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1. Let f(x) be integrable £(0, 2n) and periodic with period 2n, and let
il/(t) be the conjugate function of i{ f(x + f) +f(x— t)} with respect to the variable
/, where x is considered as an arbitrary constant. The following theorems are
due to K. K. Chen (1), (2), pp. 111-124.

Theorem A. Suppose thatp>\,0<k<\, pk>\; and that at the point x,

= O(hpk), (1.1)f
Joas h-+ +0. Then the Fourier series of f(t) at the point t = x is summable

| C, a |,/or a>a0 = max (£ - / : , k).

Theorem B. Suppose that at the point x, there is a number q^.0 such that
q +pk > 1 and that as h-> + 0,

f
Jo

\l/(t+h)-\l>{t-h)\prqdt = 0{hpk). (1.2)

Then the Fourier series off(t) at t = x is summable \ C, a |, when

a>a 0 = max [%-k, k),
\ P J

and is summable (C, /?) for (I > — k.

Theorem C. If F(z) = £ cnz"(z = reiB) is regular in the unit circle \ z | < l , f
and if for a positive integer j ,

f
t In (2), p. 112, Theorem 4, it is assumed that F(z) is also regular at z = 1, but it seems

likely that this is unnecessary. I remark also that in the proof of Theorem 3 in (2), p. 112,
Theorem 4, in p. 112 is used; but the condition for regularity at z= 1 is not provided
there.
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as r->l, where Fa\z) is the jth derivative of F(z), then the series E cn is sum-

mable \C, a |, whenever a>a0 = maxl \ — k, -—k), and O^q<l, p>\,

0<k<l,pk+q>l.
Theorems A, B, C include a number of criteria for absolute convergence

and absolute Cesaro summability of Fourier series due to Hardy and Littlewood
(8), Hyslop (10), Chow (3), (4). In this paper, we shall consider further
extensions of Theorems A, B, C for absolute Cesaro summability " to index n "
in the sense of T. M. Flett (5), (6), (7). The series E an is said to be summable
| C, a \ll, where n*zl, a > —1, if the series E w*1"1 | <r*—cr™—i |" is convergent.

00

For any given series £ an, we write a° = S° = a0 + at +... + an,
o

n n

>->n — 2-1 Af ^v> Tn — ln ~ nani Ju — L, A i - v 1v •> "n — ^nlAn> ~n ~ 1nlAn>
v = 0 v = 0

where

A: =

n>\, a> — 1, A% = 1. Then we also have |

T"n = « « - < _ , ) , (1.4)

T J = - a ^ - ^ " 1 ) (a>0). (1.5)

In view of (1.4), we may restate the definition of summation | C, a |̂  in terms
00

of the series £ n~ *| T" |". Thus the series E an is summable | C, a !„ if and
I

only if the series En" 1 | T̂  |M is convergent.. T. M. Flett further considered
an extension of | C, a \ll summability: The series E an is said to be summable
| C, a, v I,,, where/x^l,a> — 1, if the series E n"7*"'11 al—a"n_l \ is convergent.
Thus summability | C, a \ll is the special case of summability | C, a, y |M when
y = 0.

00

Theorem l .J Let F(z) = Y cnz" be regular in | z | < l . If the following
» = o

conditions are satisfied:

(i) P>h

(ii) 0<&gl,

(iii) O^q^l—k,

(iv) 0^y<min(i, (q — l)/p+k),
t See (11) and (5), p. 114.
t I am indebted to the referee for pointing out a mistake and for valuable suggestions

which brought material improvements of the conditions of this theorem.
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(v) <x>a0 = maxU-Zc+y, k+y),
\ P )

min (p, 2) — 1

(vii) for some positive integer j ,

as r-*l, w/zez-e z = re'9, /Aen the series I cn is summable \ C, a, y |M.

Theorem 2. Let the conditions (i)-(vi) of Theorem 1 be satisfied and let

(1.7)f
Jo
^0

h~* +0, //zen ///e Fourier series off(t) is summable \ C, OL, y \ll at t = x.

Corollary. If p>\, 0<l/p<k^l, and a > a o = max(l//> — k, \ — k)T

min (p, 2) , . ,
VJ^ , and if

min (p, 2) — 1

(1.8)f
Jo
lo

as h-> +0, then the Fourier series off(f) is summable \C,tx\llatt = x.

00

Theorem 3. Suppose that f{t)~ ]£ An(t) and that the following inequalities
n = 0

are satisfied:

(i) I^p1^2^p2,

(iii)

(iv) a>i-fc' + y,

(v) I ^ g 2 .

Furthermore, if

i:
as h-y +0, then the Fourier series off(t) is summable | C, a, y \ll at t = x. /n
particular, if the function i// in (1.9) is replaced by f, if lgmin^jA:! , />2^2)
<max(/>!&!, p2k2), and if (iii) is replaced by k'^l, then the Fourier series
off(t) is summable \ C, a \ at t = x.
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2. For the proofs of Theorems 1, 2, 3, we require the following lemmas:

Lemma 1. Suppose that q^O, that the odd function ij/(9) is the imaginary
part of the boundary function

g(0) = F(eie)=:<t>(e)+iK0), (2-1)
where F(z) is regular in the unit circle \z\<\. Then the condition (1.7) with
p>l, 0<k^l implies

I F01(rew)\p | 0 \~qd9 = 0{(l -r)Hk~J)}, (2.2)

for every j = 1, 2, ..., as r -» l , where Fu\z) is the jth derivative of F(z).

oo

Lemma 2. If p>\, 0<k^l, q^O, F(z) = V cnz" w regular in | z | < l ,
n = 0

and if the boundary function (2.1) satisfies the following condition:

| 0(0+0-0(0-01" | 0 \'qd0 = O(| f \pk), (2.3)

ay /-»0, fAe« the jth derivative Fu^(z) of F(z) satisfies the relation (2.2) for every
j = 1, 2, ....

oo

Lemma3. Ifp>l,O<kg,l,z= rew, if F(z) = £ cnz" wregular in | z |< 1
n = 0

and if for some positive integer j ,

j: | Fu\z)\pd6 = 0{(1 - r )** - - "} , (2.4)

r -» l , r/*en ^ e boundary function g(Q) = -F(elfl) satisfies the relation:

g(e+t)-g(6-t)\"d9 = 0(| I |pk), (2.5)i:
00 00

Lemma 4. //" //z# functions F(z) = £ cnz" = J] cnr"emB is regular in
n = 0 n = 0

| z | < 1, o«rf '//<"• Jo/we positive integer j ,

•r)*k-»}, (2.6)

as r->l, then (2.6) w satisfied for every j = 1, 2, ..., wAere r > l ,

The proofs of Lemmas 1-4 are essentially due to K. K. Chen f (1), (2),
pp. 116-118, except the case when k = 1. As a matter of fact, the proofs of
Lemmas 1, 2, 4 have been given in (2) and when k = 1 the results are still

t Here it should be remarked that in Lemma 1, the condition (1.7) with <7==̂0 implies
tfi(O e L'{—a-, n). This result is due to Hardy and Littlewood (9), p. 566.
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valid. So we omit the proofs here. But for the proof of Lemma 3 which is
Lemma 4 in (2), p. 117, K. K. Chen's method is to reduce the case for general
J'by,/— 1) and then the result follows from mathematical induction. In fact,
the special case when j = 1, k = 1 is still true.f So the result for the general
case 0<fc^l follows at once.

1 1 m

Lemma 5.J {a) Let r~^k>\, y^O, <x>y-l, |3^a+ r . Then if V an isk r 0k 0
summable | C, a, y \k, it is summable \ C, /?, y \r and

{S n't'11 TJ | r} 1 / r^K{Z n ^ " 1 1 %*„ \kY'k. (2.7)

(6) Let / * ^ 1 , V^O, a>y — 1, y>v, wAere v w not necessarily non-negative,

/?^a — y+v, P> — 1. 77zeH if^on is summable \ C, a, y |M, /? « summable

\C,p,v ]„ and
Z B * ¥ - 1 | T ; | "gKEn" i r - 1 |< | " . (2.8)

3. We come now to the proof of Theorem 1 for / J > 1 . Suppose that the
conditions (i)-(vii) are satisfied. Then by (ii), (iii), (vii) and Lemma 4, the
relation (1.6) holds for ally.

Consider first the case 1 <p g 2. In view of Lemma 5 (a), it is sufficient to
prove that when ao«x^qlp,

t (3.1)t II
V = 1

as n->oo, provided that the following conditions are satisfied:

-k, cufkqlp, ct.>\jp — k + y, l</i?±p'. (3.2)

In fact, by virtue of (iii), we have qjp<q^ l—k, and since, by (iv) q\p> l/p — k + y,
the conditions (3.2) are satisfied when ao<x^qlp. If this can be established,
then by virtue of Lemma 5 (a), (3.1) is satisfied for all <x>a0 (since ao>y —1).
We have

" /

n = 0

It follows from the relation

B(x,y)= [l kx-\i-iy-ldk =
Jo

t Cf. (8), Theorem 3.
t See Flett (7), Theorem 1 and Theorem 3.
§ See Flett (5), p. 114, formula (2.1.6).
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that

+*= t\z-tyl{tF'
Jo dt

= I (z-t)*(l-t)-'F'(t)dt+ \ (z-t)%l-ty*F"{t)dt
Jo Jo

+ (\z-tyat(l-t)-'-1F'
Jo

, say. (3.3)

From Lemma 4 together with Minkowski's inequality and the relation a^q/p,
we obtain

If" 11,\'doY!p = |f" do| fz(z-o°(i-ty*F'(t)dt

as r-*\, where / = pe'°, z = re'9. Since a > —1, integration^by parts gives

!\r-pT(l-p)k-1dp=
Jo 1+a 1+aJo

\lh\r (3.5)
1+a 1+aJo

In view of (3.2), we see that a +k-1 <0. It follows from (3.4) and (3.5) that

f ft 1 UP

11 \h\"de\ =0{(l-r)«+*-1},
as r-*\. In a similar way, it can be readily shown that

as r -»• 1. Since a ̂  qjp,

it follows in a similar way that

\\ \l3\
pd0\ =0\\ (r-pm-t

U-« J (Jo
Hence

f j» . . V / P
M(p) =

https://doi.org/10.1017/S0013091500009007 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009007


ABSOLUTE CESARO SUMMABILITY OF A FOURIER SERIES 317

asr->l. The expression M(p) is a non-decreasing function of p. This gives

Write P = ———, then by Hausdorff's theorem, we have
min (p, 2) — 1

1

Setting r = 1 —1/«, we obtain

where s = l — a—k. By Holder's inequality,

1

provided that l g / i ^ P = pl(p-l) = />', which is satisfied by (3.2). Then by
Abel's transformation, we obtain

fn-l
1 I T" I*1 = O < y

" \v=l

= 0(1), (3.7)

as n-»oo, provided that s/j.—(j)+np—n)lp< — l—fiy, or s<\ — \jp—y, which
is equivalent to the condition <x> — k + l/p + y in (3.2). Hence (3.1) is satisfied
for l</»^2. Consider next the case p>2. Then by Holder's inequality, we
have for all j

- z |

provided that (pw-2q)l(j>-2)<\, i.e. provided that w<l+2(q-l)/p. Thus
provided that w<l+2(q— \)jp, the condition (1.6) holds for all j with p and g
replaced by 2 and w respectively. Hence, we have (3.1) provided that

In order that the statement (3.1) should not be vacuous, we require

\-k>i-k+y, i.e.
and

w/2>i-k + y. (3.8)

Take w = 1 +2(q-\)/p-2s, where e is chosen so that 0<s<(^— \)jp+k-y
(this is possible by (iv)). Then (3.8) is satisfied, and w<\ +2(q— \)jp, and
hence (3.1) holds for <xo<a<min(l— k, w/2), and therefore by Lemma 5 (a),
for all a >a0. This completes the proof for \i > 1.
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We now consider the proof of Theorem 1 for the case fi = 1. Let us insert
y' > y so that for given a, the conditions (iv), (v) of Theorem 1 can be written as:

(iv) 0£ (

(v) a>ao+%(y'-y)>ao = max(i-fc + y, l/p-k + y).

Then as in the proof for n>\, cco<a.^pjq,

£ v"'-11 T; I" = o(i),
V = 1

as n-voo, and therfore by virtue of Lemma 5 (b), we see that

V = 1

as M-VCO, for all a>a0. By a similar argument as in the proof for the case
y. > 1, we see that when p >2, the above relation still holds when a >a0. Thus
the proof of Theorem 1 is completed.

00

Proof of Theorem 2. Let/(O~ £ A(0 and write z = re",
» = o

F(z) = £ 4,(x)z".
n = 0

The odd function ^(?) is the imaginary part of the boundary function of F(z).
By (1.7) and Lemma 1, we obtain (1.6) f and the result follows immediately
from Theorem 1.

Finally for the proof of Theorem 3, we see that in virtue of Holder's
inequality.

f* | >Kt+h)-iKt-h)\2dt = i f"
JO J -

(P2~2)/(P2-Pl)

(2-PI)/(P2-PI>

which is equivalent to the condition (1.7) with/? = 2, q = 0, k = k' in Theorem
2. Hence the result follows at once.
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