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Abstract Given finite sets of cyclic words {u1, . . . , uk} and {v1, . . . , vk} in a finitely generated free
group F and two finite groups A and B of outer automorphisms of F , we produce an algorithm to decide
whether there is an automorphism which conjugates A to B and takes ui to vi for each i. If A and B are
trivial, this is the classic algorithm due to Whitehead. We use this algorithm together with Cohen and
Lustig’s solution to the conjugacy problem for Dehn twist automorphisms of F to solve the conjugacy
problem for outer automorphisms which have a power which is a Dehn twist. This settles the conjugacy
problem for all automorphisms of F which have linear growth.
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1. Introduction

In 1912, Max Dehn formulated fundamental problems concerning a group given by gen-
erators and relations. One of these, the conjugacy problem, asks whether there is an
algorithm to decide whether two words in the generators represent conjugate elements
of the group. Dehn himself gave an elegant solution to this problem in the case when
the group is the fundamental group of a closed hyperbolic surface, given by the standard
presentation.

For the group Out(Fn) of outer automorphisms of a free group of rank n, the conju-
gacy problem has been solved for various classes of elements. For finite-order elements
of Out(Fn), and in fact for finite groups of automorphisms, an algorithm to solve the
conjugacy problem follows from results of Krstić [8]. Both Los [11] and Sela [14] have
published solutions to the conjugacy problem for automorphisms which are irreducible
in the sense of Bestvina and Handel [2]. Finally, the conjugacy problem has been solved
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by Cohen and Lustig [5] for Dehn twist automorphisms, which are outer automorphisms
given in terms of a graph-of-groups decomposition of Fn and which include the automor-
phisms induced by Dehn twists of surfaces.

Our first theorem solves the conjugacy problem for finite groups of automorphisms,
under the additional constraint that the conjugating automorphism must take one given
finite set of words to another. We give an algorithm, called the equivariant Whitehead
algorithm, and prove the following.

Theorem 1.1. Given homomorphisms α and β from a finite group G to Out(Fn) and
cyclic words u1, . . . , uk, v1, . . . , vk in Fn, the equivariant Whitehead algorithm decides
whether there is an outer automorphism φ of Fn such that φ−1α(g)φ = β(g) for all g ∈ G
and φ(ui) = vi for all i. Furthermore, the algorithm finds φ if it exists.

When G = 1, our algorithm is the classical algorithm of Whitehead [15].
In our second main theorem, we apply the equivariant Whitehead algorithm, in the

special case where G is a cyclic group, to solve the conjugacy problem for automorphisms
with powers which are Dehn twist automorphisms.

Theorem 1.2. Given two outer automorphisms φ1 and φ2 of Fn which each have pow-
ers that are Dehn twist automorphisms, Algorithm 5.8 decides whether or not there exists
an outer automorphism ψ of Fn that conjugates φ1 to φ2. Furthermore, the algorithm
finds ψ if it exists.

A natural invariant of the conjugacy class of an outer automorphisms φ is its growth
rate, where φ is said to have polynomial growth of degree d (respectively, exponential
growth) if for each cyclic word w the length of φk(w) is bounded above (respectively,
below) by a degree-d polynomial (respectively, exponential) function of k. Finite-order
automorphisms have constant growth, infinite order irreducible automorphisms grow
exponentially, and Dehn twist automorphisms have linear growth. Note that an auto-
morphism has the same growth rate as any finite power of the automorphism.

It is a common occurrence in the study of automorphisms of free groups that one must
pass to a finite power to get an automorphism into a standard form (see, for example, [3]).
Using train-track techniques, it is not hard to show that any automorphism of linear
growth has a power that is a Dehn twist automorphism. Thus, Theorem 1.2 completes
the solution of the conjugacy problem for linear growth automorphisms. Lustig [12,13]
has given a complete solution to the conjugacy problem for Out(Fn), which relies in a
fundamental way on the results of this paper.

The paper is organized as follows. In § 2 we translate the algebraic problem solved by
the equivariant Whitehead algorithm into a geometric problem, and show how to derive
the solution using an equivariant version of a technical process known as peak reduction.

In § 3 we prove the necessary equivariant version of the classical peak reduction lemma.
Equivariant peak reduction lemmas have previously been proved in Kalajdžievski [7] and
Krstić [9]. Unfortunately, however, the result we need cannot easily be derived from these,
so we present a complete proof here that is somewhat simpler and is suited to our needs.

In § 4 we review the definition of a Dehn twist automorphism and prove some basic lem-
mas. In § 5 we use the equivariant Whitehead algorithm to solve the conjugacy problem
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Figure 1. Example 1.3.

for roots of Dehn twist automorphisms. The general idea of the solution is the following.
The main structure theorem of [4] associates to a given Dehn twist automorphism D̂ a
decomposition of Fn as a graph of groups G which is preserved by D̂. Since a root φ of D̂
commutes with D̂, it follows that φ too must preserve the graph-of-groups structure G.
The Dehn twist automorphism D̂ leaves each of the vertex and edge groups of G invariant
and induces the identity on these groups up to inner automorphism, but the root φ may
permute the vertex groups. Even if φ sends a vertex group Gv to itself, it may induce a
non-trivial finite-order outer automorphism of Gv, in which case φ permutes the conju-
gacy classes in Gv of the twistors associated to edges adjacent to v. In Theorem 5.7, we
show that up to combinatorial data that are easily derived from the graph of groups, two
roots of Dehn twist automorphisms are conjugate if and only if these finite-order outer
automorphisms of the vertex groups are conjugate by an automorphism that takes the
twistor conjugacy classes of one to the those of the other. The equivariant Whitehead
algorithm is then applied to decide whether such a conjugating automorphism exists.

The following example may help illuminate the issues involved in deciding whether
roots of Dehn twist automorphisms are conjugate.

Example 1.3. Consider a 2-sphere that has one puncture and three handles attached,
symmetrically arranged around the puncture (see Figure 1). Its fundamental group is a
free group of rank 6. Let α1, α2 and α3 be symmetrically arranged disjoint curves, such
that αi separates the i-th handle from the rest of the surface.

Define homeomorphisms h1 and h2 of the surface as follows. For h1, rotate the surface
by an angle of 2π/3 around an axis that goes through the puncture (thereby permuting
the handles cyclically), and then twist once around each αi. For h2, do the same rotation,
then twist three times around α1 but do not twist around α2 or α3. Then h1 and h2 are
(third) roots of Dehn twists. Let φ1 and φ2 be the automorphisms of the fundamental
group induced by h1 and h2, respectively.

Question: Are φ1 and φ2 conjugate in Out(Fn)?.
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In § 5 we translate this example into the language of graphs of groups and answer it.

2. Equivariant Whitehead algorithm

We model automorphisms of a free group by homotopy equivalences of graphs. In this
section we translate the necessary ideas into graph-theoretical terms, state the equivariant
peak reduction theorem, and show how it is used to obtain the equivariant Whitehead
algorithm.

2.1. Marked G-graphs

By a graph Γ we mean a finite connected one-dimensional CW complex. Maps between
graphs are assumed to send vertices to vertices. When convenient, we think of Γ as a
metric space by assigning all edges length one.

We identify Fn with π1(Rn, v0), where Rn is the graph with one vertex v0 and n edges.
Any automorphism φ of Fn can be represented by a homotopy equivalence Rn → Rn.
There is a unique homotopy equivalence representing φ which is locally injective, linear
on edges, and stretches each edge uniformly; we will abuse notation and call this map φ
also.

If G is a finite group, a G-graph is a graph Γ together with an action of G on Γ by
isometries. A G-graph is reduced if there are no G-invariant forests in Γ . Any forest E in
Γ determines an equivalence relation on points of Γ , with x ∼ y if x and y belong to the
same connected component of E. The quotient map Γ → Γ/∼ is called a forest collapse.
If the forest is G-invariant, the action of G on Γ induces an action on the quotient Γ/∼.

A marking on Γ is a homotopy equivalence h : Rn → Γ . A marking gives an isomor-
phism of Fn with the fundamental group of Γ . To any G-graph Γ and marking h, we
associate a homomorphism α : G → Out(Fn), defined by α(g) = (h−1gΓh)∗, where h−1

is a homotopy inverse to h, and gΓ is the isometry of Γ corresponding to g. We say that
the pair (Γ, h) realizes α.

By the Realization Theorem (see [6] or [16]), every homomorphism α : G→ Out(Fn)
is realized by some marked G-graph (Γ, h). By collapsing a maximal G-invariant forest
in Γ , we obtain a marked, reduced G-graph that also realizes α.

2.2. Whitehead moves

Two reduced G-graphs Γ1 and Γ2 are said to be connected by a Whitehead move if
there exists a (non-reduced) G-graph Γ and edges e1 and e2 in Γ whose orbits Ge1 and
Ge2 are forests that collapse to give Γ1 and Γ2, respectively,

Γ1
c1←−− Γ c2−→ Γ2.

We can construct an explicit G-equivariant homotopy inverse fi : Γi → Γ by ‘folding
together’ initial segments of appropriate edges at vertices of Γi, as follows. Let E = Gei

be the edge orbit in Γ which is collapsed to give Γi. If xi, yi ∈ Γi are not in the image
ci(E), then they correspond to unique points x, y in Γ . In this case, say xi ∼ yi if
d(x, v) = d(y, v) 6 1/3 for some extremal vertex v of the forest E. The map fi is the
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quotient map Γi → Γi/∼ followed by a rescaling so that all edges have length one. The
graph Γi/∼ is naturally homeomorphic to Γ , and the induced action of G on Γi is the
original action on Γ .

The composition w = c2f1 : Γ1 → Γ2 is a G-equivariant homotopy equivalence, which
we will also call a Whitehead move. A composition of Whitehead moves will be called an
equivariant Whitehead path. If w : Γ1 → Γ2 is an equivariant Whitehead path, h1 : Rn →
Γ1 is a marking realizing α : G→ Out(Fn), and h2 : Rn → Γ2 realizes β : G→ Out(Fn),
then φ = (h−1

2 wh1)∗ conjugates α to β, i.e. φα(g)φ−1 = β(g) for all g ∈ G.
We have the following converse statement.

Theorem 2.1. Let α and β be two homomorphisms from G to Out(Fn), realized
by reduced marked G-graphs (Γ1, h1) and (Γ2, h2), respectively, and let φ be an outer
automorphism of Fn with φα(g)φ−1 = β(g) for all g ∈ G. Then there is an equivariant
Whitehead path w : Γ1 → Γ2 with φ = (h−1

2 wh1)∗.

Proof. Corollary 1 of [8] implies that every equivariant isomorphism π1(Γ )→ π1(Γ ′)
between reduced G-graphs is induced by an equivariant homotopy equivalence Γ →
Γ ′. By Proposition 4 of [8], every equivariant homotopy equivalence Γ1 → Γ2 between
reduced G-graphs is a product of Whitehead moves. �

2.3. Equivariant peak reduction

If Γ is a reduced G-graph and l is a homotopy class of loops in Γ , we define |l|Γ to be
equal to the edge-path length of the cyclically reduced edge-path loop in Γ homotopic
to l. If L = {l1, . . . , lk} is a set of homotopy classes of loops in Γ , define |L|Γ to be the
sum of the |li|Γ , for li ∈ L.

Theorem 2.2 (equivariant peak reduction). Let G be a finite group, let Γ be a
reduced G-graph, and let L be a finite invariant set of homotopy classes of loops in Γ .
Let w′ : Γ → Γ ′ and w′′ : Γ → Γ ′′ be equivariant Whitehead moves, with

|w′L|Γ ′ 6 |L|Γ > |w′′L|Γ ′′ .

Then there is a sequence wi : Γi−1 → Γi, 1 6 i 6 m, of equivariant Whitehead moves
from Γ ′ = Γ0 to Γ ′′ = Γm with wm . . . w1w

′L = w′′L and |wi . . . w1w
′L|Γi

< |L|Γ for all
i, 1 6 i 6 m.

The proof of this theorem will be given in the next section.

Corollary 2.3. If w : Γ ′ → Γ ′′ is a G-equivariant Whitehead path, and L a finite set
of homotopy classes of loops in Γ ′, then there is a sequence wi : Γi−1 → Γi, 1 6 i 6 r,
of equivariant Whitehead moves from Γ ′ = Γ0 to Γ ′′ = Γr with wr . . . w1L = wL and
|wi . . . w1L|Γi

6 max(|L|Γ ′ , |wL|Γ ′′) for all 0 6 i 6 r.

Proof. Let M be the maximum length of the image w0L under any initial segment
w0 of the Whitehead path w. If M > max(|L|Γ ′ , |wL|Γ ′′), we can find a reduced G-graph
Γ on the path with |w0L|Γ = M to which we can apply Theorem 2.2. This reduces the
number of reduced G-graphs on the path realizing the maximum M . �
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2.4. Equivariant Whitehead algorithm

We are now ready to describe the equivariant Whitehead algorithm. We have a finite
group G, two homomorphisms α, β : G → Out(Fn), and sets of cyclic words U =
{u1, . . . , uk} and V = {v1, . . . , vk} in Fn. We want to decide whether there is an auto-
morphism φ which conjugates α to β and takes ui to vi for all i. Furthermore, if φ exists,
we want the algorithm to find φ. If such a φ exists, its effect on α(g)ui is determined by
its effect on ui, so, without loss of generality, we may assume that U and V are invariant
under the action of G.

We first find reduced marked G-graphs (Γα, hα) realizing α and (Γβ , hβ) realizing β.
This can be done by the Realization Theorem. The folding algorithm of Bestvina and
Handel [2] finds (Γα, hα) and (Γβ , hβ) efficiently.

Let m = max{|hα(U)|Γα
, |hβ(V )|Γβ

}. We construct a graph ∆ = ∆(G, k,m). The
vertices of ∆ are all pairs (Γ,L), where Γ is a reduced G-graph and L = (l1, . . . , lk)
is an ordered, G-invariant set of homotopy classes of loops, whose reduced edge-path
representatives have total length at most m. Two vertices (Γ ′, L′) and (Γ ′′, L′′) are
connected if there is an equivariant Whitehead move w : Γ ′ → Γ ′′ with w(l′i) = l′′i
for all i. Note that ∆ is a finite graph: there are only finitely many reduced G-graphs
with fundamental group isomorphic to Fn, there are only finitely many ordered k-tuples
of reduced edge-path loops with a given total length, and there are only finitely many
equivariant Whitehead moves starting at any reduced G-graph.

Theorem 2.4. In the notation above, an automorphism φ conjugating α to β and
sending ui to vi exists if and only if the pairs (Γα, hα(U)) and (Γβ , hβ(V )) are connected
in the graph ∆(G, k,m).

Proof. If there is a G-equivariant Whitehead path w from Γα to Γβ , taking hα(ui)
to hβ(vi) for all i, then φ = (h−1

β whα)∗ conjugates α to β, and whα(ui) is homotopic to
hβ(vi), so φ(ui) = vi.

Conversely, suppose there is an automorphism φ with φα(g)φ−1 = β(g) for all g ∈ G
and φ(ui) = vi for all i. By Theorem 2.1, there is a Whitehead path w : Γα → Γβ with
φ = (h−1

β whα)∗. Since (h−1
β whα)∗(ui) = vi, we have whα(ui) homotopic to hβ(vi). By

Corollary 2.3, we can find a new Whitehead path wr . . . w1 with wr . . . w1hα(ui) = hβ(vi)
and

|wj . . . w1hα(U)| 6 max{|hα(U)|Γα
, |hβ(V )|Γβ

},
for all initial segments wj . . . w1 of the path. This path is in ∆(G, k,m). �

Remark 2.5. The graph ∆(G, k,m) is very large. A more practical algorithm can be
obtained by observing the following corollary of Theorem 2.2.

Corollary 2.6. Let (Γ, h) be a marked G-graph realizing α, and suppose there is
another marked G-graph (Γ ′, h′) realizing α with |h′(U)|Γ ′ < |h(U)|Γ . Then there is a
Whitehead move w : Γ → Γ1 that reduces |h(U)|.

Using this corollary we can find (Γα, hα) and (Γβ , hβ) realizing α and β with |hα(U)|
and |hβ(V )| minimal.
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If φ exists, then the marked G-graph (Γβ , hβφ) realizes α, so

|hβ(V )|Γβ
= |hβφ(U)|Γβ

> |hα(U)|Γα
.

Similarly, (Γα, hαφ
−1) realizes β, so |hα(U)|Γα > |hβ(V )|Γβ

, giving

|hα(U)|Γα
= |hβφ(U)|Γβ

= |hβ(V )|Γβ
.

If |hα(U)|Γα
= |hβφ(U)|Γβ

= m0, we can apply Corollary 2.6 to find a G-equivariant
Whitehead path w : Γu → Γv with whα(U) = hβφ(U) = hβ(V ). By Corollary 2.3, we
can then find a Whitehead path wr . . . w1 with wr . . . w1hα(U) = hβφ(U) = hβ(V ) and
|wj . . . w1hα(U)| minimal for all j. Thus, to decide the existence of φ, we need only check
whether (Γα, hα(U)) and (Γα, hβ(V )) are connected in the graph ∆′ = ∆′(G, k,m0),
whose vertices are pairs (Γ,L), where Γ is a G-graph and L is an ordered set of k
homotopy classes of loops, with total length equal tom0. Two vertices of∆′ are connected
by an edge in the same way as those of ∆.

3. Proof of equivariant peak reduction lemma

This section contains the proof of the equivariant peak reduction lemma. To prove this,
we must understand what happens to the length of an edge-path under an equivariant
Whitehead move w that is the composition of an equivariant fold f1 and collapse c2:

Γ1
f1−→ Γ

c2−→ Γ2.

3.1. Ideal edges and Whitehead moves

We examine Whitehead moves from a slightly different point of view. The segments of
edges that are identified by the fold f1 to form a single new edge of Γ can be thought
of as a set of oriented edges in Γ1; this set is called an ideal edge of Γ1 if, given a
marking h : Rn → Γ1, the reduced marked G-graph (Γ2, wh) is distinct from (Γ1, h).
Conditions (1)–(4) below are necessary and sufficient for a set of oriented edges I of Γ1

to be an ideal edge.

(1) All edges in I must terminate at a single vertex v.

This guarantees that we will be able to fold the edges in I together.

(2) For x ∈ G, x(I) ∩ I is either empty or all of I.
This allows us to extend the action of G to the equivariantly folded graph.

(3) I contains at least two, and at most all but two, of the edges at v.

This guarantees that we are not trivially adding a bivalent vertex.

(4) There is an element a ∈ I such that the intersection of I with the orbit of a is the
singleton {a} and the intersection of I with the orbit of a−1 is empty.
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This last condition guarantees that the graph (Γ2, wh) is different from (Γ1, h). To
see this, note that we need Γ to have a collapsible edge orbit different from the
orbit of the new edge obtained by folding I. Since a is not in the orbit of the new
edge, a corresponds to an edge of Γ1. The orbit of a in Γ1 is not a forest (since Γ1

is reduced), but condition (4) guarantees that the orbit of a in Γ is a forest.

Let P be the stabilizer of I, i.e. the set of x ∈ G with xI = I. One checks easily that
for any e ∈ I, stab(e) 6 P , and for any a satisfying condition (4), stab(a) = P .

If I is an ideal edge, and a ∈ I satisfies condition (4), we denote the corresponding
equivariant fold by fI , and the collapse of the edge orbit Ga by ca; the Whitehead move
ca ◦ fI is denoted by (I, a), and the new reduced G-graph obtained from Γ by (I, a)Γ .

Two ideal edges I and J are compatible if either

(i) I ∩ xJ = ∅ for all x ∈ G; or

(ii) for some x ∈ G, we have I ⊂ xJ or xJ ⊂ I.
Remark 3.1. The G-equivariant Nielsen moves of [8] are the Whitehead moves of the

form (Ge, a); this can be thought of as equivariantly ‘sliding e across a’.

3.2. The star graph

We now consider the effect of a Whitehead move on the lengths of a set L = {l1, . . . , lk}
of homotopy classes of loops in a reduced G-graph Γ . Represent each homotopy class li
by a reduced edge-path loop ui in Γ . We have defined the length |L|Γ to be the sum of
the edge-path lengths of the ui. It is convenient to assume that L is G-equivariant (we
can always arrange this by replacing L by the finite set of its images under G).

A reduced edge-path in an arbitrary G-graph Γ is still reduced after a forest collapse,
so that the length of L in Γ decreases by the number of times edges of the forest are
crossed by the path. The situation is more complicated under a fold, since a reduced
edge-path may no longer be reduced after a fold. The neat way to keep track of all this
is the following.

The star graph of L with respect to Γ has one vertex for each oriented edge of Γ , and
one edge from e to f for each (cyclic) occurrence of ef̄ in the edge path loops ui. For
a set of edges E of Γ , we define |E| to be the number of edges in the star graph for L
with one vertex in E and one vertex not in E. For a Whitehead move (I, a), the total
length of the edge paths representing L in the new reduced marked graph changes by
∑

x∈G/P |xI| − |{xa}|. Since L is equivariant, this is just p(|I| − |{a}|), where p is the
index of P in G. An equivariant Whitehead move (I, a) is reductive if |I| − |{a}| 6 0,
and strictly reductive if |I| − |{a}| < 0.

3.3. Counting

To prove the equivariant peak reduction lemma, we use the counting technique devel-
oped in [9] and [10]. Below, Γ is a reduced G-graph; in particular, G acts on the set of
oriented edges of Γ .
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Let I and J be two ideal edges in Γ , with stabilizers P and Q, respectively. For x ∈ G,
we have xJ ∩J is either empty or all of J , and xI ∩ I is either empty or all of I, since
I and J are ideal edges. We consider the intersections xJ with I. If xJ ∩ I = ∅ for all
x ∈ G, then I and J are compatible. If I ∩xJ is not empty, then P (I ∩xJ ) is called an
intersection component of I with GJ . The correspondence P (I ∩ xJ ) 7→ Q(J ∩ x−1I)
can be used to show that the number of intersection components of I with GJ is equal
to the number of intersection components of J with GI. This number is called the
intersection number of I with J .

Let p = [G : P ] and q = [G : Q] be the indices of the stabilizers of I and J in G. The
following lemmas are proved in [10].

Lemma 3.2. If the intersection number of I with J is 1 and P 6 Q, then

p|I ∩ J |+ q|J ∪QI| 6 p|I|+ q|J |.
Lemma 3.3. If γ = I ∩ J is not empty, then

p|I − Pγ|+ q|J −Qγ| 6 p|I|+ q|J |.

3.4. Equivariant splitting lemma

Proposition 3.4. Let Γ be a reduced G-graph. If (I, a) is a reductive and (J , b) a
strictly reductive Whitehead move from Γ , then there is a sequence

(I, a) = (I0, a0), . . . , (Ik, ak) = (J , b)
of equivariant Whitehead moves such that (Ii, ai) is strictly reductive for i > 0, and Ii

is compatible with Ii+1 for i = 0, . . . , k − 1.

Proof. The proof proceeds by induction on the intersection number n of I with J . If
n = 0, I and J are compatible, and there is nothing to prove. If n > 0, our strategy will be
to find a strictly reductive Whitehead move (A, c), so that the ideal edge A is compatible
with I and has intersection number strictly less than n with J , or is compatible with J
and has intersection number strictly less than n with I. The counting lemmas, 3.2 and
3.3, will be used to prove strict reductivity.

Suppose there is an x ∈ G with the following properties:

(1) I ∩ xJ 6= ∅;
(2) a 6∈ I ∩ xJ ;

(3) xb 6∈ I ∩ xJ .

Since (xJ , xb) = (J , b), without loss of generality we may assume x = 1. Set γ = I ∩J .
Since a 6∈ γ and Pa = a, we must have a 6∈ Pγ; similarly, b 6∈ Qγ. Therefore, (I −Pγ, a)
and (J −Qγ, b) are Whitehead moves. The ideal edge I − Pγ is compatible with I and
has intersection number strictly smaller than n with J ; similarly, J −Qγ is compatible
with J and has intersection number strictly smaller than n with I. Lemma 3.3 gives

p(|I − Pγ| − |a|) + q(|J −Qγ| − |b|) 6 p(|I| − |a|) + q(|J | − |b|) < 0,
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Figure 2. n = 2.

showing at least one of these Whitehead moves is strictly reductive, so we are done by
induction.

If there is no x satisfying conditions (1)–(3), then every non-empty intersection I ∩xJ
must contain either a or xb. At most one intersection component P (I ∩xJ ) can contain
a. Similarly, at most one intersection component Q(J ∩ y−1I) can contain b, which
translates to saying that at most one intersection component P (I ∩ yJ ) meets the orbit
of b. Therefore, there are at most two intersection components, i.e. n 6 2.

If n = 2, we must have a ∈ I ∩ xJ and yb ∈ I ∩ yJ for some x, y in distinct cosets
of P in G. Without loss of generality, we may assume x = 1, and y 6∈ P . Since a ∈ J ,
we have P = stab(a) 6 Q = stab(J ). Since yb ∈ I, we have yQy−1 = stab(yb) 6 P .
But P and Q are finite groups, so yQy−1 = P = Q. Set γ = I ∩ J and γy = I ∩ yJ .
Since a ∈ γ, stab(a) = stab(γ), i.e. γ = Pγ = Qγ. Similarly, γy = Pγy = (yQy−1)γy.
The situation is illustrated in Figure 2.

We now divide the proof into cases depending on whether the orbits Gā and Gb̄ meet
I ∪J . Note that Gā does not meet I, by the definition of ideal edge, so that if Gā meets
I ∪ J , it must meet it in J .

If both Gā and Gb̄ meet I ∪ J , there are x1, x2 ∈ G with x1b̄ ∈ I and x2ā ∈ J . Then
(I − γ, x1b̄) and (J − γ, x2ā) are Whitehead moves. The ideal edge I − γ is compatible
with I and has intersection number 1 with J ; similarly, J − γ is compatible with J and
has intersection number 1 with I. An application of Lemma 3.3 shows that at least one
of these is strictly reductive, so we are done by induction.

If only one of Gā and Gb̄ meets I ∪ J , by symmetry we may assume there is x ∈ G
with xā ∈ J , so that (I − γ, yb) and (J − γ, xā) are Whitehead moves. We again apply
Lemma 3.3 to show that at least one is strictly reductive.

If neither Gā nor Gb̄ meets I ∪ J , then (yJ − γy, ya), (I − γy, a), (I − γ, yb) and
(J − γ, b) are all Whitehead moves, and two applications of Lemma 3.3 give

p(|yJ −γy|−|ya|+|I−γy|−|a|+|I−γ|−|yb|+|J −γ|−|b|) 6 2p(|I|−|a|+|J |−|b|) < 0,

so that at least one of the Whitehead moves is strictly reductive.
We have now reduced to the case n = 1. Without loss of generality, we may assume

γ = I ∩J is non-empty. Furthermore, at least one of a or b is in γ; otherwise conditions
(1)–(3) are satisfied by x = 1. By symmetry, we may assume a ∈ γ. Since a ∈ J ,
P = stab(a) 6 Q = stab(J ). Thus, we have both counting lemmas, 3.3 and 3.2, at our
disposal.
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a b
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a b
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Figure 3. (a) n = 1, b ∈ I ∩ J . (b) n = 1, b ∈ J − QI.

There are two possibilities for the position of b. If b ∈ γ, then b ∈ I, so Q = stab(b) 6
P = stab(I). But we already have P 6 Q, so P = Q and γ = Pγ = Qγ. If b 6∈ γ, then it
is possible that Q properly contains P and b ∈ J −Qγ. These possibilities are illustrated
in Figure 3.

Again, we divide up the proof according to whether the orbits of Gā or Gb̄ meet I ∪J .
In each case, we will find a strictly reductive ideal edge compatible with both I and J .

If both Gā and Gb̄ meet I ∪ J , there are x1, x2 ∈ G with x1b̄ ∈ I and x2ā ∈ J . Since
Gā ∩ I = ∅ and Gb̄ ∩ J = ∅, x1b̄ ∈ I − γ and x2ā ∈ J − Qγ. Then (I − γ, x1b̄) and
(J −Qγ, x2ā) are Whitehead moves. The ideal edges I − γ and J −Qγ are compatible
with both I and J , and an application of Lemma 3.3 finishes the proof in this case.

If Gb̄ does not meet I ∪ J , then (γ, a) and (QI ∪ J , b) are Whitehead moves, and we
can apply Lemma 3.2 to show that at least one is strictly reductive.

Finally, suppose Gb̄ meets I∪J but Gā does not. If b ∈ γ, then (γ, a) and (I∪J , b) are
Whitehead moves, one of which is reductive by Lemma 3.2. If b ∈ J −Qγ, choose x ∈ G
with xb̄ ∈ I − γ. Then stab(xb̄) = stab(xb) = xQx−1 6 stab(I) = P ; but P 6 Q, so we
must have P = Q and γ = Pγ = Qγ. Then (I − γ, xb̄), (J − γ, b), (γ, a) and (I ∪ J , a)
are all Whitehead moves. We apply Lemma 3.3 to the first two and Lemma 3.2 to the
last two to conclude

|I − γ| − |xb̄|+ |J − γ| − |b|+ |γ| − |a|+ |I ∪ J | − |a| 6 2(|I| − |a|+ |J | − |b|) < 0,

so that one of these Whitehead moves is strictly reductive. �

3.5. Equivariant peak reduction

The following is a re-statement of Theorem 2.2 in the terminology of this section.

Theorem 3.5. Let Γ be a reduced G-graph, and let L be a finite invariant set of
homotopy classes of loops in Γ . Let Γ → (I, a)Γ and Γ → (J , b)Γ be equivariant
Whitehead moves with (I, a) reductive and (J , b) strictly reductive. Then there is an
equivariant Whitehead path (Im, am) . . . (I1, a1) from (I, a)Γ to (J , b)Γ , such that the
image of L under (Ij , aj) . . . (I1, a1)(I, a) has length less than |L|Γ for all 1 6 j 6 m.

Proof. Suppose first that I and J are compatible. Then either their orbits are dis-
joint, the orbit GI is contained in GJ (in which case we may assume I ⊆ J ), or GJ is
contained in GI (in which case we may assume J ⊆ I).
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If I = J , then (I, a)Γ and (J , b)Γ are connected by a single Whitehead move, given
by

(I, a)Γ ca←−− fI(Γ ) cb−→ (I, b)Γ.
If I and J are different, we construct a new graph Γ ′ by performing both of the

equivariant folds fI and fJ ; if the orbits GI and GJ are disjoint, these folds can be
performed independently, in either order. If I ⊂ J or J ⊂ I, we perform the fold
corresponding to the larger orbit first. Now I, J , a and b correspond to edges in Γ ′,
whose orbits are all forests. We set Φa = G{a, ā} and Φb = G{b, b̄}. If Φa = Φb, then

(I, a)Γ cJ←−− ca(Γ ′) cI−→ (J , b)Γ

is a single Whitehead move.
If Φa and Φb are different, and Φ = Φa∪Φb is a forest in Γ ′, then the graph Γ ′

Φ obtained
from Γ ′ by collapsing Φ is a reduced G-graph, and we have the following sequence of two
Whitehead moves connecting (I, a)Γ and (J , b)Γ :

(I, a)Γ cJ←−− ca(Γ ′) cb−→ Γ ′
Φ

ca←−− cb(Γ ′) cI−→ (J , b)Γ.

If L′
Φ is the image of L in Γ ′

Φ, then

|L′
Φ| = |L|Γ + [G : stab(I)](|I| − |{a}|) + [G : stab(J )](|J | − |{b}|) < |L|Γ ,

and we are done.
We are reduced to the case when Φ = Φa ∪ Φb is a not a forest in Γ ′.

Claim 3.6. If Φ is not a forest in Γ ′, then there are x, y ∈ G so that either

(1) (I, xb̄) and (J , yā) are Whitehead moves; or

(2) (I, b) and (J , a) are Whitehead moves.

Proof. If a has a free vertex in Φ, then Φ deformation retracts onto Φb, which is a
forest in Γ ′, contradicting the hypothesis. Similarly, b has no free vertex in Φ.

Since vI is not a free vertex of Φa, there must be an edge of Φ different from a which
is in I. We consider the different ways I could be compatible with J separately.

Case (1). Suppose I ∩ xJ = ∅ for all x ∈ G. Then there is no x with xb ∈ I. Since I is
an ideal edge, there is no x with xā ∈ I, or xa 6= a in I. Therefore, there must be an
x with xb̄ ∈ I. Similarly, there must be a y ∈ G with yā ∈ J . Therefore, both (I, xb̄)
and (J , yā) are Whitehead moves.

Case (2). Suppose I ⊂ J . Then there is no x with xā, xb̄ or xa 6= a in I.
Then we must have b ∈ I. We know xā 6∈ I for all x but, in addition, xā cannot be in
J − I, since that would imply that xā has vJ as a free vertex. Thus (I, b) and (J , a)
are Whitehead moves.

The symmetric argument applies if J ⊂ I.
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In case (1), (I, xb̄) and (J , yā) are Whitehead moves, and stab(I) = stab(J ). Since
|I| − |a| + |J | − |b| < 0, one of |I| − |b| = |I| − |xb̄| or |J | − |yā| is negative, so one of
the Whitehead paths,

(I, a)Γ − (I, xb̄)Γ − (J , b)Γ or (I, a)Γ − (J , yā)Γ − (J , b)Γ,

satisfies the conclusion of the proposition.
Case (2) follows in the same way. �

If I and J are not compatible, Proposition 3.4 (the splitting lemma) gives a sequence

I = I0, I1, . . . ,J = Ik

of strictly reductive edges with Ii compatible with Ii+1 for all i. Thus we can join each
(Ii, ai)Γ and (Ii+1, ai+1)Γ by a Whitehead path that passes only through reduced G-
graphs, such that the image of L has length less than |L|Γ .

The concatenation of all these paths gives a Whitehead path from (I, a)Γ to (J , b)Γ
with the desired properties. �

4. Graphs of groups, their isomorphisms and Dehn twists

In this section we review the basic terminology for graphs of groups and state some
elementary facts. For more detailed information and proofs, we refer to [4] or [1].

4.1. Graphs of groups

A graph-of-groups G consists of the following data:

(1) a finite connected graph Γ = Γ (G);
(2) for each vertex v of Γ a group Gv;

(3) for each oriented edge e of Γ a group Ge; if ē denotes the edge corresponding to e
with the opposite orientation, then Ge = Gē;

(4) for each oriented edge e of Γ an injective homomorphism fe : Ge → Gτ(e), where
τ(e) is the terminal vertex of e.

In this paper, the following special class of graphs of groups will play a significant role.

Definition 4.1. A graph of groups G is free-cyclic if all vertex groups Gv are free of
rank at least two, all edge groups Ge are infinite cyclic, and the image fe(Ge) of each
edge group is a maximal cyclic subgroup of Gτ(e).

The path group Π(G) is the group given by generators and relations as follows. As
generators, we take the elements of the vertex groups Gv, together with one generator te
for each oriented edge e. As relations, we take all relations in the Gv together with, for
each oriented edge e and element a ∈ Ge, the relations tē = t−1

e and tefe(a)t−1
e = fē(a).
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Every element of Π(G) is given by a word

W = r0t1r1 · · · tqrq,

where ti is equal to tei for some oriented edge ei, and ri is an element of the free product
of the vertex groups Gv. We say W is a loop based at v if the edges e1 . . . eq form a loop in
Γ (G) at v and the elements ri lie in the appropriate vertex groups, i.e. τ(ē1) = τ(eq) = v,
τ(ei) = τ(ēi+1) for i = 1, . . . , q − 1, r0 ∈ Gv and ri ∈ Gτ(ei) for i = 1, . . . , q. The
fundamental group π1(G, v) is defined to be the subset of Π(G) consisting of elements
that are represented by loops based at v. This is a subgroup of Π(G). For distinct vertices
v1 and v2, the subgroups π1(G, v1) and π1(G, v2) are conjugate in Π(G).

4.2. Graph-of-groups isomorphisms

A graph-of-groups isomorphism H : G1 → G2 consists of the following data:

(1) a graph isomorphism H : Γ (G1)→ Γ (G2);

(2) for each vertex v of Γ (G1) an isomorphism Hv : Gv → GH(v);

(3) for each oriented edge e of Γ (G1) an isomorphism He : Ge → GH(e), with He = Hē;

(4) for each edge e of Γ (G1) a correction term δ(e) = δH(e); this is an element of GH(v)

(v = τ(e)) such that Hvfe = adδ(e)fH(e)He, i.e. the following diagram commutes

Ge
fe−−−−→ Gv



yHe



yHv

GH(e)
adδ(e)◦fH(e)−−−−−−−−→ GH(v)

(Here and elsewhere, adx denotes the conjugation y 7→ xyx−1.)

A graph-of-groups isomorphism H : G1 → G2 induces an isomorphism H∗ : Π(G1) →
Π(G2) defined on generators by

H∗(r) = Hv(r), for r ∈ Gv,

H∗(te) = δ(ē)tH(e)δ(e)−1.

The isomorphism H∗ in turn induces an isomorphism H∗v : π1(G1, v)→ π1(G2, H(v)).

Definition 4.2. Let A and B be groups. An outer isomorphism F : A → B is an
equivalence class of isomorphisms, where two isomorphisms f, f ′ : A→ B are equivalent
if there is an x ∈ B with f ′ = adx ◦ f .

We denote by Ĥ : π1(G1) → π1(G2) the outer isomorphism induced by H∗v. This
notation that entirely omits the basepoints is justified by the observation that the iso-
morphisms H∗v and H∗w become equivalent upon identification of their source groups
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by a conjugacy in Π(G1) and the identification of their target groups by a conjugacy in
Π(G2) (see [5, § 2]).

The composition of two graph-of-groups isomorphisms L : G1 → G2 and K : G2 → G3

is a graph-of-groups isomorphism H : G1 → G3, which satisfies Ĥ = K̂L̂ and H∗ = K∗L∗.
The compositionH is given by the compositionsH = KL,Hv = KL(v)Lv,He = KL(e)Le,
and

δH(e) = KL(τ(e))(δL(e))δK(L(e)),

for all vertices v and edges e of Γ1.
A graph-of-groups isomorphism between free-cyclic graphs of groups is determined to

some extent by the graph isomorphism and the vertex isomorphisms. This is made precise
in the following lemma.

Lemma 4.3. Let G1 and G2 be free-cyclic graphs of groups, and let H : G1 → G2 and
H′ : G1 → G2 be two graph-of-groups isomorphisms which agree on the underlying graphs
and on all vertex groups. Then H and H′ agree on the edge groups, and for each edge e
of G1, the correction terms δ(e) and δ′(e) differ by the image of an element of the edge
group GH(e):

δ′(e) = δ(e)fH(e)(b(e)),

for some b(e) ∈ GH(e).

Proof. Consider an edge e of Γ1, choose a generator a for Ge and let v = τ(e). Set
c = He(a) and c′ = H ′

e(a); since GH(e) is infinite cyclic and He and H ′
e are isomorphisms,

either c′ = c or c′ = c−1.
In the vertex group GH(v), fH(e)(c) is conjugate to Hv(fe(a)) by δ(e), and fH′(e)(c′)

is conjugate to H ′
v(fe(a)) by δ′(e). Since H = H ′ and Hv = H ′

v, fH(e)(c) is conjugate to
fH(e)(c′) by δ(e)−1δ′(e). Since conjugation in the free groupGH(v) cannot take an element
to its inverse, we must have c = c′, and, hence, δ(e)−1δ′(e) commutes with fH(e)(c). Since
the subgroup generated by fH(e)(c) is maximal cyclic in GH(v), the product δ(e)−1δ′(e)
is in this subgroup, and we take b(e) so that fH(e)(b(e)) = δ(e)−1δ′(e). �

We will need to understand when two automorphisms of a graph of groups G induce
conjugate elements of Out(π1(G)). The following lemma describes one way that this may
occur.

Lemma 4.4. Let H : G → G be a graph-of-groups automorphism, let e0 be an edge
of Γ (G) with H(e0) 6= e0, and let b0 be an element of the centre of Ge0 . Let H′ : G → G
be the graph-of-groups automorphism obtained as follows. Set e1 = H(e0), e2 = H(e1),
b1 = He0(b0) and b2 = He1(b1); replace the correction term δ(e0) by δ(e0)fe1(b1), and
replace δ(e1) by δ(e1)fe2(b

−1
2 ). Leave all other data unchanged. Then Ĥ and Ĥ′ are

conjugate in Out(π1(G)).

Proof. Consider the graph-of-groups automorphism D : G → G which is the identity
on the graph and on all vertex and edge groups, and has trivial correction terms except for
δD(e1) = fe1(b1). A straightforward computation shows thatDH = H ′D,DvHv = H ′

vDv
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and DeHe = H ′
eDe for all vertices v and edges e. We perform here the calculations for

the correction terms δ(e), for an arbitrary edge e of Γ (G) with terminal vertex τ(e) = v:

δDH(e) = DH(v)(δH(e))δD(H(e)) = δH(e)δD(H(e)),

δH′D(e) = H ′
D(v)(δD(e))δH′(D(e)) = H ′

v(δD(e))δH′(e).

These are both equal to δH(e) if e 6= e0, e1. For e = e0 one obtains

δDH(e0) = δH(e0)δD(e1) = δH(e0)fe1(b1),

δH′D(e0) = H ′
τ(e0)(δD(e0))δH′(e0) = δH(e0)fe1(b1),

and for e = e1, one has

δDH(e1) = δH(e1)δD(e2) = δH(e1),

δH′D(e1) = H ′
τ(e1)(δD(e1))δH′(e1) = H ′

τ(e1)(fe1(b1))δH′(e1)

= [δH′(e1)fe2(b2)δH′(e1)−1]δH′(e1) = δH′(e1)fe2(b2)

= δH(e1)fe2(b2
−1)fe2(b2) = δH(e1).

Thus, DH = H′D, and so the outer automorphisms induced byH andH′ are conjugate.
�

The graph-of-groups isomorphism D in the proof of the above lemma induces a ‘Dehn
twist automorphism’ D̂ ∈ Out(π1(G)). We now give a precise definition of this.

Definition 4.5. A Dehn twist D consists of the following data:

(1) a graph of groups G;

(2) for each edge e of Γ = Γ (G), an element ze in the centre of the edge group Ge,
with zē = z−1

e .

We say D is based on G, and the elements ze are called twistors.

The Dehn twist D determines an automorphism D∗ : Π(G) → Π(G) given on the
generators by D∗|Gv

= id for each vertex v ∈ Γ , and D∗(te) = tefe(ze) for each edge
e ∈ Γ . The automorphism D∗ restricts to an automorphism Dv : π1(G, v)→ π1(G, v) for
every vertex v of Γ and, hence, defines an outer automorphism D̂ of π1(G), which we call
a Dehn twist automorphism.

A graph-of-groups automorphism D represents a Dehn twist D based on G if D is
an automorphism of G with D̂ = D̂ in Out(π1(G)). We can easily construct a repre-
sentative of D by taking the identity on the graph and on all vertex and edge groups,
and taking correction terms any elements δ(e) ∈ Gτ(e) satisfying δ(ē)teδ(e)−1 = tefe(ze)
in Π(G), where {ze} are the twistors of D. The following proposition characterizes all
representatives of a Dehn twist, when the graph of groups G is free-cyclic.
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Proposition 4.6.

(1) Let G be a free-cyclic graph of groups, let D be a Dehn twist based on G, and let
D : G → G represent D. Then D is the identity on the underlying graph and on all
edge groups, and for all vertices v and edges e, there exist elements γ(v) ∈ Gv and
b(e) ∈ Ge such that Dv = adγ(v) and δ(e) = γ(τ(e))fe(b(e)).

(2) Let G be any graph of groups, with given elements γ(v) in each vertex group Gv and
b(e) in each edge group Ge. Let D : G → G be the graph-of-groups automorphism
that is the identity on Γ (G) and on all edge groups, is adγ(v) on Gv, and has
correction terms δ(e) = γ(τ(e))fe(b(e)). Then D represents the Dehn twist D′

based on G with twistors {ze = b(ē)b(e)−1}.
Proof. (1) Since every vertex group Gv is free of rank at least two, and since Γ (G) is

a finite graph, there is an element r(v) ∈ Gv which is not conjugate to any element of any
fe(Ge). If follows from the normal form of cyclic words in Π(G) (see [5, Proposition 3.9])
that the conjugacy class D̂[r(v)] = D̂[r(v)] in Π(G) is equal to [r(v)]. This implies that
D(v) = v. A similar consideration for the conjugacy class [ter(τ(e))tēr(τ(ē))] implies
that D(e) = e, and, thus, D is the identity on Γ (G). But then every Dv is an inner
automorphism of Gv, say Dv = adγ(v) for γ(v) ∈ Gv, and every De is the identity map.
As every edge group Ge is mapped by fe to a maximal cyclic subgroup of the non-abelian
free group Gτ(e), it follows from

adγ(τ(e))fe = Dτ(e)fe = adδ(e)fD(e)De = adδ(e)fe

that δ(e) differs from γ(τ(e)) at most by an element from fe(Ge), i.e. δ(e) = γ(τ(e))fe(b(e))
for some b(e) ∈ Ge.

(2) This follows directly if we compare the definition of D∗(W ) and D′
∗(W ) for an

arbitrary word W in the path group Π(G). �

Corollary 4.7. Let G be a free-cyclic graph of groups, let D be a Dehn twist based
on G, let D : G → G represent D, and let b(e) ∈ Ge be the elements found in Proposi-
tion 4.6(1). Then the twistors of D are determined by the correction terms of D via the
formula

ze = b(ē)b(e)−1.

Proof. By Proposition 4.6(2), D represents the Dehn twist D′ based on G with
twistors ze = b(ē)b(e)−1. By [5, Proposition 5.4], a Dehn twist on a free-cyclic graph
of groups is uniquely determined by the induced outer automorphism of π1(G). Since
D̂ = D̂ = D̂′, we must have D = D′. �

Applying Proposition 4.6 in the special case when the Dehn twist is trivial results in
the following two useful corollaries.

Corollary 4.8. Let H : G → G be a graph-of-groups automorphism, w a vertex of
Γ (G), and γ an element of the vertex group GH(w). Let Hγ : G → G be the graph-
of-groups automorphism obtained from H as follows. Replace Hw : Gw → GH(w) by
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adγ ◦Hw, and for each edge e terminating at w, replace δ(e) by γδ(e). Then H and Hγ

induce the same outer automorphism of π1(G).

Proof. Let D be the graph-of-groups automorphism defined as in Proposition 4.6(2)
by setting b(e) = 1 for all edges e, γ(v) = γ if v = H(w), and γ(v) = 1 otherwise. Then
Hγ = DH. But D̂ is trivial in Out(π1(G)) by Proposition 4.6(2). �

Corollary 4.9. Let G be a free-cyclic graph of groups. If two graph-of-groups auto-
morphisms H : G → G and K : G → G induce the same outer automorphism of π1(G),
then

(1) H = K : Γ (G)→ Γ (G); and

(2) for each vertex v of Γ (G), Hv and Kv induce the same outer isomorphism Gv →
GH(v).

Proof. Apply part (1) of Proposition 4.6 to D = KH−1; we know that D̂ is the
identity. �

For the rest of this paper, we specialize to graphs of groups G with finitely generated free
fundamental group Fn. We say a graph-of-groups automorphism H : G → G realizes an
element φ of Out(Fn) if there is an outer isomorphism θ : Fn → π1(G) with θ−1Ĥθ = φ.
An element φ ∈ Out(Fn) is called a Dehn twist automorphism if there is a graph-of-
groups automorphism realizing φ that represents a Dehn twist D; in this case we also
say D realizes φ.

In general, a given Dehn twist automorphism of Fn may be realized by many different
Dehn twists, based on different graphs of groups. A Dehn twist based on G is called
efficient if G is free-cyclic with free fundamental group, the twistors ze are all non-
trivial, and the images of two twistors in the same vertex group have no positive powers
that are conjugate in the vertex group (see [5, § 6]). In [5] it is shown that every Dehn
twist automorphism of Fn is realized by an efficient Dehn twist. The main result of [5]
(Theorem 1.1(a)) is the following uniqueness result for efficient Dehn twists.

Theorem 4.10. Let G1 and G2 be graphs of groups with π1(G1) ∼= π1(G2) ∼= Fn.
Let D1 and D2 be efficient Dehn twists based on G1 and G2, respectively, with twistors
{ze} and {z′

e}, and let η : π1(G1) → π1(G2) be an outer isomorphism. Then the outer
automorphisms D̂2 and ηD̂1η

−1 of π1(G2) are equal if and only if there is a graph-
of-groups isomorphism H : G1 → G2 with Ĥ = η that takes twistors to twistors (i.e.
He(ze) = z′

H(e) for all edges e ∈ Γ (G1)).

5. Roots of Dehn twists

In this section we consider graphs of groups G with free fundamental group and outer
automorphisms φ ∈ Out(π1(G)) such that some positive power φt is a Dehn twist auto-
morphism. We give a solution to the conjugacy problem for such roots of Dehn twist
automorphisms, based on the equivariant Whitehead algorithm derived in § 2.
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F = 3x 3y,2 F = 2x 2y,2

F = 1x 1y,2

F = 1a 2a,3 3a,

Z = s1

Z = s2

Z = s3

Figure 4. Example 5.1.

To help the reader understand the main problems in dealing with roots of Dehn twist
automorphisms, we revisit the example given in the introduction to this paper. We
describe two graph-of-groups automorphisms that realize the same automorphisms of
the free group as those induced by the surface homeomorphisms in that example.

Example 5.1. Let Γ be the ‘tripod’ graph, with four vertices {v1, v2, v3, w} and three
edges {e1, e2, e3}, with ei connecting vi to w. Let G be the graph of groups based on Γ ,
with Gw = 〈a1, a2, a3〉 ∼= F3, Gvi = 〈xi, yi〉 ∼= F2, Gei = 〈si〉 ∼= Z, fei(si) = ai, and
fēi

(si) = [xi, yi] (see Figure 4).
Define a graph-of-groups isomorphism R as follows, where all indices should be inter-

preted modulo 3. The graph isomorphism R cyclically permutes the edges, sending
ei 7→ ei+1 and fixing the central vertex w; the vertex group isomorphism Rw sends each
ai to ai+1, and the vertex group isomorphisms Rvi

: Gvi
→ Gvi+1 are given by xi 7→ xi+1

and yi 7→ yi+1; the edge isomorphisms Rei are given by si 7→ si+1; the correction terms
are given by δ(ēi) = 1 and δ(ei) = a−1

i+1. Define a second graph-of-groups isomorphism
R′ with exactly the same graph, vertex group and edge group isomorphisms, but with
all correction terms trivial except δ(e1) = a−3

2 .
Then R3 = R′3, and this represents an (efficient!) Dehn twist with twistors {zei

= s3i }.
Are the automorphisms R̂ and R̂′ of π1(G) conjugate? The answer is yes; in fact, R and
R′ are conjugate by a Dehn twist D which twists once around s2 (i.e. δ(e2) = a−1

2 ) and
twice around s3 (δ(e3) = a−2

3 ), but not around s1 (δ(e1) = 1).

We begin by deriving, from results of [5], the fact that a root of a Dehn twist automor-
phism is realized by a particularly simple automorphism of a graph of groups, related to
the efficient representative for the associated Dehn twist automorphism.

Definition 5.2. Let D be a Dehn twist based on the graph of groups G, with twistors
{ze}. A graph-of-groups automorphism R : G → G is a k-th root of D if Rk represents
D and Re(ze) = zR(e) for every edge e of G.
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Proposition 5.3. Let φ be an element of Out(Fn) such that φt is a Dehn twist auto-
morphism. Then φ is realized by a root of an efficient Dehn twist.

Proof. By Corollary 8.7 of [5], there is an efficient Dehn twist D based on G with
twistors {ze} which realizes φt. Since φ commutes with φt, Proposition 7.1 of [5] implies
that there is a graph-of-groups automorphism R : G → G realizing φ with Re(ze) = zR(e)

for all edges e of Γ (G). �

Remark 5.4. Proposition 5.3 can be used to derive basic information about roots of
Dehn twists, for example about their centralizer in Out(Fn) or about the fixed subgroups
of their preferred lifts to Aut (Fn), from the analogous statements for Dehn twists (see [5,
§ 7]).

The following technical lemma shows the effect of a simple alteration of a single cor-
rection term in a graph-of-groups automorphism.

Lemma 5.5. Let R : G → G be a graph-of-groups automorphism. Let e0 be an
edge of Γ (G) and c0 an element of Ge0 . Set ek = Rk(e0) and ck = (Rk)e0(c0), and let
E = {e0, e1, . . . , et(e0)−1} be the orbit of e0 and s = t/t(e0). Define R1 : G → G to be the
graph-of-groups automorphism obtained from R by replacing the correction term δ(e0)
with δ(e0)fe1(c1). Then

δRt
1
(ej) = δRt(ej)fej (cj)

s

and

δRt
1
(e) = δRt(e), if e 6∈ E.

If G is free-cyclic and Rt represents a Dehn twist, then Rt
1 also represents a Dehn twist.

Proof. We compute the correction terms for Rt from those of R using the formula

δH(e) = KL(τ(e))(δL(e))δK(L(e))

for a composition H = KL of graph-of-groups isomorphisms. We omit subscripts that
are well defined by the context:

δRt(e) = Rt−1(δ(e))δRt−1(R(e))

= Rt−1(δ(e))Rt−2(δ(R(e)))δRt−2(R2(e))

= · · ·
= Rt−1(δ(e))Rt−2(δ(R(e))) · · ·Rt−k−1(δ(Rk(e))) · · · δ(Rt−1(e)).

In order to obtain the correction terms for Rt
1, each occurrence of δ(e0) in the above

expression must be replaced by δ(e0)fe1(c1). If e 6∈ E, then δ(e0) does not occur, and we
have δRt

1
(e) = δRt(e).
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If e ∈ E, then δ(e0) occurs s = t/t(e0) times. For each k with Rk(e) = e0 we apply the
rule Rfe = adδ(e)fRe from the definition of a graph-of-groups isomorphism repeatedly
to obtain

Rt−k−1(δ(e0)fe1(c1)) = Rt−k−1(δ(e0))Rt−k−1(fe1(c1))

= Rt−k−1(δ(e0))Rt−k−2(Rfe1(c1))

= Rt−k−1(δ(e0))Rt−k−2(δ(e1)fe2(c2)δ(e1)
−1)

= Rt−k−1(δ(e0))Rt−k−2(δ(e1))Rt−k−2(fe2(c2))R
t−k−2(δ(e1))−1

= · · ·
= Rt−k−1(δ(e0))Rt−k−2(δ(e1))Rt−k−3(δ(e2)) · · ·

· · · δ(et−k−1)fet−k
(ct−k)δ(et−k−1)−1 · · ·

· · ·Rt−k−3(δ(e2))−1Rt−k−2(δ(e1))−1.

Since Rk(e) = e0, we have et−k = et(e0)−k = e (and, hence, ct−k = ct(e0)−k). For
j = t(e0)− k, it follows that δRt

1
(ej) = δRt(ej)fej

(cj)s.
If G is free-cyclic and Rt represents a Dehn twist, then the correction terms of Rt are

determined by elements γ(v) and b(e) as in Proposition 4.6(1). The above computation
of the correction terms for Rt

1 together with Proposition 4.6(2) then imply that Rt
1 also

represents a Dehn twist. �

We use the above lemma as a tool in the next proposition, which says that two roots
of an efficient Dehn twist that agree on most of their data must induce conjugate outer
automorphisms.

Proposition 5.6. Let G be free-cyclic, and let R and R′ be t-th roots of an efficient
Dehn twist based on G with twistors {ze}. If R and R′ agree on the graph and on all
vertex groups of G, then R̂ and R̂′ are conjugate in Out(π1(G)).

Proof. We will modify R without changing the conjugacy class of R̂ until R = R′.
For any edge e of Γ (G), Lemma 4.3 guarantees thatR andR′ agree on the edge groups,

and gives us an element b(e) ∈ Ge such that the correction terms δ(e) of R and δ′(e) of
R′ are related by

δ′(e) = δ(e)fR(e)Re(b(e)).

Lemma 4.4 then implies that, if R(e) 6= e, we may replace δ(e) in R by δ′(e) and δ(R(e))
by

δ(R(e))fR(R(e))(RR(e)Re(b(e)−1)),

without changing the conjugacy class of R̂.
Choose an edge e in each non-trivial edge orbit, and perform the double replace-

ment above. We may then replace the new δ(R(e)) by δ′(R(e)) at the cost of modifying
δ(R(R(e))). We continue through each edge orbit, modifying the correction terms for R
until they agree with those of R′ except, possibly, at one exceptional edge of each orbit.
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Let e be an exceptional edge, with δ′(e) = δ(e)fR(e)(Re(b(e))) as above. Suppose first
that ē is in the orbit of e, say ē = Rk(e). By Lemma 5.5, we have

δR′t(e) = δRt(e)fe(b(e)s),

δR′t(ē) = δRt(ē)fē(Rk
e (b(e))s).

Since R is a root of an efficient Dehn twist, the twistor ze is non-trivial; since Re(ze) =
zR(e), we have Rk

e (ze) = zRk(e) = zē = z−1
e , so that Rk

e acts as inversion on the edge group
Ge. In particular, Rk

e (b(e))s = b(e)−s.
Since Rt and R′t represent the same efficient Dehn twist and agree on all vertex

groups Gv, the hypotheses of Proposition 4.6(2) are satisfied and we conclude that Rt

and R′t are the identity on all edge groups, and that there are elements γ(v) ∈ Gv

and β(e), β′(e) ∈ Ge such that (Rt)v = (R′t)v = adγ(v), δRt(e) = γ(τ(e))fe(β(e)) and
δR′t(e) = γ(τ(e))fe(β′(e)). It follows from Corollary 4.7 that the twistors of D are given
by ze = β(ē)β(e)−1 = β′(ē)β′(e)−1. But our computation above shows

β′(e) = β(e)b(e)s,

β′(ē) = β(ē)Rk
e (b(e))s = β(ē)b(e)−s.

Hence we obtain

β(ē)β(e)−1 = β(ē)b(e)−s(β(e)b(e)s)−1 = β(ē)β(e)−1b(e)−2s,

which proves b(e) = 1, as s > 1.
If e is exceptional and e and ē are in different orbits, we may assume that e and ē are

both exceptional. Using the basic edge relations, we ‘push’ some of δ(e) over to δ(ē) until
δ(ē) is equal to δ′(ē) and δ′(e) = δ(e)fR(e)(Re(b′(e))) for some b′(e) ∈ Ge; more precisely,
replace δ(ē) by δ′(ē) = δ(ē)fR(ē)(Rē(b(ē))) and δ(e) by δ(e)fR(e)(Rē(b(ē))). The resulting
graph-of-groups isomorphism is equal to R on the path group, so we have not changed
the conjugacy class of R̂.

We can now repeat the same application of Proposition 4.6 and Corollary 4.7 as in the
previous case and obtain that b′(e) = 1 in the same way.

Thus, all data for R and R′ are identical. �

The following theorem is the goal of this section. It gives necessary and sufficient
criteria for two roots of efficient Dehn twists to induce conjugate outer automorphisms.

Theorem 5.7. Two t-th roots R : G → G and R′ : G′ → G′ of efficient Dehn twists D
and D′, with twistors {ze} and {z′

e}, respectively, define outer automorphisms that are
conjugate by some outer isomorphism ψ : π1(G)→ π1(G′) if and only if there exists

(1) a graph isomorphism H : Γ (G)→ Γ (G′) that satisfies H−1R′H = R; and

(2) for each vertex v ∈ Γ (G), a group isomorphism hv : Gv → GH(v) satisfying

(a) h−1
v (R′t(v))H(v)hv = (Rt(v))v up to inner automorphism, where t(v) is the

order of the R-orbit of v; and
(b) hv(fe(ze)) is conjugate to fH(e)(z′

H(e)) for all edges e terminating at v.
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Proof. First, we assume that ψ−1R̂′ψ = R̂ for some outer isomorphism ψ : π1(G)→
π1(G′). Then ψ−1D̂′ψ = ψ−1R̂′tψ = R̂t = D̂, so by Theorem 4.10 there is a graph-of-
groups isomorphism H : G → G′ with ψ = Ĥ and He(ze) = zH(e) for all edges e
of Γ (G). We set hv = Hv. Statement (2b) follows immediately. Since G is the graph
of groups of an efficient Dehn twist, G is free-cyclic. Since Ĥ−1R̂′Ĥ = R̂, part (1) of
Corollary 4.9 implies that H−1R′H = R, which is statement (1). Now, for any integer k,
we get Rk = H−1(R′)kH, so that the order t(v) is equal to t(H(v)) for any vertex v. By
part (2) of Corollary 4.9, the outer isomorphisms induced by R′

H(v)Hv and HR(v)Rv are
equal, so that the outer automorphisms induced by H−1

v (R′t(v))H(v)Hv and (Rt(v))v are
also equal, giving statement (2a).

For the converse, we use the given data to build a graph-of-groups isomorphism H :
G → G′ such that Ĥ−1R̂′Ĥ is conjugate in Out(π1(G)) to R̂. It follows directly from the
definition of efficient Dehn twist automorphism and from [5, Lemma 5.3] that for any
graph-of-groups isomorphism H, the conjugate H−1R′H of R′ is also a t-th root of an
efficient Dehn twist, with twistors {H−1

e (z′
H(e))}. Therefore, by Proposition 5.6 it suffices

to construct H so that H−1R′H agrees with R on the graph and on all vertex groups,
and He(ze) = z′

H(e) for all edges e.
For the graph isomorphism of H, we take the isomorphism H : Γ (G) → Γ (G′) given

in (1).
In order to define H on the vertex groups, we first show that we may assume that

condition (2a) is a strict equality instead of just an equality up to inner automor-
phism. Choose a preferred vertex v in each vertex orbit of R. Condition (2a) says that
h−1

v (R′t(v))H(v)hv = adγ ◦ (Rt(v))v for some γ ∈ Gv. Let v1 = Rt(v)−1(v). By Corol-
lary 4.8, we may replace Rv1 : Gv1 → Gv by adγ ◦ Rv1 and δ(e) by γδ(e) for all edges
e terminating at v1 without changing the outer automorphism R̂. After this change, we
have

h−1
v (R′t(v))H(v)hv = (Rt(v))v.

Our modification has not changed the fact that Rt represents an efficient Dehn twist
based on G, and the twistors are unchanged. Furthermore, the hypothesis (2b) is still
valid.

Now let u be any vertex. Then u is in the orbit of some preferred vertex v, say u = Rk(v)
for some 0 6 k 6 t(v)−1. We define the vertex group mapHu for the desired isomorphism
H by Hu = (R′k)H(v)hv(R−k)u, giving H−1

R(u)R
′
H(u)Hu = Ru.

It remains to show that there exist edge homomorphisms He and correction terms δ(e)
satisfying the conditions for H to be a graph-of-groups isomorphism, and that He(ze) =
z′

H(e) for all edges e.
Let e be any edge of Γ , with terminal vertex v. Since R and R′ are graph-of-groups

isomorphisms, the vertex maps commute with the edge injections up to conjugacy; thus,
condition (2b) implies that Hvfe(ze) is conjugate to fH(e)z

′
H(e). Since these two elements

are conjugate in GH(v), the maximal cyclic subgroups that contain them are conjugate.
Recall that for efficient Dehn twists, edge groups are always mapped to maximal cyclic
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subgroups in the adjacent vertex groups; we conclude that Hvfe(Ge) = adxfH(e)(GH(e))
for some element x ∈ GH(v). Choose generators y for Ge and y′ for GH(e) that map to
the same element of GH(v), and define He by sending y to y′. We now check that setting
δ(e) = x satisfies the conditions for H to be a graph-of-groups isomorphism. Finally,
condition (2b) implies that He(ze) = z′

H(e). �

5.1. Solving the conjugacy problem

Algorithm 5.8. We now describe the algorithm for deciding whether two given roots
of Dehn twist automorphisms are conjugate. Here, we assume that the given data are,
for i = 1, 2:

(1) a graph of groups G′
i;

(2) an outer automorphism φi ∈ Out(π1(G′
i)); and

(3) an integer t > 0 and a Dehn twist D′
i based on G′

i, such that φt
i = D̂′

i.

(One should think of t as a common multiple of exponents ti, such that the φti
i are

Dehn twist automorphisms.)

We then proceed as follows.

(1) Find the efficient Dehn twist Di based on a graph of groups Gi with twistors {ze},
such that D̂i is conjugate to D̂′

i. How this can be done in finitely many steps is
explained in [5, § 8].

(2) Find a graph-of-groups automorphism Ri : Gi → Gi that realizes the root of D̂i

conjugate to φi. Such Ri exists, by Proposition 5.3, and can be found in finitely
many steps since the set of all graph-of-groups automorphisms of Gi is enumer-
able. (In practice, one can find Ri more efficiently using the starting data and the
conjugacy between Gi and G′

i.)

(3) List all graph isomorphisms H : Γ (G1)→ Γ (G2) that satisfy H−1R2H = R1.

(4) For each H found in step (3) and for every vertex v of Γ (G1), check whether there
exists an isomorphism hv : Gv → GH(v) that satisfies:

(a) h−1
v (Rt(v)

2 )H(v)hv = (Rt(v)
1 )v up to inner automorphisms, where t(v) denotes

the cardinality of the R1-orbit of v; and

(b) hv(fe(ze)) is conjugate to fH(e)(zH(e)) for all edges e of Γ (G1) with τ(e) = v.

Since (Rt(v)
1 )v and (Rt(v)

2 )H(v) are finite-order (equal to t/t(v)) automorphisms of
free groups, this step may be done by the equivariant Whitehead algorithm derived
in § 2 of this paper.

It follows directly from Theorem 5.7 that a graph-of-groups isomorphism H with the
properties (4a) and (4b) above exists if and only if φ1 and φ2 are conjugate. Hence,
the above algorithm is a solution of the conjugacy problem for roots of Dehn twist
automorphisms of finitely generated free groups.
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16. B. Zimmermann, Über Homöomorphismen n-dimensionaler Henkelkörper und endliche
Erweiterungen von Schottky-Gruppen (On homeomorphisms of n-dimensional handle-
bodies and on finite extensions of Schottky groups), Comment. Math. Helv. 56 (1981),
474–486.

https://doi.org/10.1017/S0013091599000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000061

