpha_1$ we have $U_{\alpha} \subset V$ and so $\|\mu\|(U_{\alpha}) < \varepsilon/2\|f\|$. Hence

$$\int_{U_{\alpha}} |f - f_{\alpha}| \cdot d \|\mu\| \leq \|f - f_{\alpha}\| \int_{U_{\alpha}} d\|\mu\| \leq \|f - f_{\alpha}\| \cdot \|\mu\| \left(U_{\alpha}\right) \leq 2\|f\| \cdot \|\mu\| \left(U_{\alpha}\right) < \epsilon$$

provided $\alpha > \alpha_1$. Now suppose that $\{p\}$ does not have $\|\|\mu\|$ -measure zero, then, without loss of generality, we may assume that $\|\|\mu\|(\{p\}) = 1$ and that $\int_{\{p\}} (f-f_{\alpha})d\mu = 0$ (remember that $f(p) = f_{\alpha}(p)$). Then $\int_{U_{\alpha}} \|f-f_{\alpha}\|d\|\|\mu\| = \int_{U_{\alpha}-p} \|f-f\|d\|\|\mu\| \le 2\|f\| \cdot \|\mu\|(U_{\alpha}-p)$.

By regularity we may choose an open set V containing p for which $\|\mu\|(V) < 1 + \varepsilon/2\|f\|$ so that $\|\mu\|(V-p) < \varepsilon/2\|f\|$. Arguing as before we find an α_1 such that $\|\mu\|(U_{\alpha}-p) < \varepsilon/2\|f\|$ provided $\alpha > \alpha_1$. This completes the proof of the theorem.

The proofs of the next results follow immediately from the theorem.

COROLLARY 1. Suppose B is an infinite dimensional, commutative, B^* -algebra with identity. Then S is weakly dense in B.

COROLLARY 2. Let X be an infinite compact Hausdorff space. Suppose X contains a non-isolated point with a countable neighbourhood basis. Then S is weakly sequentially dense in C(X).

COROLLARY 3. Suppose the Banach algebra B satisfies the conditions of the theorem. Then, in the weak topology, the group of units of B has empty interior.

Finally, let B be the Banach algebra of bounded, complex-valued functions on a set Ω . As mentioned in [2], p. 295, the group G of units of B is open and dense in the norm topology. However, in the weak topology, G has empty interior. This follows from Corollary 3 and Theorem IV.6.18 of [1], according to which B is (isometrically isomorphic to) an algebra C(X), for a suitable compact Hausdorff space X.

References

- [1] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part I (Interscience Publishers, New York, London, 1958).
- [2] Charles E. Rickart, General theory of Banach algebras, (Van Nostrand, Princeton, New Jersey, 1960).

University of New South Wales, Kensington, New South Wales.