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University of A Coruña, Spain

(e-mails: cabalar@udc.es, brais.mcastro@udc.es)

submitted 9 August 2023; revised 28 December 2023; accepted 8 January 2024

Abstract

In this note, we introduce the notion of support graph to define explanations for any model of a
logic program. An explanation is an acyclic support graph that, for each true atom in the model,
induces a proof in terms of program rules represented by labels. A classical model may have zero,
one or several explanations: when it has at least one, it is called a justified model. We prove
that all stable models are justified, whereas, for disjunctive programs, some justified models
may not be stable. We also provide a meta-programming encoding in Answer Set Programming
that generates the explanations for a given stable model of some program. We prove that the
encoding is sound and complete, that is, there is a one-to-one correspondence between each
answer set of the encoding and each explanation for the original stable model.
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1 Introduction

In the past few years, Artificial Intelligence (AI) systems have made great advancements,

generally at the cost of increasing their scale and complexity. Although symbolic AI

approaches have the advantage of being verifiable, the number and size of possible justi-

fications generated to explain a given result may easily exceed the capacity of human com-

prehension. Consider, for instance, the case of Answer Set Programming (ASP) (Brewka

et al. 2011), a successful logic programming paradigm for practical Knowledge Repre-

sentation and problem-solving. Even for a positive program, whose answer set is unique,

the number of proofs for an atom we can form using modus ponens can be exponential.

It makes sense, then, to generate explanations through the typical ASP problem-solving

orientation. Namely, we may consider each explanation individually as one solution to

the “explainability problem” (i.e., explaining a model) and let the user decide to generate

one, several or all of them, or perhaps to impose additional preference conditions as done

with optimisation problems in ASP.

In this technical note, we describe a formal characterisation of explanations in terms of

graphs constructed with atoms and program rule labels. Under this framework, models

may be justified, meaning that they have one or more explanations, or unjustified other-

wise. We prove that all stable models are justified whereas, in general, the opposite does

not hold, at least for disjunctive programs. We also provide an ASP encoding to generate
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the explanations of a given answer set of some original program, proving the soundness

and completeness of this encoding.

The rest of this note is structured as follows. Section 2 contains the formal definitions

for explanations and their properties with respect to stable models. Section 3 describes

the ASP encoding and proves its soundness and completeness. Section 4 briefly comments

on related work and, finally, Section 5 concludes the paper.

2 Explanations as support graphs

We start from a finite1 signature At , a non-empty set of propositional atoms. A (labelled)

rule is an implication of the form:

� : p1 ∨ · · · ∨ pm ← q1 ∧ · · · ∧ qn ∧ ¬s1 ∧ · · · ∧ ¬sj ∧ ¬¬t1 ∧ · · · ∧ ¬¬tk. (1)

Given a rule r like (1), we denote its label as Lb(r)
df
= �. We also call the disjunction in the

consequent p1∨· · ·∨pm the head of r, written Head(r) and denote the set of head atoms as

H (r)
df
= {p1, . . . , pm}; the conjunction in the antecedent is called the body of r and denoted

as Body(r). We also define the positive and negative parts of the body, respectively, as the

conjunctions Body+(r)
df
= q1∧· · ·∧qn and Body−(r) df

= ¬s1∧· · ·∧¬sj ∧¬¬t1∧· · ·∧¬¬tk.
The atoms in the positive body are represented as B+(r)

df
= {q1, . . . , qn}. As usual, an

empty disjunction (resp. conjunction) stands for ⊥ (resp. �). A rule r with empty head

H (r) = ∅ is called a constraint. On the other hand, when H (r) = {p} is a singleton,

B+(r) = ∅ and Body−(r) = � the rule has the form � : p ← � and is said to be a

fact, simply written as � : p. The use of double negation in the body allows representing

elementary choice rules. For instance, we will sometimes use the abbreviation � : {p} ← B

to stand for � : p ← B ∧ ¬¬p. A (labelled) logic program P is a set of labelled rules

where no label is repeated. Note that P may still contain two rules r, r′ with same body

and head Body(r) = Body(r′) and H (r) = H (r′), but different labels Lb(r) �= Lb(r′).
A program P is positive if Body−(r) = � for all rules r ∈ P . A program P is non-

disjunctive if |H (r)| ≤ 1 for every rule r ∈ P . Finally, P is Horn if it is both positive

and non-disjunctive: note that this may include (positive) constraints ⊥ ← B.

A propositional interpretation I is any subset of atoms I ⊆ At . We say that a propo-

sitional interpretation is a (classical) model of a labelled program P if I |= Body(r) →
Head(r) in classical logic, for every rule r ∈ P . The reduct of a labelled program P with

respect to I, written P I , is a simple extension of the standard reduct by Gelfond and

Lifschitz (1988) that collects now the labelled positive rules:

P I df
= { Lb(r) : Head(r)← Body+(r) | r ∈ P, I |= Body−(r) }.

As usual, an interpretation I is a stable model (or answer set) of a program P if I is a

minimal model of P I . Note that, for the definition of stable models, the rule labels are

irrelevant. We write SM (P ) to stand for the set of stable models of P .

We define the rules of a program P that support an atom p under interpretation I as

SUP(P, I, p)
df
= {r ∈ P | p ∈ H (r), I |= Body(r)} that is, rules with p in the head whose

1 We leave the study of infinite signatures for future work. This will imply explanations of infinite size,
but each one should contain a finite proof for each atom.
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body is true w.r.t. I. The next proposition proves that, given I, the rules that support p

in the reduct P I are precisely the positive parts of the rules that support p in P .

Proposition 1

For any model I |= P of a program P and any atom p ∈ I: SUP(P I , I, p) = SUP(P, I, p)I .

Proof

We prove first ⊇: suppose r ∈ SUP(P, I, p) and let us call r′ = Lb(r) : Head(r) ←
Body+(r). Then, by definition, I |= Body(r) and, in particular, I |= Body−(r), so we

conclude r′ ∈ P I . To see that r′ ∈ SUP(P I , I, p), note that I |= Body(r) implies I |=
Body+(r) = Body(r′).
For the ⊆ direction, take any r′ ∈ SUP(P I , I, p). By definition of reduct, we know that

r′ is a positive rule and that there exists some r ∈ P where Lb(r) = Lb(r′), H (r) = H (r′),
B+(r) = B+(r′) and I |= Body−(r). Consider any rule r satisfying that condition (we

could have more than one): we will prove that r ∈ SUP(P, I, p). Since r′ ∈ SUP(P I , I, p),

we get I |= Body(r′) but this is equivalent to I |= Body+(r). As we had I |= Body−(r),
we conclude I |= Body(r) and so r is supported in P given I.

Definition 1 (Support Graph/Explanation)

Let P be a labelled program and I a classical model of P . A support graph G of I under

P is a labelled directed graph G = 〈I, E, λ〉 whose vertices are the atoms in I, the edges

in E ⊆ I × I connect pairs of atoms, the total function λ : I → Lb(P ) assigns a label to

each atom, and G further satisfies:

(i) λ is injective

(ii) for every p ∈ I, the rule r such that Lb(r) = λ(p) satisfies:

r ∈ SUP(P, I, p) and B+(r) = {q | (q, p) ∈ E}.
A support graph G is said to be an explanation if it additionally satisfies:

(iii) G is acyclic. �

Condition (i) means that there are no repeated labels in the graph, that is, λ(p) �= λ(q)

for different atoms p, q ∈ I. Condition (ii) requires that each atom p in the graph is

assigned the label � of some rule with p in the head, with a body satisfied by I and whose

atoms in the positive body form all the incoming edges for p in the graph. Intuitively,

labelling p with � means that the corresponding (positive part of the) rule has been fired,

“producing” p as a result. Since a label cannot be repeated in the graph, each rule can

only be used to produce one atom, even though the rule head may contain more than one

(when it is a disjunction). In general, program P may allow alternative ways of deriving

an atom p in a model I. Thus, a same model I may have multiple support graphs under

P , as we will illustrate later.

It is not difficult to see that an explanation G = 〈I, E, λ〉 for a model I is uniquely

determined by its atom labelling λ. This is because condition (ii) about λ in Definition 1

uniquely specifies all the incoming edges for all the nodes in the graph. On the other hand,

of course, not every arbitrary atom labelling corresponds to a well-formed explanation.

We will sometimes abbreviate an explanation G for a model I by just using its labelling

λ represented as a set of pairs of the form λ(p) : p with p ∈ I.
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Definition 2 (Supported/Justified model)

A classical model I of a labelled program P if I |= P is said to be a supported model of

P if there exists some support graph of I under P . Moreover, I is said to be a justified

model of P if there exists some explanation G (i.e., acyclic support graph) of I under

P . We write SPM (P ) and JM (P ) to respectively stand for the set of supported and

justified models of P . �

The name of supported model is not casual: we prove later on that, for non-disjunctive

programs, the above definition coincides with the traditional one in terms of fixpoints

of the immediate consequence operator (van Emden and Kowalski 1976) or as models of

Clark’s completion (Clark 1978). From Definition 2, it is clear that all justified models

are obviously supported JM (P ) ⊆ SPM (P ) but, in general, the opposite does not hold,

as we will see later. Our main focus, however, is on justified models, since we will relate

them to proofs, that are always acyclic. We can observe that not all models are justified,

whereas a justified model may have more than one explanation, as we illustrate next.

Example 1

Consider the labelled logic program P

�1 : a ∨ b �2 : d← a ∧ ¬c �3 : d← ¬b.
No model I |= P with c ∈ I is justified since c does not occur in any head, so its support

is always empty SUP(P, I, c) = ∅ and c cannot be labelled. The models of P without c

are {b}, {a, d}, {b, d} and {a, b, d} but only the first two are justified. The explanation

for I = {b} corresponds to the labelling {(�1 : b)} (it forms a graph with a single node).

Model I = {a, d} has the two possible explanations:

�1 : a −→ �2 : d �1 : a �3 : d. (2)

Model I = {b, d} is not justified: we have no support for d given I, SUP(P, I, d) = ∅,
because I satisfies neither bodies of �2 nor �3. On the other hand, model {a, b, d} is

not justified either, because SUP(P, I, a) = SUP(P, I, b) = {�1} and we cannot use the

same label �1 for two different atoms a and b in a same explanation (condition (i) in

Def. 1). �

Definition 3 (Proof of an atom)

Let I be a model of a labelled program P , G = 〈I, E, λ〉 an explanation for I under P

and let p ∈ I. The proof for p induced by G, written πG(p), is the derivation:

πG(p)
df
=

πG(q1) . . . πG(qn)

p
λ(p),

where, if r ∈ P is the rule satisfying Lb(r) = λ(p), then {q1, . . . , qn} = B+(r). When

n = 0, the derivation antecedent πG(q1) . . . πG(qn) is replaced by � (corresponding to

the empty conjunction). �

Example 2

Let P be the labelled logic program:

�1 : p �2 : q ← p �3 : r ← p, q.
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Fig. 1. Some results for model {p, q, r} of program in Example 2.

P has a unique justified model {p, q, r} whose explanation is shown in Figure 1 (left)

whereas the induced proof for atom r is shown in Figure 1 (right). �

The next proposition trivially follows from the definition of explanations:

Proposition 2

If P is a Horn program, and G is an explanation for a model I of P then, for every atom,

p ∈ I, πG(p) corresponds to a Modus Ponens derivation of p using the rules in P .

It is worth mentioning that explanations do not generate any arbitrary Modus Ponens

derivation of an atom, but only those that are globally “coherent” in the sense that, if

any atom p is repeated in a proof, it is always justified repeating the same subproof.

In the previous examples, justified and stable models coincided: one may wonder

whether this is a general property. As we see next, however, every stable model is justified

but, in general, the opposite may not hold. To prove that stable models are justified, we

start proving a correspondence between explanations for any model I of P and explana-

tions under P I .

Proposition 3

Let I be a model of program P . Then G is an explanation for I under P iff G is an

explanation for I under P I .

Proof

By Proposition 1, for any atom p ∈ I, the labels in SUP(P, I, p) and SUP(P I , I, p)

coincide, so there is no difference in the ways in which we can label p in explanations for

P and for P I . On the other hand, the rules in SUP(P I , I, p) are the positive parts of the

rules in SUP(P, I, p), so the graphs we can form are also the same.

Corollary 1

I ∈ JM (P ) iff I ∈ JM (P I).

Theorem 1

Stable models are justified: SM (P ) ⊆ JM (P ).

Proof

Let I be a stable model of P . To prove that there is an explanation G for I under P , we

can use Proposition 1 and just prove that there is some explanation G for I under P I .

We will build the explanation with a non-deterministic algorithm where, in each step i,

we denote the graph Gi as Gi = 〈Ii, Ei, λi〉 and represent the labelling λi as a set of pairs

of the form (� : p) meaning � = λ(p). The algorithm proceeds as follows:
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1: I0 ← ∅;E0 ← ∅;λ0 ← ∅
2: G0 = 〈I0, E0, λ0〉
3: i← 0

4: while Ii �|= P I do

5: Pick a rule r ∈ P I s.t. Ii |= Body(r) ∧ ¬Head(r)
6: Pick an atom p ∈ I ∩ H (r)

7: Ii+1 ← Ii ∪ {p}
8: λi+1 ← λi ∪ {(� : p)}
9: Ei+1 ← Ei ∪ {(q, p) | q ∈ B+(r)}

10: Gi+1 ← 〈Ii, Ei, λi〉
11: i← i+ 1

12: end while

The existence of a rule r ∈ P I in line 5 is guaranteed because the while condition asserts

Ii �|= P I and so there must be some rule whose positive body is satisfied by Ii but its

head is not satisfied. We prove next that the existence of an atom p ∈ I∩Head(r) (line 5)

is also guaranteed. First, note that the while loop maintains the invariant Ii ⊆ I, since

I0 = ∅ and Ii only grows with atoms p (line 7) that belong to I (line 6). Therefore,

Ii |= Body(r) implies I |= Body(r), but since I |= P I , we also conclude I |= r and thus

I |= Head(r) that is I∩H (r) �= ∅, so we can always pick some atom p in that intersection.

Now, note that the algorithm stops because, in each iteration, Ii grows with exactly one

atom from I that was not included before, since Ii |= ¬Head(r), and so, this process will

stop provided that I is finite. The while stops satisfying Ii |= P I for some value i = n.

Moreover, In = I, because otherwise, as Ii ⊆ I is an invariant, we would conclude In ⊂ I

and so I would not be a minimal model of P I , which contradicts that I is a stable model

of P . We remain to prove that the final Gn = 〈In, En, λn〉 is a correct explanation for

I under P I . As we said, the atoms in I are the graph nodes In = I. Second, we can

easily see that Gn is acyclic because each iteration adds a new node p and links this

node to previous atoms from B+(r) ⊆ Ii (remember Ii |= Body(r)), so no loop can be

formed. Third, no rule label can be repeated, because we go always picking a rule r that

is new, since it was not satisfied in Ii but becomes satisfied in Ii+1 (the rule head Head(r)

becomes true). Last, for every p ∈ I, it is not hard to see that the (positive) rule r ∈ P I

such that Lb(r) = λn(p) satisfies p ∈ H (r) and B+(r) = {q | (q, p) ∈ E} by the way in

which we picked r and inserted p in Ii, whereas I |= Body(r) because Ii |= Body(r), r is

a positive rule and Ii ⊆ I.

As a result, we get SM (P ) ⊆ JM (P ) ⊆ SPM (P ), that is, justified models lay in

between stable and supported.

Proposition 4

If P is a consistent Horn program, then it has a unique justified model I that coincides

with the least model of P .

Proof

Since P is Horn and consistent (all constraints are satisfied) its unique stable model

is the least model I. By Theorem 1, I is also justified by some explanation G. We

remain to prove that I is the unique justified model. Suppose there is another model

J ⊃ I (remember I is the least model) justified by an explanation G and take some atom
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p ∈ J \I. Then, by Proposition 2, the proof for p induced by G, πG(p), is a Modus Ponens

derivation of p using the rules in P . Since Modus Ponens is sound and the derivation

starts from facts in the program, this means that p must be satisfied by any model of P ,

so p ∈ I and we reach a contradiction.

In general, the number of explanations for a single justified model can be exponen-

tial, even when the program is Horn, and so, has a unique justified and stable model

corresponding to the least classical model, as we just proved. As an example2:

Example 3 (A chain of firing squads)

Consider the following variation of the classical Firing Squad Scenario introduced

by Pearl (1999) for causal counterfactuals (although we do not use it for that purpose

here). We have an army distributed in n squads of three soldiers each, a captain and

two riflemen for each squad. We place the squads on a sequence of n consecutive hills

i = 0, . . . , n− 1. An unfortunate prisoner is at the last hill n− 1, and is being aimed at

by the last two riflemen. At each hill i, the two riflemen ai and bi will fire if their captain

ci gives a signal to fire. But then, captain ci+1 will give a signal to fire if she hears a shot

from the previous hill i in the distance. Suppose captain c0 gives a signal to fire. Our

logic program would have the form:

s0 : signal0 ai : fireAi ← signal i a′i+1 : signal i+1 ← fireAi

bi : fireB i ← signal i b′i+1 : signal i+1 ← fireB i

for all i = 0, . . . , n−1 where we assume (for simplicity) that signaln represents the death

of the prisoner. This program has one stable model (the least model) making true the

3n + 1 atoms occurring in the program. However, this last model has 2n explanations

because to derive signal i+1 from level i, we can choose between any of the two rules a′i
or b′i (corresponding to the two riflemen) in each explanation. �

In many disjunctive programs, justified and stable models coincide. For instance, the

following example is an illustration of a program with disjunction and head cycles.

Example 4

Let P be the program:

�1 : p ∨ q �2 : q ← p �3 : p← q.

This program has one justified model {p, q} that coincides with the unique stable model

and has two possible explanations, {(�1 : p), (�2 : q)} and {(�1 : q), (�3 : p)}. �

However, in the general case, not every justified model is a stable model: we provide next

a simple counterexample. Consider the program P :

�1 : a ∨ b �2 : a ∨ c,

whose classical models are the five interpretations: {a}, {a, c}, {a, b}, {b, c} and {a, b, c}.
The last one {a, b, c} is not justified, since we would need three different labels and we only

have two rules. Each model {a, c}, {a, b}, {b, c} has a unique explanation corresponding

to the atom labellings {(�1 : a), (�2 : c)}, {(�1 : b), (�2 : a)} and {(�1 : b), (�2 : c)},
respectively. On the other hand, model {a} has two possible explanations, corresponding

2 This example was already introduced as Program 7.1 by Fandinno (2015) in his PhD dissertation.
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to {(�1 : a)} and {(�2 : a)}. Notice that, in the definition of explanation, there is no need

to fire every rule with a true body in I – we are only forced to explain every true atom

in I. Note also that only the justified models {a} and {b, c} are also stable: this is due to

the minimality condition imposed by stable models on positive programs, getting rid of

the other two justified models {a, b} and {a, c}. The following theorem asserts that, for

non-disjunctive programs, every justified model is also stable.

Theorem 2

If P is a non-disjunctive program, then SM (P ) = JM (P ). �

Proof

Given Theorem 1, we must only prove that, for non-disjunctive programs, every justified

model is also stable. Let I be a justified model of P . By Proposition 3, we also know that

I is a justified model of P I . P I is a positive program and is non-disjunctive (since P was

non-disjunctive) and so, P is a Horn program. By Proposition 4, we know I is also the

least model of P I , which makes it a stable model of P .

Moreover, for non-disjunctive programs, we can prove that our definition of supported

model, coincides with the traditional one in terms of fixpoints of the immediate conse-

quence operator (van Emden and Kowalski 1976). Given a non-disjunctive program P ,

let TP (I) be defined as {p | r ∈ P, I |= Body(r),Head(r) = p}.
Theorem 3

If P is a non-disjunctive program, then I = TP (I) iff I ∈ SPM (P ). �

Proof

For left to right, suppose I = TP (I). It is easy to see that this implies I |= P . By definition

of TP , for each atom p there exists some rule r with Head(r) = p and I |= Body(r). Let

us arbitrarily pick one of those rules rp for each p. Then, we can easily form a support

graph where λ(p) = Lb(rp) and assign all the incoming edges for p as (q, p) such that

q ∈ Body+(rp).

For right to left, suppose I |= P and there is some support graph G of I under P . We

prove both inclusion directions for I = TP (I). For ⊆, suppose p ∈ I. Then p is a node in

G and there is a rule r such that λ(p) = Lb(r), p = Head(r) (P is non–disjunctive) and

I |= Body(r). But then p ∈ TP (I). For ⊇, take any p ∈ TP (I) and suppose p �∈ I. Then,

we have at least some rule r ∈ P with I |= Body(r) and I �|= Head(r)(= p), something

that contradicts I |= P .

To illustrate supported models in the disjunctive case, consider the program:

�1 : a ∨ b← c �2 : c← b.

The only justified model of this program is ∅ which is also stable and supported. Yet,

we also obtain a second supported model {b, c} that is justified by the (cyclic) support

graph with labelling {�1 : b, �2 : c}.

3 An ASP encoding to compute explanations

In this section, we focus on the computation of explanations for a given stable model.

We assume that we use an ASP solver to obtain the answer sets of some program P and
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that we have some way to label the rules. For instance, we may use the code line number

(or another tag specified by the user), followed by the free variables in the rule and some

separator. In that way, after grounding, we get a unique identifier for each ground rule.

To explain the answer sets of P , we may build the following (non-ground) ASP pro-

gram x(P ) that can be fed with the (reified) true atoms in I to build the ground program

x(P, I). As we will prove, the answer sets of x(P, I) are in one-to-one correspondence with

the explanations of I. The advantage of this technique is that, rather than collecting all

possible explanations in a single shot, something that is too costly for explaining large

programs, we can perform regular calls to an ASP solver for x(P, I) to compute one,

several or all explanations of I on demand. Besides, this provides a more declarative

approach that can be easily extended to cover new features (such as, for instance, min-

imisation among explanations).

For each rule in P of the form (1), x(P ) contains the set of rules:

sup(�) ← as(q1) ∧ · · · ∧ as(qn) ∧ as(pi) ∧ ¬as(s1) ∧ · · · ∧ ¬as(sj), (3)

∧ ¬¬as(t1) ∧ · · · ∧ ¬¬as(tk), (4)

{f(�, pi)} ← f(q1) ∧ · · · ∧ f(qn) ∧ as(pi) ∧ sup(�), (5)

⊥ ← f(�, pi) ∧ f(�, ph), (6)

for all i, h = 1 . . .m and i �= h, and, additionally x(P ) contains the rules:

f(A) ← f(L,A) ∧ as(A), (7)

⊥ ← not f(A) ∧ as(A), (8)

⊥ ← f(L,A) ∧ f(L′, A) ∧ L �= L′ ∧ as(A). (9)

As we can see, x(P ) reifies atoms in P using three predicates: as(A) which means that

atom A is in the answer set I, so it is an initial assumption; f(L,A) means that rule

with label L has been “fired” for atom A, that is, λ(A) = L; and, finally, f(A) that just

means that there exists some fired rule for A or, in other words, we were able to derive

A. Predicate sup(�) tells us that the body of the rule r with label � is “supported” by

I, that is, I |= Body(r). Given any answer set I of P , we define the program x(P, I)
df
=

x(P ) ∪ {as(A) | A ∈ I}. It is easy to see that x(P, I) becomes equivalent to the ground

program containing the following rules:

{f(�, p)} ← f(q1) ∧ · · · ∧ f(qn) for each rule r ∈ P of the form of (1),

I |= Body(r), p ∈ H (r) ∩ I, (10)

⊥ ← f(�, pi) ∧ f(�, pj) for each rule r ∈ P of the form of (1),

pi, pj ∈ H (r), pi �= pj , (11)

f(a)← f(�, a) for each a ∈ I, (12)

⊥ ← not f(a) for each a ∈ I, (13)

⊥ ← f(�, a) ∧ f(�′, a) for each a ∈ I, � �= �′. (14)

Theorem 4 (Soundness)

Let I be an answer set of P . For every answer set J of program x(P, I), there exists a

unique explanation G = 〈I, E, λ〉 of I under P such that λ(a) = � iff f(�, a) ∈ J . �

https://doi.org/10.1017/S1471068424000048 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000048


10 P. Cabalar and B. Muñiz

Proof

We have to prove that J induces a valid explanation G. Let us denote At(J)
df
= {a ∈ At |

f(a) ∈ J}. Since (12) is the only rule for f(a), we can apply completion to conclude that

f(a) ∈ J iff f(�, a) ∈ J for some label �. So, the set At(J) contains the set of atoms for

which J assigns some label: we will prove that this set coincides with I. We may observe

that I ⊆ At(J) because for any a ∈ I we have the constraint (13) forcing f(a) ∈ J . On

the other hand, At(J) ⊆ I because the only rules with f(a) in the head are (12) and

these are only defined for atoms a ∈ I. To sum up, in any answer set J of x(P, I), we

derive exactly the original atoms in I, At(J) = I and so, the graph induced by J has

exactly one node per atom in I.

Constraint (14) guarantees that atoms f(�, a) have a functional nature, that is, we never

get two different labels for a same atom a. This allows defining the labelling function

λ(a) = � iff f(�, a) ∈ J . We remain to prove that conditions (i)-(iii) in Definition 1

hold. Condition (i) requires that λ is injective, something guaranteed by (11). Condition

(ii) requires that, informally speaking, the labelling for each atom a corresponds to an

activated, supported rule for a. That is, if λ(a) = �, or equivalently f(�, a), we should be

able to build am edge (q, a) for each atom in the positive body of � so that atoms q are

among the graph nodes. This is guaranteed by that fact that rule (10) is the only one

with predicate f(�, a) in the head. So, if that ground atom is in J , it is because f(qi) are

also in J that is, qi ∈ I, for all atoms in the positive body of rule labelled with �. Note

also that (10) is such that I |= Body(r), so the rule supports atom p under I, that is,

r ∈ SUP(P, I, p). Let E be the set of edges formed in this way. Condition (iii) requires

that the set E of edges forms an acyclic graph. To prove this last condition, consider the

reduct program x(P, I)J . The only difference of this program with respect to x(P, I) is

that rules (10) have now the form:

f(�, p)← f(q1) ∧ · · · ∧ f(qn), (15)

for each rule r ∈ P like (1), I |= Body(r), p ∈ H (r) ∩ I as before, but additionally

f(�, p) ∈ J so the rule is kept in the reduct. Yet, the last condition is irrelevant since

f(�, p) ∈ J implies f(p) ∈ J so p ∈ At(J) = I. Thus, we have exactly one rule (15)

in x(P, I)J per each choice (10) in x(P, I). Now, since J is an answer set of x(P, I),

by monotonicity of constraints, it satisfies (11), (13), and (14) and is an answer set

of the rest of the program P ′ formed by rules (15) and (12). This means that J is a

minimal model of P ′. Suppose we have a cycle in E, formed by the (labelled) nodes

and edges (�1 : p1) −→ . . . −→ (�n : pn) −→ (�1 : p1). Take the interpretation J ′ =
J \ {f(�1, p1), . . . , f(�n, pn), f(p1), . . . , f(pn)}. Since J is a minimal for P ′, there must be

some rule (15) or (11) not satisfied by J ′. Suppose J ′ does not satisfy some rule (11) so

that f(a) �∈ J ′ but f(�, a) ∈ J ′ ⊆ J . This means we had f(a) ∈ J since the rule was

satisfied by J so a is one of the removed atoms pi belonging to the cycle. But then f(�, a)

should have been removed f(�, a) �∈ J ′ and we reach a contradiction. Suppose instead that

J ′ does not satisfy some rule (15), that is, f(�, p) �∈ J ′ and {f(q1), . . . , f(gn)} ⊆ J ′ ⊆ J .

Again, since the body holds in J , we get f(�, p) ∈ J and so, f(�, p) is one of the atoms

in the cycle we removed from J ′. Yet, since (� : p) is in the cycle, there is some incoming

edge from some atom in the cycle and, due to the way in which atom labelling is done,

this means that this edge must come from some atom qi with 1 ≤ i ≤ n in the positive
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body of the rule whose label is �. But, since this atom is in the cycle, this also means

that f(qi) �∈ J ′ and we reach a contradiction.

Theorem 5 (Completeness)

Let I be an answer set of P . For every explanation G = 〈I, E, λ〉 of I under P , there

exists a unique answer set J of program x(P, I) where f(�, a) ∈ J iff λ(a) = � in G. �

Proof

Let I be an answer set of P and G = 〈I, E, λ〉 be some explanation for I under P and

let us define the interpretation:

J := {f(a) | a ∈ I} ∪ {f(�, a) | λ(a) = �}.
We will prove that J is an answer set of x(P, I) or, in other words, that J is a minimal

model of x(P, I)J . First, we will note that J satisfies x(P, I)J rule by rule. For the

constraints, J obviously satisfy (7) because it contains an atom f(a) for each a ∈ I. We

can also see that J satisfies (11) because graph G does not contain repeated labels, so

we cannot have two different atoms with the same label. The third constraint (14) is also

satisfied by J because atoms f(�, a), f(�′, a) are obtained from λ(a) that is a function that

cannot assign two different labels to a same atom a. Satisfaction of (11) is guaranteed

since the head of this rule f(a) is always some atom a ∈ I and therefore f(a) ∈ J . For

the remaining rule, (10), we have two cases. If f(�, p) �∈ J , then the rule is not included

in the reduct and so there is no need to be satisfied. Otherwise, if f(�, p) ∈ J then the

rule in the reduct corresponds to (15) and is trivially satisfied by J because its only head

atom holds in that interpretation. Finally, to prove that J is a minimal model of x(P, I)J ,

take the derivation tree πG(a) for each atom a ∈ I. Now, construct a new tree π where

we replace each atom p in πG(a) by an additional derivation from f(�, p) to f(p) through

rule (12). It is easy to see that π constitutes a Modus Ponens proof for f(a) under the

Horn program x(P, I)J and the same reasoning can be applied to atom f(�, a) ∈ J that

is derived in the tree π for f(a). Therefore, all atoms in J must be included in any model

of x(P, I)J .

4 Related work

The current approach constitutes the formal basis of the new version of the explanation

tool xclingo (Cabalar and Muñiz 2023) which also uses the ASP encoding from Section 3

to compute the explanations. Theorems 4 and 5 prove, in this way, that the tool is sound

and complete with respect to the definition of explanation provided in the current paper.

There exist many other approaches for explanation and debugging in ASP (see the

survey by Fandinno and Schulz (2019)). The closest approach to the current work is

clearly the one based on causal graphs (Cabalar et al. 2014). Although we conjecture that

a formal relation can be established (we plan this for future work), the main difference

is that, in causal graphs, we get a unique, complete, and individual explanation for each

atom, whereas the current work obtains the multiple explanations of a given model (a set

of atoms). For instance, in the firing squads example, the causal-graph explanation for

the derivations of atoms signal4 and signal8 would contain algebraic expressions with all

the possible derivations for each one of those atoms. In the current approach, however,
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we would get an individual derivation in each support graph, but additionally, the proof

we get for signal4 has to be the same one we use for that atom inside the derivation of

signal8.

Justifications based on the positive part of the program were also used before by Erdem

and Oztok (2013). There, the authors implemented an ad hoc approach to the problem

of solving biomedical queries, rather than a general ASP explanation tool.

Other examples of general approaches are the formal theory of justifications (Denecker

et al. 2015), off-line justifications (Pontelli and Son 2006), LABAS (Schulz and Toni

2016) (based on argumentation theory (Bondarenko et al. 1997; Dung et al. 2009)) or

s(CASP) (Arias et al. 2020). All of them provide graph or tree-based explanations for an

atom to be (or not) in a given answer set. The formal theory of justifications was also ex-

tended to deal with nested graph-based justifications (Marynissen 2022) and is actually a

more general framework that allows covering other logic programming semantics. System

xASP (Trieu et al. 2022) generates explanation graphs previously proposed by Pontelli and

Son (2006) and also uses an ASP meta-programming encoding. In the case of s(CASP),

it proceeds in a top-down manner, building the explanation as an ordered list of literals

extracted from the goal-driven satisfaction of the query. An important difference with

respect to this last group of approaches is that their explanations consider dependences

through default negation. To illustrate the effect, take the program:

�1 : switch

�2 : light ← switch,not ab

�3 : ab ← blown fuse

�4 : ab ← broken bulb

�5 : ab ← blackout,not generator.

The only stable model is {switch, light} and its unique explanation is the support graph

�1 : switch −→ �2 : light,

that is, the light is on because we toggled the switch. Adding negative information would

lead us to explain not ab and obtain two explanations: one in which we also add that

there is no blown fuse, no broken bulb and no blackout; the second one is similar, but

instead of no blackout, we have a doubly negative dependence on generator: that is,

nothing prevents having a generator, even though we do not have it. Note how these

explanations may easily get complicated: we could have to negate multiple alternative

ways of breaking the bulb, even when none of them have happened3. Our approach

consists, instead, in explaining the information that currently holds, assuming that other

states of affairs will arise in terms of other alternative answer sets. In other words, we

refrain from using facts for which we have no evidence or reason to believe in our current

model.

Another distinctive feature of our approach is that it provides explanations for dis-

junctive programs and, moreover, it has also allowed us to define supported and justified

models for that case. In fact, we plan to study potential connections between justified

3 We face here, somehow, a kind of qualification problem in the explanations.
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models and other approaches for disjunction not based in minimal models such as in the

works by Aguado et al. (2019) or Shen and Eiter (2019).

Other ASP explanation approaches have to do with comparing stable models or ex-

plaining their non-existence. For instance, Gebser et al. (2008) use a meta-programming

technique to explain why a given model is not an answer set of a given program. More

recently, Eiter et al. (2019) considered the explanation of ASP programs that have no

answer sets in terms of the concept of abstraction (Saribatur et al. 2021). This allows

spotting which parts of a given domain are actually relevant for rising the unsatisfiabil-

ity of the problem. We plan to explore formal relations to these approaches or to study

potential combinations with some of them.

5 Conclusions

We have introduced the notion of explanation of a model of a logic program as some kind

of (acyclic) labelled graph we called support graph. We have defined justified models as

those that have at least one explanation and proved that all stable models are justified,

whereas the opposite does not hold, at least for disjunctive programs. We also provided

a meta-programming encoding in ASP that generates the explanations of a given sta-

ble model. We formally proved a one-to-one correspondence between the answer sets

of the encoding and the explanations of the original stable model. Since this encoding

constitutes the basis of the tool xclingo 2.0, we provide in this way a formal proof of

correctness for this system. A system description of the tool is left for a forthcoming

document. Future work includes the comparison to other approaches, the explanation

of unsatisfiable programs and the minimisation or even the specification of preferences

among explanations.
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Cabalar, P. and Muñiz, B. 2023. Explanation graphs for stable models of labelled logic pro-
grams. In Proceedings of the International Conference on Logic Programming 2023 Workshops
co-located with the 39th International Conference on Logic Programming (ICLP 2023), Lon-
don, United Kingdom, July 9th and 10th, 2023, J. Arias, S. Batsakis, W. Faber, G. Gupta,
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